
Draft from November 13, 2023





Contents

Preamble

Acknowledgements

1. Introduction
1-1. What is a computable function? . . . . . . . . . . . . . . . . . . 2
1-2. What are the non-computable functions? . . . . . . . . . . . . . 3
1-3. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1-4. Overview of computability theory . . . . . . . . . . . . . . . . . 5

2. Cantor’s infinity
2-1. Equipotence and subpotence . . . . . . . . . . . . . . . . . . . . 13
2-2. Cantor–Bernstein’s theorem . . . . . . . . . . . . . . . . . . . . 14
2-3. Countable sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2-4. Cantor’s diagonal argument . . . . . . . . . . . . . . . . . . . . 19
2-5. Non-computable reals . . . . . . . . . . . . . . . . . . . . . . . . 21
2-6. Cantor space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

I Classical Computability Theory 27

3. Foundations of computability
3-1. Computable functions . . . . . . . . . . . . . . . . . . . . . . . . 29
3-2. Computable sets . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3-3. Universal program . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3-4. SMN theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3-5. Padding lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3-6. Kleene’s fixed point theorem . . . . . . . . . . . . . . . . . . . . 38
3-7. Computably enumerable sets . . . . . . . . . . . . . . . . . . . . 42

– iii –



4. Turing degrees
4-1. Finite strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4-2. Computation with oracle . . . . . . . . . . . . . . . . . . . . . . 50
4-3. Relativization of proofs . . . . . . . . . . . . . . . . . . . . . . . 52
4-4. Use property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4-5. Turing degrees . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4-6. Turing jump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4-7. Limit computability . . . . . . . . . . . . . . . . . . . . . . . . . 59
4-8. Finite extensions method . . . . . . . . . . . . . . . . . . . . . . 64
4-9. Low degrees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4-10. High degrees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5. Arithmetic hierarchy
5-1. Elementary properties . . . . . . . . . . . . . . . . . . . . . . . . 79
5-2. Arithmetic hierarchy and computability . . . . . . . . . . . . . . 84
5-3. Relativization to an oracle . . . . . . . . . . . . . . . . . . . . . 85
5-4. Many-one degrees . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5-5. Post’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5-6. Rice’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5-7. Arithmetic codes . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6. Church-Turing thesis
6-1. The Entscheidungsproblem and the quest for the Grail . . . . . 97
6-2. Church-Turing thesis . . . . . . . . . . . . . . . . . . . . . . . . 102
6-3. Detailed study of recursive functions . . . . . . . . . . . . . . . . 104

7. Immunity and function growth
7-1. Immune sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
7-2. DNC functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
7-3. Arslanov completeness criterion . . . . . . . . . . . . . . . . . . 134
7-4. Hyperimmune functions . . . . . . . . . . . . . . . . . . . . . . . 135
7-5. Computably dominated degrees . . . . . . . . . . . . . . . . . . 137
7-6. Martin’s domination theorem . . . . . . . . . . . . . . . . . . . . 144
7-7. High or DNC degrees . . . . . . . . . . . . . . . . . . . . . . . . 148

8. ⇧0
1 classes and PA degrees

8-1. Binary trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
8-2. Topology on Cantor space . . . . . . . . . . . . . . . . . . . . . 155
8-3. ⇧0

1 classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
8-4. Basis theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
8-5. Basis for perfect ⇧0

1 classes . . . . . . . . . . . . . . . . . . . . . 169
8-6. PA degrees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
8-7. Finitely-branching trees . . . . . . . . . . . . . . . . . . . . . . . 176



9. Formal interlude
9-1. A little history: the crisis of foundations . . . . . . . . . . . . . 185
9-2. First-order logic . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
9-3. Incompleteness theorems of Gödel . . . . . . . . . . . . . . . . . 208
9-4. ZFC system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

10. Cohen forcing
10-1. Formulas of second-order arithmetic . . . . . . . . . . . . . . . . 226
10-2. ⌃0

1/⇧
0
1 forcing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

10-3. E↵ective genericity . . . . . . . . . . . . . . . . . . . . . . . . . 236
10-4. ⌃0

n
/⇧0

n
forcing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

10-5. Arbitrarily generic sets . . . . . . . . . . . . . . . . . . . . . . . 258

11. E↵ective forcing
11-1. Fundamentals of forcing . . . . . . . . . . . . . . . . . . . . . . . 265
11-2. Forcing relation . . . . . . . . . . . . . . . . . . . . . . . . . . . 268
11-3. Forcing with trees . . . . . . . . . . . . . . . . . . . . . . . . . . 271
11-4. Computational complexity and forcing question . . . . . . . . . 275

12. Quest for natural degrees
12-1. Three emblematic undecidable problems . . . . . . . . . . . . . 290
12-2. Natural Turing degrees . . . . . . . . . . . . . . . . . . . . . . . 293
12-3. Mass problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296

13. Priority method and c.e. degrees
13-1. C.e. degrees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300
13-2. Permitting method . . . . . . . . . . . . . . . . . . . . . . . . . 300
13-3. ⌃0

1 priority method (finite injury) . . . . . . . . . . . . . . . . . 301
13-4. ⌃0

2 priority method . . . . . . . . . . . . . . . . . . . . . . . . . 310
13-5. ⇧0

2 priority method (infinite injury) . . . . . . . . . . . . . . . . 313

14. Structure of the Turing degrees
14-1. Minimal degrees . . . . . . . . . . . . . . . . . . . . . . . . . . . 324
14-2. Nature of D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330
14-3. Universality of D . . . . . . . . . . . . . . . . . . . . . . . . . . 334
14-4. First-order theory of D . . . . . . . . . . . . . . . . . . . . . . . 339
14-5. Structure of the c.e. degrees . . . . . . . . . . . . . . . . . . . . 347

II Algorithmic Randomness 349

15. Introduction



16. Kolmogorov complexity and random numbers
16-1. Kolmogorov complexity . . . . . . . . . . . . . . . . . . . . . . . 356
16-2. Random numbers in the sense of Chaitin/Levin . . . . . . . . . 364
16-3. Characterization of prefix-free complexity . . . . . . . . . . . . . 371
16-4. K-trivial sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374

17. Borel classses, measure and computability
17-1. A little history . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379
17-2. First intuitions about algorithmic randomness . . . . . . . . . . 383
17-3. Borel classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386
17-4. Lebesgue measure . . . . . . . . . . . . . . . . . . . . . . . . . . 391

18. Martin-Löf randomness
18-1. Intuitions and definitions . . . . . . . . . . . . . . . . . . . . . . 399
18-2. The Martin-Löf and Chaitin/Levin randoms coincide . . . . . . 402
18-3. Randomness and Turing degrees . . . . . . . . . . . . . . . . . . 403
18-4. Randomness and DNC degree . . . . . . . . . . . . . . . . . . . 406

19. Other randomness notions
19-1. Weak-2 randomess . . . . . . . . . . . . . . . . . . . . . . . . . . 411
19-2. Relativization of randomness . . . . . . . . . . . . . . . . . . . . 416
19-3. 2-randomness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419
19-4. Incomplete random . . . . . . . . . . . . . . . . . . . . . . . . . 423

20. The K-trivials
20-1. Lowness and bases for randomness . . . . . . . . . . . . . . . . . 429
20-2. Golden run . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434
20-3. Characterization of the c.e. K-trivials . . . . . . . . . . . . . . . 446
20-4. New proof that K-trivial implies low-for-K . . . . . . . . . . . . 453

III Reverse Mathematics 457

21. Introduction
21-1. Quest for optimal axioms . . . . . . . . . . . . . . . . . . . . . . 459
21-2. Comparison of theorems . . . . . . . . . . . . . . . . . . . . . . 462

22. Second-order arithmetic
22-1. Z2 language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 466
22-2. Z2 theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 467
22-3. Semantics of second-order arithmetic . . . . . . . . . . . . . . . 470
22-4. Formalizing analysis in Z2 . . . . . . . . . . . . . . . . . . . . . 475
22-5. RCA0 and computable mathematics . . . . . . . . . . . . . . . . 478
22-6. ACA0 and the arithmetic hierarchy . . . . . . . . . . . . . . . . . 485



22-7. WKL0 and the compactness argument . . . . . . . . . . . . . . . 488
22-8. More powerful systems . . . . . . . . . . . . . . . . . . . . . . . 494

23. Induction and conservation
23-1. RCA0-provably computable functions . . . . . . . . . . . . . . . 502
23-2. Weak PA subsystems . . . . . . . . . . . . . . . . . . . . . . . . 504
23-3. Induction hierarchies . . . . . . . . . . . . . . . . . . . . . . . . 509
23-4. Primitive recursive functions and RCA0 . . . . . . . . . . . . . . 517
23-5. Bounded comprehension scheme . . . . . . . . . . . . . . . . . . 520
23-6. Conservation theorems . . . . . . . . . . . . . . . . . . . . . . . 523
23-7. Hilbert program . . . . . . . . . . . . . . . . . . . . . . . . . . . 534

24. Computable reductions
24-1. !-reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 540
24-2. Computational reduction . . . . . . . . . . . . . . . . . . . . . . 545
24-3. Weihrauch reduction . . . . . . . . . . . . . . . . . . . . . . . . 547
24-4. Reduction games . . . . . . . . . . . . . . . . . . . . . . . . . . . 551
24-5. Strong reductions . . . . . . . . . . . . . . . . . . . . . . . . . . 553

25. Ramsey’s theorem
25-1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 558
25-2. Ramsey’s theorem in the arithmetic hierarchy . . . . . . . . . . 561
25-3. Infinite pigeonhole principle . . . . . . . . . . . . . . . . . . . . 573
25-4. Ramsey’s theorem for pairs . . . . . . . . . . . . . . . . . . . . . 591

IV Higher Computability Theory 603

26. Introduction
26-1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 606
26-2. Panorama of higher computability . . . . . . . . . . . . . . . . . 607
26-3. Correspondence with classical computability theory . . . . . . . 609

27. Transfinite numbers
27-1. Motivation: computable iterations of the jump . . . . . . . . . . 611
27-2. Ordinals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 614
27-3. Induction and transfinite recurrence . . . . . . . . . . . . . . . . 622
27-4. Countable and uncountable ordinals . . . . . . . . . . . . . . . . 629
27-5. E↵ective ordinals . . . . . . . . . . . . . . . . . . . . . . . . . . 632
27-6. Relativization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 639



28. Hyperarithmetic sets
28-1. Kleene hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . 641
28-2. ⇧0

2 singletons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 649
28-3. Relativization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 651
28-4. E↵ective Borel hierarchy . . . . . . . . . . . . . . . . . . . . . . 652

29. Beyond hyperarithmetic
29-1. A little history: the Moscow school . . . . . . . . . . . . . . . . 657
29-2. Second-order quantifications . . . . . . . . . . . . . . . . . . . . 661
29-3. The ⇧1

1 sets and the well-orders . . . . . . . . . . . . . . . . . . 667
29-4. Analogies between ⇧1

1 sets and c.e. sets . . . . . . . . . . . . . . 670
29-5. Kleene/Souslin equivalence theorem . . . . . . . . . . . . . . . . 673
29-6. Other boundedness theorems . . . . . . . . . . . . . . . . . . . . 681
29-7. Hyperarithmetic reduction . . . . . . . . . . . . . . . . . . . . . 682

30. ⌃1
1 and ⇧1

1 classes
30-1. Canonical representation of ⌃1

1 classes . . . . . . . . . . . . . . . 685
30-2. Basis theorems for ⌃1

1 classes . . . . . . . . . . . . . . . . . . . . 687
30-3. The continuum hypothesis for ⌃1

1 classes . . . . . . . . . . . . . 691
30-4. Some emblematic ⇧1

1 classes . . . . . . . . . . . . . . . . . . . . 694
30-5. Study of a very special ⇧1

1 class . . . . . . . . . . . . . . . . . . 696
30-6. ⇧1

1 singletons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 701

31. The systems ATR0 and ⇧1
1-CA0

31-1. Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 705
31-2. ATR0 and ⇧1

1-CA0 in higher computability . . . . . . . . . . . . 707
31-3. HYP is not a model of ATR0 . . . . . . . . . . . . . . . . . . . . 709
31-4. Non-standard ordinal codes . . . . . . . . . . . . . . . . . . . . . 713
31-5. Separation between ATR0 and ⇧1

1-CA0 . . . . . . . . . . . . . . . 719

32. Higher randomness
32-1. Overview of the di↵erent classes . . . . . . . . . . . . . . . . . . 723
32-2. �1

1-randomness . . . . . . . . . . . . . . . . . . . . . . . . . . . 728
32-3. ⇧1

1-Martin-Löf randomness . . . . . . . . . . . . . . . . . . . . . 731
32-4. ⇧1

1-randomness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 745

A. Exercise solutions

Bibliography 819

Notations
Notations 835



Index
Index 841





Preamble

This book is an introduction to computability theory as well as to three
of its main ramifications, namely, algorithmic randomness, reverse mathe-
matics and higher computability theory. It is mainly intended for research
master students and teachers in Computer Science and Mathematics, as
well as for researchers wishing to acquire a solid knowledge of computabil-
ity theory.

Reason for existence of the book

This book was initially written in French, aiming to make up for the lack of
reference book on classical computability theory in the French literature.
However, while writing this book, the authors realized this project was also
for interest outside of the French community for the follows reasons:

There are many reference books in English on computability theory (Clas-
sical Recursion Theory: The Theory of Functions and Sets of Natural
Numbers by Piergiorgio Odifreddi [177], Computability Theory by Barry
Cooper [44] or Turing computability : Theory and Applications by Robert
Soare [216]). Concerning algorithmic randomness, we will cite Computabil-
ity and Randomness by André Nies [172], and Algorithmic Randomness and
Complexity by Rodney Downey and Denis Hirschfeldt [53]. In reverse math-
ematics, the historical reference is Subsystems of Second Order Arithmetic
by Stephen Simpson [211]. We will mention the more recent work by Denis
Hirschfeldt, Slicing the Truth [91], and Reverse Mathematics: Problems,
Reductions, and Proofs by Damir Dzhafarov and Carl Mummert. Finally,
in higher computability theory, the two references are Higher Recursion
Theory by Gerald Sacks [200] and Recursion Theory: Computational As-
pects of Definability by Chi Tat Chong and Liang Yu [38]. Each of these

– xi –



works presents the state of the art of research for a specific sub-domain
of computability theory, but there is no single book providing a consistent
presentation of these di↵erent aspects.

Organization of the book

This book is structured in four main parts, namely classical computabil-
ity theory, algorithmic randomness, reverse mathematics and higher com-
putability theory.

General plan

• Classical computability theory is the study of Turing degrees, in other
words, the computational power of sets of natural integers. It consti-
tutes the historical heart of computability theory, and the epistemic
base on which the following three parts are based.

• Algorithmic randomness uses classical computability theory to give an
e↵ective framework to measure theory, which makes it possible to study
individually the sequences of bits known as “random”. The hierarchies
induced by classical computability theory make it possible to define
various levels of randomness, in the light of which one can, for example,
re-examine the meaning of such or such probabilistic theorem stating
that a property is true almost everywhere.

• Reverse mathematics form a program on the foundations of mathemat-
ics, which aims to identify the axioms necessary to prove mathematical
theorems of everyday life1. They are based on a basic theory, RCA0,
whose axioms capture “computable” mathematics, thanks to a corre-
spondence between computability and definability by logical formulas.

• Higher computability theory extends the notion of computability to a
more general framework joining set theory. Just as elementary arith-
metic operations extend to ordinals, Turing machines can extend their
computing time from integers to ordinals, and thus handle larger classes
of reals. This is the approach by “models of computation” of hyper-
computing, which corresponds, as for classical computability theory, to
certain logical classes.

The last three parts all rely heavily on classical computability theory, but
are relatively independent from each other, and can be mostly read in any
order:

1From the everyday life of the mathematician.



I. Classical Computability

II. Algorithmic Randomness

III. Reverse Mathematics

IV. Higher Computability

Dependencies between the four main parts of the book

Let us note that the notion of “Borel class” introduced in Part II is funda-
mental for the understanding of Part IV.

Classical computability theory

Classical computability theory has a preponderant role, in that it fixes a
formal framework and a series of tools which will be used to develop the
following parts. It is therefore advisable to linger on the first part and
to detail the dependencies of its chapters. The fundamental chapters are
mainly to be read linearly, with the following exceptions: chapters 6 and 9
can be read independently of the others, but will nevertheless be useful to
serenely approach Part III of the book, on reverse mathematics. Chapters
12 and 14 will not be absolutely necessary for the understanding of the
following parts, and aim to take a step back from our work. Chapter 12 —
less technical— will do this through the examination of a specific question,
on the borderline of philosophy; and Chapter 14 through a more abstract
study of the structure of Turing degrees, and the presentation of some of
the major open questions in the field.

How to read this book

For teachers

This book can be used as a support for an introductory course on com-
putability theory at master’s level, as well as for more advanced thematic
courses, talking about algorithmic randomness, reverse mathematics and
higher computability theory. The topics covered go well beyond the knowl-
edge of computability theory that one would expect from a master’s stu-
dent. We are therefore going to propose a lesson plan containing the essen-
tial concepts.

The equivalence between the computational models forms a robust basis
for the development of computability theory. However, the proofs can seem



3. Foundations of computability

4. Turing degrees

5. Arithmetic hierarchy 6. Church-Turing thesis

7. Immunity and functions growth

8. ⇧0
1 classes and PA degrees 9. Formal interlude

10. Cohen forcing

11. E↵ective forcing 12. Quest of natural degrees13. Priority method

14. Structure of the Turing degrees

Dependencies between the chapters of classical computability theory

quite long and tedious. Nowadays, with the popularization of computers,
one can expect that students will have a certain intuition of what an algo-
rithm is, and it seems better to start from this intuition to make the first
developments in order to avoid a relatively heavy formalism. We recom-
mend to approach the equivalence of computational models, in particular
between general recursive functions and Turing machines, through a tuto-
rial session, where students will have the opportunity to manipulate the
formalisms by defining more and more complicated functions to convince
oneself that these definitions allow to capture all algorithms.

We invite our readers to follow the developments of the various chapters 3,
4, 5, 7, 8, 10, 13 in that order. Chapter 3 establishes the first fundamen-
tal theorems of computability theory on the basis of the intuition that we
have of algorithms. Chapter 4 defines the notions of oracle machine and of
Turing degree. We find there the most central definitions of computability
theory, such as the Turing jump, and the finite extension method, which is
a very powerful technique to prove the existence of some Turing degrees.
Chapter 5 on the arithmetic hierarchy establishes an essential link between
the computational power of sets of integers and their definability by arith-
metic formulas, through Post’s theorem.



With Chapter 7, we begin the study of various fundamental computational
properties, such as the notion of hyperimmune degree, and its links with the
existence of fast-growing functions. This study is continued in Chapter 8 on
⇧0

1 classes, where we define the notion of PA degree which is a central notion
in computability theory. It is found throughout this book, particularly in
algorithmic randomness and reverse mathematics.

Chapter 10 introduces a fundamental technique of computability theory,
namely forcing, presented here as an elaboration of the finite extension
method of Chapter 4. This chapter can also serve as the first step of an
incremental understanding of the general technique of forcing in set theory.

Chapter 13 finally introduces the priority methods, another fundamental
technique of computability theory, which makes it possible in particular to
show the existence of some computably enumerable degrees.

For students

The skills required to understand the concepts presented in this work are
those of a first year of a bachelor’s degree in Computer Science or Math-
ematics. It is essential to understand the usual mathematical language
(variables, quantifications, etc.), to have some elementary notions of logic
(proof by contraposition, proof by the absurd, etc.), and to understand the
elements of the basic mathematical corpus (understanding what a bijection
is, what an intersection between two sets is, the power and logarithm func-
tions, etc.). In addition to that, at least a basic experience in programming,
or an understanding of what an algorithm is, is also necessary to serenely
approach the reading of this book.

The mathematics that we will use and which are not taught in the first year
of the license will be introduced and explained as and when required (basic
notions of topology or measure theory for example). Having established
this, let us note all the same that the degree of elaboration of the proofs,
as well as the technicality of certain concepts, will undoubtedly make this
work di�cult to approach without a certain mathematical maturity.

The techniques developed in computability theory are quite di↵erent from
those learned through a standard mathematical course. This particularity
of computability theory is a strength and makes this discipline more acces-
sible since it is not very sensitive to the gaps that one may have developed
during his course (or his lack of course). On the other hand, this di↵erence
can also destabilize the student because it requires creating a conceptual
universe. It goes without saying that in the absence of a teacher, it is all
the more essential to do the exercises suggested in the book to properly
integrate the concepts. The solutions are available at the end of the book.



The size of this book can be overwhelming for a student wanting to take his
first steps in computability theory. We remind you that this book covers
knowledge going far beyond what is expected of a master’s student. We
therefore recommend that autodidacts follow the lesson suggestion in the
previous section, intended for teachers.

For researchers

This book is an introduction to computability theory and several of its main
branches. However, we should not stop at the introductory aspect of this
work, because most of the results presented correspond to the state of the
art of research. This book is therefore aimed at researchers in related fields,
wishing to acquire solid knowledge in computability theory, as well as Ph.D.
students and researchers intending to do some research in computability
theory. Indeed, the techniques and concepts of this book make the research
articles in the field directly accessible.

Exercises

The chapters are interspersed with exercises of varying di�culty, the correc-
tion of which is given at the end of the book. We cannot stress enough the
importance of doing exercises to properly assimilate the concepts presented
in the chapters. The intuition of concepts is created by manipulating them
in all their forms. The di�culty of the exercises is indicated using a star
system (?) ranging from 0 to 3: an exercise with no star is a direct appli-
cation of the definitions, while a two-star exercise requires a deep mastery
of concepts to be solved. There are also some three-star exercises, which
are “research” level.

Through this work, we will present many computational properties on sets
of integers or on other more complex structures. In addition to the given
exercises, it is important to show an intellectual curiosity consisting in
systematically seeking how these properties combine, knowing whether one
can construct objects satisfying several of them simultaneously, and so
on. Likewise, when the theorems have hypotheses, it is useful to look for
counter-examples without these hypotheses, in order to better understand
their necessity as well as their use in the proof.

Errata

You can’t write a book of this size without letting a number of typos slip
through. This book will probably not deviate from this rule. We will



maintain a list of typos on the authors web page. You can report errors to
one of the following addresses:

benoit.monin@computability.fr or
ludovic.patey@computability.fr





Acknowledgements

Our very first thanks go to the National Research Agency, which largely
funded the collaboration between the two authors, especially during the
writing of the book, within the framework of the project “Aspects Calcu-
latoires des Théorèmes Combinatoires – ACTC”

https://anr.fr/Projet-ANR-19-CE48-0012

Several results presented in this book, in particular Theorem 25-3.23 on
the pigeonhole principle or the simplified proof of Liu’s theorem 25-3.24
come from articles funded by the same project.

We would also like to thank our teams and related organizations, which pro-
vided us with a breeding ground for intellectual emulation, as well as moral
and financial support. During the writing of this work, Monin was lecturer
in the Algorithmics, Complexity and Logic Laboratory of the University of
Paris-Est Créteil and Patey researcher at the CNRS, in the team Algèbre,
Géométrie, Logique at the Camille Jordan Institute in Villeurbanne.

Many colleagues have generously helped us to improve the quality of this
work, by giving a critical look at its scientific and educational content,
drawing on their respective expertize, or by pointing out the typograph-
ical errors that inevitably crept into the book. We would therefore like
to thank Paul-Elliot Anglès d’Auriac, Sébastien Tavenas, Pascal Vanier,
Mathieu Hoyrup, Benjamin Hellouin, Laurent Bienvenu, Denis Kuperberg,
Julien Cervelle, Damir Dzhafarov, Löıc Gassmann, William Gaudelier, De-
nis Hirschfeldt, Quentin Le Houerou, Alexander Shen, Keita Yokoyama,
Adrien Deloro, Pascal Monin and Shahin Amini.

The scientific content of the book is above all the work of the computability-
theoretic community. The authors forged their intuitions by reading the

– xix –

https://anr.fr/Projet-ANR-19-CE48-0012


works of their predecessors and adding their contribution to this magnif-
icent intellectual edifice. We would like to thank our colleagues at the
international level for the collaborations and mutual visits which have im-
proved our understanding of the subject.

We would also like to thank Laurent Bienvenu, who through his work and
through the direction of our respective theses, has been able to transmit
his passion to us, and has largely contributed to the introduction of com-
putability theory in France.

Writing a book of this magnitude takes a lot of time and energy, and could
not have happened without the moral support of our families and friends.



Chapter 1
Introduction

The scientist does not study nature because it is useful to do so.
He studies it because he takes pleasure in it, and he takes pleasure
in it because it is beautiful. If nature were not beautiful it would
not be worth knowing, and life would not be worth living. I am
not speaking, of course, of the beauty which strikes the senses, of
the beauty of qualities and appearances. I am far from despising
this, but it has nothing to do with science. What I mean is that
more intimate beauty which comes from the harmonious order of
its parts, and which a pure intelligence can grasp.

Science and Method, Henri Poincaré

What is computability theory? Computability theory is classically
considered to be one of the four pillars of logic, alongside set theory, model
theory and proof theory. The field was initially forged on the question
of what characterizes the functions f : N ! N whose values can be ob-
tained by a process purely mecanizable or algorithmic, in a finite time,
although arbitrarily large. We will say that such functions are e↵ectively
computable. Long before the appearance of the first computers, computabil-
ity theory based its theoretical basis on an observation —or rather a miracle
— namely, the existence of a robust definition, consensual and independent
of any formalism, of the epistemological notion of e↵ectively computable
function.

The initial question, that is, “What is a computable function?” having
obtained a satisfactory answer, the study naturally turned to the question
of knowing, among the natural functions, which are computable and which

– 1 –



2 1. Introduction

are not. Subsequently, the field has undergone considerable development
thanks to the notion of relative computability, the question no longer being
to determine whether a function is computable or not, but to identify the
computational power intrinsic to this function, through questions like “If
this function were computable, which other functions could we compute?”

More recently, the subject of study has extended to very many mathe-
matical objects — for instance algebraic structures, or subsets of R— and
has given many ramifications. We will see in this book in particular that
computability theory serves as a robust foundation for algorithmic random-
ness , and for reverse mathematics, the objects of study of which are the
mathematical theorems themselves.

Nowadays, the appellation “computability theory” for a field which studies
arbitrary mathematical objects, most of which are not computable, may
seem surprising, even a residue of its historical subject of study. In reality,
this name is still valid, but its meaning has changed: the term computability
no longer relates to the subject of the study, but to the angle from which the
subject is approached. A modern one-sentence definition of computability
theory might be: Computability theory is the study of mathematics
under the prism of their computational complexity.

1. What is a computable function?

The main di�culty of this question lies in obtaining a class of functions
su�ciently robust, not to depend on the computer model, the choice of
programming language, technological progress, or the advance of knowledge
in such a general way.

With the advent of computers, the notion of algorithm has gradually taken
root in scientific culture. Anyone who has already had a first contact with
programming will have formed a good idea of what an automatable task is.
Based on our knowledge of computer engineering, the following definition
would come naturally: “A function is e↵ectively computable if it has an al-
gorithm, in other words if it can be programmed in a su�ciently expressive
programming language, and executed by a su�ciently powerful computer.”

This definition, if it has the advantage of being in adequacy with our intu-
ition, does not provide a su�ciently formal framework for reasoning about
the class of computable functions. A second approach would consist in
fixing a computer and a standard programming language, and defining
a function as computable if it is programmable in this language, and exe-
cutable by this computer in finite time, using su�cient memory. If one does
not worry about the speed of execution, nor the necessary memory space,
it quickly appears that this definition coincides with the preceding one.



2. What are the non-computable functions? 3

In fact, the power and memory of computers increase with technological
progress, and therefore allow programs to be executed more quickly, but do
not necessarily increase the class of computable functions. Even computers
based on new computing paradigms, like quantum or biological computers,
are simulable —with the cost of an exponential time and space overhead—
by classical computers, and therefore do not change the class of computable
functions. As for programming languages, the existence of operating sys-
tems and interpreters make it easy to convince oneself that the main ones
such as C ++, Java or Python, allow programming —more or less elegantly
— the same mathematical functions. This therefore empirically shows a
certain robustness in the definition of the class of programmable functions.

A problem remains: what is the guarantee that today’s computers repre-
sent the limit of what is automatable, or computable by a human being?
Who tells us that with the progress of science, we will not discover a new
paradigm of computation or a new way of reasoning allowing to consider as
computable a larger class of functions? This is the subject of a long foun-
dational quest started in the 20th century, and culminating in the famous
Church-Turing thesis in 1936, which we will present in Chapter 6.

2. What are the non-computable functions?

With regard to our previous definition, for the moment very informal, most
—if not the entirety— of the mathematical functions used on a daily basis
are computable: addition, multiplication, the function (n,m) 7! nm, the
function which at n associates the n-th prime number, or even the one
which computes the greatest common divisor of two natural integers, are
all computable. We can add to this list less trivial examples: the function
which takes a computer program written in C ++ and determines if the
program is syntactically correct —this is what does a C++ compiler, among
others— or the one which returns the n-th decimal of ⇡,

p
2 or the golden

ratio — each of these numbers is the sum of a computable sequence of
rationals with a su�ciently fast convergence— or to finish the one which
to n associates the number of possible games that we can play in Go on a
board —also known as goban— of size n⇥n. This last example illustrates
in particular the following fact: one does not deal in computability theory
with the time that a computation takes. Only the existence of an algorithm
matters to us. In the case of the number of games in Go, the algorithm
in question is based on a simple idea; it “su�ces” to list all the possible
games and to count them. However, there are execution time of such an
algorithm is so large that it makes it impossible to use in practice for n > 2
(1). For n = 19, which is the size of a standard goban, this number ranges

1There are already 386 356 909 593 possible games on a goban of size 2⇥ 2 [234]!



4 1. Introduction

from 1010
48

to 1010
171

[234], which is clearly too many games to count, even
if all the world’s computers harnessed it for a billion years . . .

Although the function of multiplying by 2 is, in a sense, much more acces-
sible to us than the one that counts the number of games of go, there is
an algorithm that computes each of them. These two functions are there-
fore not di↵erent from one another from the point of view of computability
theory: they are both computable, and we will mainly be interested in
the functions which are not, that is to say functions whose values cannot
be obtained by a purely mechanizable or algorithmic process. The mere
existence of such functions is not self-evident, and one of the first tasks
we will tackle will be to demonstrate their existence. This will be done
in the next chapter via Cantor’s diagonal argument. We will then give
many examples of such functions throughout the book, the best known of
which is undoubtedly the halting problem, defined as the function which
takes a program as input, and determines whether its execution will halt,
necessarily in a finite amount of time. We will see that the halting problem
cannot be computed; and it is important to understand that it is indeed
a question here of a theoretical and fundamental impossibility, which does
not depend on the power or speed of computation of the computers. The
non-computability of the halting problem is not due to an ignorance of its
algorithm which could one day be discovered, but indeed to an absolute
impossibility, because the existence of such an algorithm would lead to a
paradox.

3. Motivation

Computability theory relates mainly to the study of non-computable func-
tions —or more general mathematical objects—. It is legitimate to wonder
if such a study is really reasonable. If even some computable functions are
inaccessible to us — like the number of possible plays at Go— then why
bother to think about functions even more inaccessible?

A first motivation for our study is exploratory. There are inaccessible
objects, so let’s try to explore the universe, simply because it is there,
and out of curiosity about the mysteries it contains. Our e↵orts will be
rewarded with a series of theorems of great depth. Anyone who immerses
himself seriously in the developments of this book, once perhaps past some
di�culties of adaptation inherent in any scientific discipline, will see a world
of astounding richness come to life in his mind, with its flora and fauna,
its rules and mechanisms. Computability theory is characterized by the
highly dynamic nature of its proofs, each of which provides insight into the
detailed workings of a fragment of the titanic machinery that animates this
universe.



4. Overview of computability theory 5

A second motivation arises quite simply out of necessity. The Pythagoreans
found themselves constrained and forced to admit the existence of irrational
measures, such as the diagonal of a side square 1, which went against their
understanding of the world, which they believed to be explicable only on the
basis of the relationships between integers. But if we admit the existence
of integers, and the existence of the square, we are forced to admit that
of incommensurable quantities, which we call today irrational, like

p
2. In

the same way, we will see that if we admit the existence of computable
objects, we are also forced to admit the existence of objects which are not,
and which nevertheless appear naturally in a whole series of situations.

A final motivation is of a practical nature. Computability theory, through
its understanding of non-computable objects, has achieved major success
in providing a formal framework for the study of questions at the borders
between science and philosophy. We will see two of them: the search for
the definition of random objects with Part II, and the understanding of
what strength means of a theorem, in particular with respect to another,
with Part III. Part IV of this book will bring computability theory to the
frontier that it shares with set theory.

4. Overview of computability theory

Computability theory can be broken down into several subdomains, which
are all based on the same robust notion of e↵ectively computable function.

4.1. Areas covered by this book

This book is broken down into four parts, each of them covering an o↵-
shoot of computability theory: classical computability theory, algorithmic
randomness, reverse mathematics, and higher computability theory.

Classical computability theory

As we have mentioned, computability theory relates above all to objects
which cannot be computed. Classical computability theory focuses on func-
tions f : N! N as well as on sets of integers E ✓ N. Note that such a set
can also be represented by its characteristic function �E : N ! N defined
by �E(x) = 1 if x 2 E, and �E(x) = 0 otherwise.

The developments of classical computability theory revolve around a fun-
damental tool which will allow us to compare or even measure the degree
of non-computability of a function, also called degree of unsolvability or
Turing degree, with reference to the mathematician Alan Turing who in-
troduced the notion. Let us fix a non-computable function g : N ! N. It
is natural to ask “If I were able to compute g, which other functions could



6 1. Introduction

I compute?” We say that a function f : N! N is computable relative to g
(or g-computable) if there exists an algorithm allowing to compute f in
an extended programming language, where we would have added the func-
tion g as primitive: a special instruction allows us to call the function g on
a parameter n in our program, as if it really existed, and to retrieve the
result. If f is g-computable, nothing tells us how to compute g, but if we
had a “oracle” allowing us to compute the values of g, it would be possible
to compute the values of f .

This notion of relative computability allows us to define a partial pre-order
between the functions, noting f 6T g if the function f is g-computable.
This is the Turing reduction. Di↵erent functions can carry the same com-
putational power, in the sense that they are mutually computable. We
therefore define the Turing degree of a function f : N! N as the set deg

T
f

of all the functions g such that f 6T g and g 6T f . The notion of Turing
degree represents a computational power, in the sense that two functions
of the same Turing degree are indistinguishable from the point of view of
computability. The partial pre-order on the functions induces a partial
order on the Turing degrees.

Classical computability theory relates mainly to the study of Turing degrees
together with the partial order relation defined above. Are there an infinite
number of computational powers? Are they linearly ordered? More gen-
erally, what are the properties of this partial order? It turns out that this
structure is extremely rich and complex, as we will have the opportunity
to see.

Algorithmic randomness

The classical probability theory studies probabilistic phenomena, success-
fully modelled via the notion of measure which is used to formally define
the laws of probability. On the other hand, this theory does not have the
necessary tools —and it is not its goal— to speak of random objects indi-
vidually. It is this precise point that algorithmic randomness proposes to
clarify, by relying on computability theory. Let’s go through an example.

Let us represent a real number R 2 [0, 1) by its binary expansion, of the
form R = 0.b0b1b2b3 . . . where (bn)n2N is a sequence of bits. Suppose that
the real R is obtained by drawing its bits randomly by a tossing sequence.
We assume of course that each draw is equiprobable: we have a 50% chance
of getting heads and a 50% chance of getting heads. Intuition tells us that
the real R thus obtained is random. What does this mean exactly? We
do not expect, for example, to obtain only “heads” on the first hundred
thousand throws: if each draw is equally likely, this cannot happen, or in
any case with such a low probability that we can consider it negligible.
We do not expect to obtain twice as much of “heads” as of “tails” either.



4. Overview of computability theory 7

Again, the probability of this happening in 100,000 draws is so low that
one will assume the draws to be biased rather than witnessing such an
unlikely event. We can in fact identify a first property that we are entitled
to expect from a sequence of equiprobable draws: the sequence obtained
should respect the law of large numbers, that is to say that the number of
draws “heads” and “tails” should roughly be the same.

However, is this su�cient? Suppose now for example that on each num-
ber n, if n is a prime number, we systematically obtain equally a “heads”.
In the hypothesis where a certain obsession with prime numbers would
lead us to notice this curious phenomenon, we will again be faced with a —
slightly absurd— enigma and we will be led to think that in one way or an-
other, something abnormal is happening. But let’s take a further step back.
Basically, and regardless of the sequence of bits obtained, we can identify
numbers n1 < n2 < n3 < . . . such that the draw numbers n1, n2, n3, . . .
are all draws “heads”. In the case where our sequence n1, n2, n3, . . . con-
tains prime numbers, this seems to us to be a “probabilistic bug”, but why
should it be acceptable if n1, n2, n3, . . . are any integers? This is where
computability theory comes into play, and will allow us to precisely formal-
ize the properties that a sequence of random bits should have —according
to our human intuition—.

Reverse mathematics

The notion of theorem relates to a system of axioms. When one omits to
mention the system of reference, it is commonly accepted that one refers to
the system of Zermelo Fraenkel (ZF), which represents a set of consensual
axioms which serve as the foundation of all mathematics. The ZF system
is, however, very powerful, and we have no guarantee that it will not be
inconsistent.

Reverse mathematics aims to find the axioms necessary and su�cient to
prove the theorems of everyday mathematics. It is therefore a question
of studying existing theorems, to find more elementary proofs, or on the
contrary to show the optimality of their proof. Better understanding the
hypotheses of theorems allows to better control their “fragility” in the face
of a potential contradiction of the proof system. It is therefore a meta-
mathematical approach aimed at answering the question “Which confidence
can we have in our mathematics?”

At first glance, this approach is not linked to computability theory. How-
ever, reverse mathematics relies to a basic theory, RCA0, capturing the com-
putable mathematics, and which represents a basis of confidence more in
connection with the concrete world, because its objects being computable,
they can be represented by an algorithm, therefore they have a finite de-
scription. Reverse mathematics therefore consists, given a theorem T , in



8 1. Introduction

searching for axioms A such that RCA0 proves the equivalence between A
and T . By the choice of the basic theory RCA0, equivalences are computa-
tional processes calling on the tools of computability theory.

Higher computability theory

One of the reasons for the success of computability theory as a tool for
analyzing mathematics lies in the existence of a strong intuition of the
notion of computation, thus making it possible to guide the manipulation
of concepts and to prove theorems without being embarrassed by a heavy
formalism. higher computability theory aims to extend the reach of these
tools to more powerful computational models, which can be seen as ma-
chines having the possibility of continuing their execution for an infinite
computation time (formally in ordinal computation time). Just as notions
of classical computability theory can be captured by logical formulas, so
can higher computability theory. For example, where the sets of integers
which can be enumerated (out of order) by a computer program are those
which can be described by a ⌃0

1 formula of arithmetic, those which are
enumerable by a hypercomputer programs are those which can be defined
by a ⇧1

1 formula of arithmetic.

We will see that this aspect of things brings higher computability the-
ory closer to descriptive set theory, a branch of set theory which classifies
sets according to the degree of di�culty in describing them. Higher com-
putability theory can be seen as a bridge between descriptive set theory
and classical computability theory.

4.2. Other branches of computability

In order to allow this work to keep a reasonable size, we have chosen to
ignore two important branches of computability theory, namely computable
structure theory and degrees of enumeration.

Computable structure theory

It is a branch of computability theory that studies the extent to which the
algebraic properties of a mathematical structure a↵ect their descriptive
complexity. By structure, we mean sets equipped with operations, such
as groups, rings and fields, but also any structure within the meaning of
model theory. This branch borrows its techniques from both model theory
and classical computability theory to answer this question.

Concretely, this theory studies countable structures and asks questions of
the form “Given a computable structure A, what are the possible Turing
degrees of structures isomorphic to A ?” or “Given two isomorphic com-
putable structures, what is the computational complexity of their isomor-
phism?” For example, some structures like the dense linear orders without



4. Overview of computability theory 9

endpoints are computably isomorphic to all their computable copies. They
are called computably categorical.

Degrees of enumeration

Classical computability theory places “computable sets” as the reference
computational power. But some problems are expressed naturally in the
form of non-computable sets, the elements of which can however be enumer-
ated out of order by a computable process. We call these sets computably
enumerable (c.e.). In particular, if E is a set of integers c.e. and if n 2 E,
it is possible to realize it in finite time, by launching the enumeration pro-
cedure and waiting for n to appear. On the other hand, if n /2 E, then
it will not be possible in general to know it in a finite time. For exam-
ple, the set of Diophantine equations (equations with integer coe�cients,
of type 3x3

� 2y2+x� 2 = 0) which admit integer solutions is computably
enumerable, because it su�ces to search exhaustively for solutions, and to
enumerate the equation if a such a solution exists.

Degrees of Enumeration place “computable enumeration” as the reference
power. We can define an enumeration reducibility A 6e B i↵ any enumer-
ation of the elements of B computes an enumeration of the elements of A.
This reduction is a partial pre-order, which induces a notion of enumera-
tion degree: the degree of enumeration of A is the set deg

e
(A) of all sets B

such that A 6e B and B 6e A. The study of the degrees of enumeration
equipped with the partial order 6e constitutes an active branch of research
in computability theory.





Chapter 2
Cantor’s infinity

Georg Cantor, 1845–1918

If we had to give a date to the birth of
modern logic, we would place it without
hesitation in 1872, the date on which
Georg Cantor exposes his first proof of
Theorem 4.1 to come of the uncount-
ability of real numbers. Cantor isolates
later the quintessence of this first proof
through is famous diagonal argument,
which will have a central place in com-
putability theory.

Cantor’s work then marked the begin-
ning of a “complex” set theory which
will play a big role in the fundational
quest of mathematics in the early 20th
century, which we will talk about in de-
tail in Chapter 9. This crisis will lead to
the development of mathematical logic
as we know it today, with modern set theory, known as ZFC, but also with
the development of the first theories of calculus, used by Gödel to show
his famous incompleteness theorem, which can be seen as a sophisticated
variation of Cantor’s diagonal argument.

What is it exactly? Cantor shows that infinite sets do not all have the
same “size”. There are strictly more real numbers than integers, in a sense
that we will define precisely in a few lines. Cantor will use this discovery to
develop a mathematical study of infinity. In particular, he will create the

– 11 –



12 2. Cantor’s infinity

transfinite numbers, which will constitute the backbone of mathematical
definitions, and which we will discuss in Chapter 27.

Cantor, however, was not the first to notice that infinity does not obey the
same rules as the finite. In particular, a surprising characteristic of infinite
sets is that the whole is not necessarily greater than its parts. Galileo makes
a luminous exhibition of it in his work “Dialogues Concerning Two New
Sciences” [74] through a tasty dialogue between two characters, Salviati
and Simplicio:

- Salviati. This is one of the di�culties which arise when we attempt,
with our finite minds, to discuss the infinite, assigning to it those prop-
erties which we give to the finite and limited.; but this I think is wrong,
for we cannot speak of infinite quantities as being the one greater or
less than or equal to another.[...] I take it for granted that you know
which of the numbers are squares and which are not.

- Simplicio. I am quite aware that a squared number is one which results
from the multiplication of another number by itself; thus 4, 9, etc., are
squared numbers which come from multiplying 2, 3, etc., by themselves.

- Salviati. Very well; and you also know that just as the products are
called squares so the factors are called sides or roots; while on the other
hand those numbers which do not consist of two equal factors are not
squares. Therefore if I assert that all numbers, including both squares
and non-squares, are more than the squares alone, I shall speak the
truth, shall I not?

- Simplicio. Most certainly.

- Salviati. If I should ask further how many squares there are one might
reply truly that there are as many as the corresponding number of roots,
since every square has its own root and every root its own square, while
no square has more than one root and no root more than one square.

- Simplicio. Precisely so.

- Salviati. But if I inquire how many roots there are, it cannot be denied
that there are as many as there are numbers because every number is a
root of some square. This being granted we must say that there are as
many squares as there are numbers because they are just as numerous
as their roots, and all the numbers are roots.

On reading Galileo’s dialogue, we observe the paradox trap closing in on
Simplicio. Galileo uses for that a concept which will be taken up by Can-
tor: two sets A and B “have as many elements” if one can make exactly
correspond the elements of A and the elements of B, in other words if there
is a bijection between the two sets.



1. Equipotence and subpotence 13

1. Equipotence and subpotence

Recall that a function f : E ! F is injective if

8x, y x 6= y ) f(x) 6= f(y),

surjective if its image is the whole set F , and bijective if it is both injective
and surjective.

Definition 1.1. Two sets E and F are equipotent if there is a bijection
between them. We will then write |E| = |F |. }

3

2

1

0

. . .

9

4

1

0

. . .

The set of integers The set of squares

Figure 1.2: Galileo’s argument to says there are “as many” integers as
square numbers

According to our definition, the integers and the squares of integers there-
fore have the same cardinality: there are as many elements in the two sets.
What seems paradoxical is that the squares of integers form a strict part
of the set of integers. The paradox is solved in the simplest possible way:
the intuition that we have on finite sets, which wants a strict subset of a
set to contain fewer elements is simply no longer true for infinite sets.

Remark

The notation |E| = |F | seems to suggest equality between two ob-
jects |E| and |F |, which we call respectively cardinality of E and car-
dinality of F . It is possible to give a precise definition of |E|, as a
mathematical object. For the moment, we will be satisfied with defining
cardinality as the informal notion of the size of a set, and if the object |E|

is not clearly defined, the statement |E| = |F | is, and is su�cient to our
treatment of infinity.

Note that Galileo uses his idea to explain precisely why there is no sense
in comparing the size of infinite sets. This is where all the genius of Can-



14 2. Cantor’s infinity

tor intervenes, who will discover that contrary to Galileo’s intuition, it is
possible to give a formal notion of size to infinite sets: there are infinites
“larger” than others.

Intuitively, a set F is at least as big as a set E if we can match the elements
of E to distinct elements of F , in other words if we can associate each
element of E with its own “representative” in F .

Definition 1.3. A set E is subpotent to a set F if there is an injection
of E into F . We then write |E| 6 |F |. If E is not subpotent to F , we
write |E| ⇥ |F |. }

It is easy to verify that this relation is transitive, ie, if |E| 6 |F | and |F | 6
|G|, then |E| 6 |G|. Indeed, if the functions f : E ! F and g : F ! G
are two injections, then their composition g � f : E ! G is an injection
witnessing the relation |E| 6 |G|. It is however much less clear that if |E| 6
|F | and |F | 6 |E|, then |E| = |F |. Unrolling the definitions, the question
comes back to knowing if, when there is an injection of E in F and another
of F in E, there is a bijection between E and F . Let us see straight away
that this is indeed the case: it is the Cantor–Bernstein theorem.

2. Cantor–Bernstein’s theorem

The heart of the proof of the Cantor–Bernstein theorem lies in the following
lemma.

Lemma 2.1. If B ✓ A are sets, and f : A ! B is an injective function,
then there is a bijection h : A! B. ?

Proof. The reader can use Figure 2.2.

Let C0, C1, C2, . . . be the sequence defined by induction as follows:

C0 = A \B and Cn+1 = f(Cn).

Let C =
S

n
Cn. A simple reasoning by induction on n allows to show,

using the injectivity of f , that the sets Cn for n 2 N are pairwise disjoint,
although this is not necessary in the proof. Let the function h : A! B be
defined by:

h(x) =

⇢
f(x) if x 2 C
x if x /2 C.

Let us show that h is injective. The function f being injective, the func-
tion h restricted to C is injective. The function h restricted to A \ C is
the identity function, and is therefore also injective. Finally, the image



2. Cantor–Bernstein’s theorem 15

C0 = A \B

C1

C2

C3

. . .

. . .

Elements of B non reached
by the iteration of f over A \B

f

f

f

fB

A

Figure 2.2: Illustration of the proof of Lemma 2.1

of C =
S

n
Cn by h is

[

n

f(Cn) =
[

n

Cn+1 ✓ C,

and the image of A \ C by h is A \ C. The function h is the union of two
injective functions having disjoint images, and is therefore injective.

Finally, let us show that h is surjective. Let y 2 B. If y /2 C, then h(y) = y
and therefore y has a predecessor by h. If y 2 C, as y /2 C0, there exists
an n 2 N such that y 2 Cn+1. By definition of Cn+1 = f(Cn), there exists
an x 2 Cn such that h(x) = f(x) = y.

We can now show the announced theorem.

Theorem 2.3 (Cantor-Bernstein)
If A and B are sets, and f : A ! B and g : B ! A are injective
functions, then there is a bijection between A and B.

Proof. Let A0 = g(B). The application g � f is an injection of A into A0.
By Lemma 2.1, there is therefore a bijection h : A ! A0. The function g
being a bijection between B and A0, the function g�1

� h : A ! B is a
bijection.



16 2. Cantor’s infinity

Corollary 2.4
Two mutually subpotent sets are equipotent.

The question of knowing if there are infinites of distinct sizes, and in partic-
ular with one of them strictly larger than the other, therefore comes down
to knowing if we can find two sets A,B for which |A| 6 |B| but |B| ⇥ |A|.
We will see that this is indeed the case.

3. Countable sets

The infinite set par excellence is of course N, the set of integers. In this
case, a specific vocabulary is used.

Definition 3.1. A set A is said to be countably infinite if there is a
bijection f : N ! A, in other words if A and N are equipotent. A set A
is countable if it is finite or countably infinite. Otherwise, A is said to be
uncountable. }

Remark
Some authors use the term “denumerable” to denote countably infinite
sets.

Intuitively, the infinity of natural numbers is the smallest infinity, in the
sense that it is subpotent to any infinite set.

Proposition 3.2. The set N is subpotent to any infinite set. ?

Proof. Let A be an infinite set. We are going to define an injective func-
tion f : N! A by induction on N. Let f(0) be any element of A. Suppose
the values f(0), . . . , f(n) are defined. In particular, B = {f(0), . . . , f(n)} ✓
A is a finite set while A is infinite. There is therefore necessarily an element
in A \B. Let f(n+ 1) be this element. By construction, f is injective.

Note that in its full generality, the previous proof uses the axiom of choice,
which we will talk about again in Section 9-4, and which is necessary in
order to choose at each step an element of A \ B. In most cases, however
(as in the following corollary), this axiom is not absolutely necessary.

Corollary 3.3
Any subset of a countable set is countable.

Proof. Let A be a countable set, and let B ✓ A be a subset. If B is
finite, then it is countable. Suppose B is infinite. In particular, A is also



3. Countable sets 17

infinite, so A is equipotent to N. The set A being equipotent to N, it is
therefore subpotent to N. As B ✓ A, it is subpotent to A, therefore to N.
Furthermore, by Proposition 3.2, N is subpotent to B. By the Cantor-
Bernstein theorem (Theorem 2.3), B and N are equipotent.

Exercise 3.4. (?) Let A be a countably infinite set, and let f : N! A be
a bijection. Finally, let B ✓ A be an infinite subset. Directly construct a
bijection from N to B which is not based on the axiom of choice. By this,
we mean that the definition of the function must be based on an explicit
algorithm, and not on an abstract procedure making it possible to choose
an element in a non-empty set, without knowing which element it is. ⇧

Let us now introduce a bijection that we will use regularly in this book,
which is the one commonly used to witness the countability of the prod-
uct N⇥ N.

Proposition 3.5. The set N⇥ N is countably infinite. ?

Proof. Let ↵ : N! N2 be the function such that the values

↵(0) = (0, 0), ↵(1) = (1, 0), ↵(2) = (0, 1), . . .

enumerate the pairs of integers by successive diagonals, as in Figure 3.6.

The function is injective by construction, and any pair will appear at one
stage of the enumeration. Thus, ↵ is a bijection from N to N⇥N witnessing
the equipotence between the two sets.

It is possible to give an analytical definition of the reciprocal function of ↵
defined in the previous proposition. It will therefore be a bijection from N2

to N, which we will call ↵2 and which the reader will be able to discover
through the exercise below.

Exercise 3.7. (?) Let ↵2 : N2
! N defined by:

↵2(x, y) = y +
P

x+y

i=0 i

= y +
(x+ y + 1)(x+ y)

2
.

1. Show that ↵2 is bijective.

2. Show that ↵2(a, b) > a and ↵2(a, b) > b. ⇧

The bijection ↵2 of the previous exercise will be very often used in the
developments of this book, via the following notation.



18 2. Cantor’s infinity

(0, 0)

(0, 1)

(0, 2)

(0, 3)

(0, 4)

(0, 5)

(1, 0)

(1, 1)

(1, 2)

(1, 3)

(1, 4)

(1, 5)

(2, 0)

(2, 1)

(2, 2)

(2, 3)

(2, 4)

(2, 5)

(3, 0)

(3, 1)

(3, 2)

(3, 3)

(3, 4)

(3, 5)

(4, 0)

(4, 1)

(4, 2)

(4, 3)

(4, 4)

(4, 5)

(5, 0)

(5, 1)

(5, 2)

(5, 3)

(5, 4)

(5, 5)

Figure 3.6: Illustration of the proof of Proposition 3.5

Notation

We denote by hn,mi the integer to which the pair (n,m) is sent via the
bijection ↵2.

Note that if we have a bijection ↵2 : N2
! N, we can define a bijection ↵3 :

N3
! N by simply taking ↵3(x, y, z) = ↵2

�
x,↵2(y, z)

�
. We can continue in

this way to define bijections from Nn to N for any n 2 N⇤, which leads to
the following notation.

Notation

We denote by hx1, . . . , xki the integer on which the k-tuple (x1, . . . , xk)
is sent via the bijection from Nk to N described above.

Let us take advantage of our freshly introduced bijections to deduce the
following corollary.

Corollary 3.8
The Cartesian product of two countably infinite sets is countably infinite.

Proof. Let A and B be countable sets and let f : A! N and g : B ! N
be bijections witnessing it. The function h : A⇥B ! N defined by h(x, y) =
hf(x), g(y)i is a bijection.

Let us end this section with three exercises, allowing to manipulate the
concepts seen so far. In particular, we draw attention to the first of them,



4. Cantor’s diagonal argument 19

which will be used regularly in future developments.

Exercise 3.9. (?) Show that Z is a countably infinite set. Deduce
that Z ⇥ Z is a countably infinite set and finally that the set Q of ra-
tional numbers —which can be written under the form p/q with p, q 2 Z
with q 6= 0— is also countably infinite. ⇧

Exercise 3.10. (?) Let f : N ! A be a surjective function towards an
infinite set A. Show that A is countably infinite. ⇧

Exercise 3.11. (?) Let (Bn)n2N be a sequence of countable sets with
their respective bijections fn with N. Show that B =

S
n
Bn is a countable

set.

Warning: if we do not have the bijections (fn)n2N, we can always show
that B is countable, but we must use the axiom of choice, in order to
choose uniformly for each Bn one of its bijections with N. We will talk
about it again in Section 9-4. ⇧

4. Cantor’s diagonal argument

Let us now tackle the theorem announced at the beginning of this chapter:
there exist infinities larger than others, and in particular an infinity larger
than that of integers. The following theorem uses Cantor’s famous diagonal
argument, which will be taken up on numerous occasions and in various
forms throughout this book.

Theorem 4.1 (Cantor)
The set of real numbers is uncountable.

Proof. The reader can use Figure 4.2, which illustrates the argument of
the proof. We reason through the absurd. Let us suppose on the contrary
that there exists a bijection f : N ! R. We are going to construct a
real number R 2 R which is not in the image of f . We simply define R
as follows: the integer part of R is 0, and for any n, if the n-th decimal
of f(n) is di↵erent from 0, then the n-th decimal place of R is equal to 0.
Conversely, if the n-th decimal of f(n) is equal to 0, then the n-th decimal
of R is equal to 1.

It is clear that for any integer n, our real number R cannot be equal to f(n),
because the n-th decimal of R is di↵erent from the n-th decimal place
of f(n).



20 2. Cantor’s infinity

R = 0, 9� x00 9� x11 9� x22 9� x33 9� x44 9� x55 9� x66

f(0) = N0, x00 x01 x02 x03 x04 x05 x06

f(1) = N1, x10 x11 x12 x13 x14 x15 x16

f(2) = N2, x20 x21 x22 x23 x24 x25 x16

f(3) = N3, x30 x31 x32 x33 x34 x35 x36

f(4) = N4, x40 x41 x42 x43 x44 x45 x46

f(5) = N5, x50 x51 x52 x53 x54 x55 x56

f(6) = N6, x60 x61 x62 x63 x64 x65 x66

. . .

Figure 4.2: Illustration of Cantor’s diagonal argument. We construct our
real R using the diagonal of the table, the decimal 9 � xii being di↵erent
from xii. Note that the real R described here is not exactly the one de-
scribed by the proof, but the result is the same: the element R does not
belong to the image of f .

What does the previous theorem tell us? That there are “more” real num-
bers than integers. These sets of numbers are both infinite, but the infinity
of reals is “larger” than that of integers. Indeed, when we try to match
an integer to each real number, we see that there are always “exceeding”
reals, which do not correspond to any integer. We therefore have |R| ⇥ |N|.
Note that we have on the other hand |N| 6 |R|, via identity injection. In
this case, we can write |N| < |R|, meaning that there is an injection of N
in R, but no injection of R in N.

Is there an infinity greater than that of the reals? Cantor also answered
this question, with a similar argument: for any set A, there exists a set B
such that |A| < |B|.

Theorem 4.3 (Cantor)
For any set A, the set P(A) of the subsets of A is such that |A| < |P(A)|.

Proof. The set A is subpotent to P(A), considering the injection which
to any element x 2 A associates the singleton {x}. Thus, |A| 6 |P(A)|.
Let us now assume absurdly that |P(A)| = |A|, i.e., suppose there is a
bijection f : A! P(A). Consider the set

B = {x 2 A : x /2 f(x)},

and let y be such that f(y) = B. Then, y 2 B i↵ y /2 f(y), in other words
if y /2 B, which is a contradiction.



5. Non-computable reals 21

One can legitimately wonder if the cardinality of the sets is always com-
parable: given two sets A,B, is there always an injection of one into the
other? The answer to this question again depends on the axiom of choice.
We will talk about it again in Section 9-4 as well as in Section 27-4.1.

5. Non-computable reals

Cantor’s theorem will provide us our first argument for the existence of
non-computable real numbers. We use for the following proposition and
corollary the — for the moment informal — notions of “computer pro-
gram” and “computable real”. They will both be precisely defined later
in this book; consider for the moment that a real is computable if there
is a computer program which enumerates in order the infinite list of its
decimals.

Proposition 5.1. The set of computer programs is countable. ?

Proof. A computer program (written in any programming language what-
soever) takes the form of a finite sequence of characters, where each char-
acter belongs to a finite alphabet (say the set of characters in the ASCII
table). Let us show that there exists a bijection from N to the set of fi-
nite sequences of ASCII characters. For that, we define an infinite list of
all the finite sequences of ASCII characters: we list first all the sequences
comprising exactly one ASCII character, then all the sequences comprising
two ASCII characters, then all those comprising three, etc. It is clear that
any finite sequence of ASCII characters appears somewhere in our infinite
list.

It is now su�cient to remove from our list the fnite sequences which do not
correspond to a valid program. We then define the element f(n) as being
the n-th element of the list resulting from this operation. It is clear that f
is a bijection. In particular, the set of computer programs can be counted.

Corollary 5.2
There are real numbers that cannot be computed.

Proof. Let P be the set of computer programs. Suppose that every real
is computed by an element of P . Let p1 be the first computer program
computing a real number. Here “first” means first according to the order
obtained via the bijection between the computer programs and N. Sup-
pose that p1, . . . , pn are defined and all compute a di↵erent real. Let pn+1

be the first computer program computing a real number di↵erent from



22 2. Cantor’s infinity

those computed by p1, . . . , pn. We define by induction in this way the
sequence (pn)n2N.

We then obtain a bijection between R and an infinite subset of P . As P
is countable, this infinite subset is also countable, which gives a bijection
between N and R, and hence a contradiction.

The proof of the corollary 5.2 is non-constructive: we show the existence
of non-computable numbers without giving a precise example. This will
obviously be done over and over again in the rest of this work, through a
detailed study of di↵erent types of non-computable numbers. Before we
get down to it, let’s mention two or three important notions concerning
Cantor’s study of infinity following its discovery.

6. Cantor space

Cantor has shown that there is no greatest infinity. Among all the possible
infinities, the smallest is “countably infinite”. Another infinity is of great
interest, namely, that of real numbers:

Definition 6.1. A set A is said to have the power of the continuum
if |A| = |R|. }

The power of the continuum therefore characterizes the infinity of reals.
Cantor conjectured that there was no infinity strictly between |N| and |R|,
but without succeeding in proving it. His conjecture known as the contin-
uum hypothesis will be considered for nearly a century as one of the most
important mathematical questions. Gödel will show in 1938 [77] that it
is not possible to demonstrate that the continuum hypothesis is false, and
Cohen will put an end to the question in 1963 [40] by showing that it is not
possible nor to show that the continuum hypothesis is true: it is a question
independent of the rest of mathematics, which can be considered true or
false without introducing any contradiction. We will discuss this in more
detail in Section 9-4.

Among the sets having the power of the continuum, we will pay particular
attention to the set of infinite sequences of 0 and 1, which will constitute the
main part of our playing field throughout this work. By “infinite sequences
of 0 and 1”, we mean sequences indexed by integers, that is to say sequences
of the form x0x1x2x3 . . . where each xi 2 {0, 1}.

Definition 6.2. The Cantor space is the set of infinite sequences of 0



6. Cantor space 23

and 1. We denote it 2N, and its elements will be denoted by uppercase
letters, in general A,B,C,X, Y, Z. }

Cantor space has the power of the continuum.

Proposition 6.3. We have: |2N| = |[0, 1]| = |R|. ?

Proof. Let us first show |[0, 1]| = |R|. The identity function is an injection
of [0, 1] into R. We can easily verify that the function

f(x) =

⇢
1/2 + 1/(x+ 2) if x > 0
1/2� 1/(|x|+ 2) if x < 0

is an injection of R into [0, 1]. By the Cantor-Bernstein theorem (see The-
orem 2.3), we therefore have |[0, 1]| = |R|.

Let us now show |2N| = |[0, 1]|. To define an injection of 2N into [0, 1],
one should be careful: some real numbers have two possible binary ex-
pansions, thus 1.00000 · · · = 0.11111 . . . , where 0.11111 . . . is the decimal
number 0.99999 . . . written in binary. It is the same for any real number
whose binary expansion ends with an infinity of consecutive 0: this one
then has an equivalent binary expansion which ends with an infinity of
consecutive 1. We will therefore define the injection f : 2N ! R which
to X associates the real number of [0, 1] whose ternary expansion, that is
to say in base 3, consists of the bits of X. The use of the ternary represen-
tation makes it possible to circumvent these problems of equality and thus
to make the function f injective.

The injection g : [0, 1] ! 2N is defined by associating to any real r 2 [0, 1]
its binary expansion R. When there are several representations of the same
real number, we will choose by convention the one ending with an infinity
of 0. By the Cantor-Bernstein theorem, we therefore have |2N| = |[0, 1]|.

Notation

Given X 2 2N and n 2 N, we denote by X(n) the n-th element of
the sequence X which we will also call the n-th bit of X. Thus, if the
sequence X is written x0x1x2 . . . , then X(0) = x0, X(1) = x1, X(2) =
x2, . . .

The fact that some real numbers have two possible binary representa-
tions make |2N| and |[0, 1]| topologically di↵erent spaces. For example,
for any x, y 2 R with x < y, there is a real z strictly between the two. On
the other hand, if we provide 2N with the lexicographic order <lex defined



24 2. Cantor’s infinity

by
X <lex Y if X(n) < Y (n),

where n is the smallest integer such that X(n) 6= Y (n), then the infinite
sequences

X = 0111111 . . . and Y = 100000 . . .

have no element strictly between them for this order.

This di↵erence is anecdotal from the point of view of the computational
complexity of the elements, and we will sometimes speak of real or of infinite
binary sequences indistinctly. The di↵erence is however important for the
development of computability theory in topological spaces other than 2N.
We will discuss this briefly in Section 22-4.2.

Let us see now that there exists, on the other hand, a very natural bijection
between the set P(N) —the power set of N— and Cantor space. Thus, P(N)
has the power of continuum.

Proposition 6.4. We have: |2N| = |P(N)|. ?

Proof. Let f : 2N ! P(N) be the function which to X 2 2N associates
the set Y = {n 2 N : X(n) = 1}. The function f is clearly a bijection.

The bijection between the set P(N) of the parts of N and Cantor space 2N

is so elementary that we can consider P(N) and 2N as two representations
of the same mathematical concept. In the following, we will speak without
distinction of a subset of N or of an infinite sequence of 0 and of 1, and we
will use the same notation 2N to denote the set of these elements. Thus,
given X 2 2N seen as a sequence, we will have X(n) = 1 i↵ n belongs to X
seen as a set.

The name “Cantor space” undoubtedly comes from the eponymous con-
cept Cantor’s triadic set. We define A0 = [0, 1], then A1 is A0 minus its
central third:

A1 = [0, 1/3] [ [2/3, 1].

Then A2 is A1 minus the middle third of each of its intervals:

A2 = [0, 1/9] [ [2/9, 1/3] [ [2/3, 7/9] [ [8/9, 1].

In general, to go from An to An+1, we remove the middle third of each
of the intervals of An. The triadic set of Cantor is ultimately the result
of the application of this operation, that is to say the set

T
n2N An.

Cantor space 2N defined above, is topologically equivalent to the triadic

Digression



6. Cantor space 25

Cantor set. In particular, each point of
T

n2N An can be described as a
sequence of 0 and 1 as follows: the n-th bit of a point corresponds to
determining whether it is to the right or to the left of the n-th third
which is subtracted from the current interval. We can also see Cantor
space as the set of reals of [0, 1] whose ternary representation avoids the
number 1.





Part I

Classical Computability
Theory

27





Chapter 3
Foundations of computability

Our goal is to conduct a mathematical study of computability. To do
this, it is customary to define mathematically what is meant by computable
fonction. This quest for a formal definition capturing this epistemological
concept was the genesis of computability theory, and resulted in what is
nowadays called the Church-Turing thesis. This thesis states that any com-
putable process can be executed with a Turing machine, a computational
model imagined by Alan Turing in 1936 and which can be considered as
a precursor of modern computers. Other approaches than that of Turing
machines allow us to capture the notion of computable function, among
which we shall cite the general recursive functions and �-calculus. These
di↵erent models will be presented in more detail in the interlude on the
Church-Turing thesis (see Chapter 6), and we will adopt for this chapter a
less formal approach.

1. Computable functions

In computability theory, the formalism of Turing machines tends to serve
as a reference model, not only for historical reasons —Turing was the first
to convince the community that his model captured all the computable
processes — but also because this model highlights the notion of atomic
stage of computation, which opens the door to complexity theory. It is
customary to begin the study of computability theory by that of its com-
putational models, and to prove their equivalence, in order to be convinced
of the robustness of the notion of computable function and of the validity
of the definitions. This is a fairly long and tedious development. So it is

– 29 –



30 3. Foundations of computability

easy to be put o↵ by this step at the end of which we believe too easily —
wrongly— that computability theory comes down to complex and boring
coding techniques.

We therefore made the choice to break with tradition, and defer the defi-
nition and the mathematical study of computational models to Chapter 6,
in order to facilitate the first contact with computability theory, and to
access its fundamental concepts more directly. The advent of computers
and the democratization of programming education have firmly anchored
the notion of algorithms in scientific culture. We will therefore adopt the
following informal definition.

Definition 1.1. A function f : N! N is computable if it can be defined
by an algorithm, or in other words programmed in a modern programming
language. }

It follows from our educational choice that the proofs of our first theo-
rems will largely appeal to the intuition of the properties expected of a
computable function. These are however theorems in their own right, in
the sense that it is possible to prove them from the formal definitions of
Chapter 6.

Integers in Computer Science
We are mainly interested in the functions from N to N. In most stan-
dard programming languages, integers are bounded. For our theoretical
definition, it is important to take into account all the integers.

Algorithms. In order to agree on what is meant by a modern programming
language or algorithm, let us list its main aspects, which will be formally
taken up in Section 6-3 for our definition of structured programs on the
model of register machines.

(1) The language must be able to handle integers, using constants, inte-
ger variables, and the usual arithmetic operations, namely addition,
subtraction, multiplication, and integer division. The reader will be
able to add other types to it, such as strings or floating point numbers,
without this changing the computational power.

(2) The language must be able to handle Boolean expressions, and perform
comparison operations on integers.

(3) The language must contain the usual control structures, namely condi-
tional instructions of type “if ... then ... else ...” and loops “for ”
and “while”, which repeat as long as a certain condition is true.



1. Computable functions 31

(4) We will assume that the machine’s memory is unbounded, and that it
can be use as much as necessary (especially to read its input, which
can be an arbitrarily large integer).

Data types

Point (1) emphasizes that adding data types other than the integer type
is unnecessary. This is true on the condition of course of considering
that our integers can be arbitrarily large (for example to encode large
strings of characters), which will always be the case by convention. The
reader will be able to find an example of encoding of arrays by integers
in Proposition 6-3.26.

Unbounded memory

One might be surprised by point (4) above, which allows unbounded
memory. Let us insist on the fact that one does not allow oneself an
infinite memory for all that: a computation which ends only carried
out a finite number of operations and therefore could only use a finite
amount of memory. Simply, we do not deal in computability theory with
the spatial complexity of the algorithms.

Examples. Before starting the formal study of computable functions and
their properties, let’s list some examples of computable functions, in order
to begin to form an intuition.

(1) The usual arithmetic operations can be computed. In particular, addi-
tion, multiplication, subtraction and integer division are computable.

(2) The function which associates the n-th prime number with n is com-
putable, as is the decomposition of a number into its prime factors.

(3) The function which, taking as parameter a list of city positions, returns
one of the shortest paths passing through all these cities only once, is
computable1.

Conversely, there are, as we will see, many non-computable functions. How-
ever, while it su�ces to give an algorithm to show that a function is com-
putable, showing that a function is not computable often requires more
elaborate reasoning, because it is not enough that the function does not
have any known algorithm; it must be shown that it is theoretically impos-
sible to program it. Each of the following statements is therefore a theorem
in its own right.

1This is the famous travelling salesman problem.



32 3. Foundations of computability

(1) The function which takes as input a computer program (coded by an
integer or a string), and decides if its execution will one day halt, is not
computable (see Theorem 7.8).

(2) The function which takes as input a formula in the language of arith-
metics (for example, “8x 8y 8z x3 + y3 6= z3”), and returns 1 if there
is a mathematical proof of this formula in the axiomatic system of
arithmetic, and 0 otherwise, is not computable (see Theorem 9-3.9).

(3) The function which takes as input a Diophantine equation, ie, an equa-
tion with integer coe�cients —par exemple 3x2+2xy+4y2 = 0— and
decides if this equation admits an integer solution, is not computable
(see Theorem 12-1.2 ).

Partial functions. As explained in the frame “Integers in Computer Sci-
ences” above, we will generally restrict ourselves to programs taking an
integer as a parameter, and returning another integer if the computation
ends. It is essential to note that the functions generated by the computer
programs are partial, in the sense that the computation can never halt on
some of its inputs. This bias is due to control structures of type “while”
whose termination condition may never be satisfied, as shown in the fol-
lowing example, which computes — in the worse possible manners — the
square root of an integer:

function Root (n){

r = 0;

while (r * r 6=n){
r = r + 1;

}

return r;

}

If n is not the square of an integer, the loop while will execute ad infini-
tum, and the program will never return a value. When the program does
not halt on an input n, it is considered that the function from N to N which
is associated with it is not defined on n. The domain of definition of the
partial function associated with a program is therefore the set of inputs on
which it halts. Functions defined by programs are called partial computable
functions. When the program halts on all its inputs, the generated func-
tion is then called total computable function, or quite simply computable
fonction.



1. Computable functions 33

Notation

If f and g are two partial functions, we will denote by f(x) = g(x) to
signify that either f and g are both defined and return the same value
on x, or neither f nor g are defined on x.

Codes. In our mathematical study, we will represent computer programs
by integers, assuming a fixed coding function. By computer programs, we
must understand here a finite sequence of characters — supposed to have
meaning in a programming language chosen beforehand. Concretely, we
will say that an integer e codes for a program P if e is the integer encoded
by the binary representation of the string corresponding to the program P .
In particular, this coding is injective and intuitively computable. Note that
one could imagine many other possible encodings. We will see another in
detail in the proof of Theorem 6-3.27. In the meantime, this one will be
suitable.

Notation
We denote by �e : N! N the partial function defined by the computer
program of code e.

We will assume that any integer e codes for a valid program. In practice,
in all programming languages, there are strings corresponding to illformed
programs. Some integers e encode unintelligible strings of characters. If this
is the case, we can then realize it (this corresponds to having a syntax error
when we try to compile a program) and consider that e then corresponds
to a program which never halts. Then �e is the nowhere-defined function.

Notation
Let �e : N! N be a partial computable function and x 2 N an integer.
We will write �e(x)# if the program encoded by e halts on the input x
(necessarily after a finite number of computation steps) and returns an
integer result. In the opposite case, we will write �e(x)".

The domain of definition of the partial computable function �e : N! N is
therefore {x 2 N : �e(x)#}. If �e(x)#, we will sometimes write �e(x)#= y
to mean that the code program e halts on the input x and returns the
integer y. Conversely, we will sometimes write �e(x) "6= y to mean the
opposite, ie �e(x)" _ �e(x)#6= y.

Computation time. Any programming language comes with a notion
of execution step and computation time. An execution step is an atomic
operation of the language, indecomposable into sub-steps. It corresponds
to an elementary instruction of the language. The notion of execution



34 3. Foundations of computability

step induces that of computation time, which is defined by the number of
execution steps carried out since the launching of computation. When a
program halts on an input, its computation time is finite.

Notation
Let �e : N ! N be a partial computable function and x, t 2 N two
integers. We will write �e(x)[t] # if the program encoded by e halts
before t computation steps. In the opposite case, we will write �e(x)[t]".

Note that �e(x)# i↵ there exists a computation time t such that �e(x)[t]#.
Furthermore, if �e(x)[t]#, then �e(x)[s]# for all s > t.

Remark
We will have to handle computable functions with several parameters.
For a fixed integer n 2 N⇤, we will denote as above by �e : Nn

! N
the partial function with n integer parameters encoded by e and we
will write �e(x1, . . . , xn) #= y if the code program e halts on the in-
puts x1, . . . , xn and returns the integer y.

2. Computable sets

The adjective “computable” naturally applies to functions; indeed as de-
scribed above, any integer e codes for a program to which a partial com-
putable function corresponds. Most often, however, when we speak of
computable functions, we will consider that they are total functions.

Definition 2.1. Let n 2 N⇤. A function f : Nn
! N is computable if

there exists a program code e such that, for all x1, . . . , xn, we have

�e(x1, . . . , xn)#= f(x1, . . . , xn)

Computability can also be used to measure the descriptive complexity of
countable mathematical objects, and in particular that of sets of integers.
Intuitively, a set of integers E ✓ N is computable if it can be described by
a computable process. A set being totally specified by its elements, it is
computable if its characteristic function is computable.

Definition 2.2. Let n 2 N⇤. A set A ✓ Nn is computable if there exists
a program code e such that, for any x1, . . . , xn, we have

• �e(x1, . . . , xn)#= 1 i↵ (x1, . . . , xn) 2 A.



3. Universal program 35

• �e(x1, . . . , xn)#= 0 i↵ (x1, . . . , xn) /2 A. }

We will sometimes call predicates the subsets of Nn, then using the nota-
tion A(x1, . . . , xn) to mean (x1, . . . , xn) 2 A. The term predicate comes
from the view of A ✓ Nn not as a set, but as a property of n-tuples of inte-
gers. Thus, A(x1, . . . , xn) means that the n-tuple (x1, . . . , xn) has the prop-
erty A. Conversely, ¬A(x1, . . . , xn) means that the n-tuple (x1, . . . , xn)
does not have the A property.

Exercise 2.3. Show that the pairing bijection defined in Proposition 2-3.5
and Exercise 2-3.7, which to (a, b) 2 N2 associates ha, bi 2 N, is computable.
Show that the inverse functions ⇡0,⇡1 such that a = ⇡0(ha, bi) and b =
⇡1(ha, bi) are also computable. ⇧

Exercise 2.4. Let A ✓ N2 be a computable predicate. Show that the
sets:

(1) {(x, y) 2 N2 : 8z < y (x, z) 2 A}

(2) {(x, y) 2 N2 : 9z < y (x, z) 2 A}

are also computable. ⇧

Recursive set
Historically, computable sets were called recursive due to the compu-
tation paradigm of general recursive functions in which definitions by
induction play a dominant role (see Chapter 6). Gradually, with the
improvement of our understanding of the concept of computation, the
terminology of the field has evolved. One can however regularly see
the terms of recursion theory and of recursive set to speak about com-
putability theory and computable set.

3. Universal program

The computational model devised by Turing in 1936 consists in defining a
machine for each computable function. If we compare a Turing machine to
a physical device, it consists, for each task that we want to accomplish, to
create a robot performing that specific task.

We are now going to state a first fundamental theorem of computability
theory and proved by Turing in his original article: the existence of a uni-
versal Turing machine, capable of simulating all other Turing machines.



36 3. Foundations of computability

This work is sometimes considered a precursor of von Neumann’s architec-
ture2, one aspect of which is the storage of programs in memory. In modern
Computer Science, this theorem can be seen as stating the existence of a
universal computer program, allowing all other computer programs to be
simulated.

Theorem 3.1
Let n 2 N⇤. There exists a computer program code e for which �e :
Nn+1

! N is such, that for all a, x1, . . . , xn, we have

• �e(a, x1, . . . , xn)" i↵ �a(x1, . . . , xn)";

• �e(a, x1, . . . , xn)#= y i↵ �a(x1, . . . , xn)#= y.

In practice, a universal program exists very concretely in many languages.
For example, in Java, it is simply the virtual machine that compiles and
runs any program written in Java. For languages that do not use a virtual
machine, a universal program will simply be an interpreter which decom-
poses the program which it receives into a sequence of instructions, and
executes it step by step. While such a program is of course complex to de-
sign, there should be no doubt for the programmer that this is something
very possible: it is simply a virtual machine. The reader can consult the
proof of Theorem 6-3.27, which demonstrates the existence of a universal
program for the specific computational model of register machines.

The existence of such a program allows us to define functions which per-
form manipulations on codes before executing them, or dynamically execute
codes passed as parameters. For example,

f(x, y) = �x+1(y + 2)

is a valid definition, because it is equivalent to f(x, y) = �e(x + 1, y + 2),
where �e is the universal program.

4. SMN theorem

The SMN theorem is our first theorem on the manipulation of computer
program codes. It is not conceptually di�cult. Let �e : Nm+n

! N be the
function of code e. Then, given x1, . . . , xm, we can computably transform
our code e into a code a such that the computation �a(y1, . . . , yn) gives
the same result as the computation

�e(x1, . . . , xm, y1, . . . , yn)

2Which is almost always the one in use today.



4. SMN theorem 37

The important point is that the transformation of e into a is computable
as a function of e and x1, . . . , xm.

Theorem 4.1 (SMN theorem)
For all n,m 2 N⇤, there exists a total computable function

Sm

n
: Nm+1

! N,

such that for all e, x1, . . . , xm, y1, . . . , yn,

�Sm
n (e,x1,...,xm)(y1, . . . , yn) = �e(x1, . . . , xm, y1, . . . , yn).

Proof. Let us describe the function Sm

n
. Given e, x1, . . . , xm, decode e

to get the program Pe. Computably modify the program Pe to add “hard-
coded” instructions assigning the values x1, . . . , xm to the corresponding
variables, then compute the code of the new program. For example, if the
program �e : N4

! N is

function MyProgram (x1, x2, x3, x4){

// CODE

}

The program �S
2
2(e,5,3)

matches the string

function MyProgram2 (x3, x4){

x1 = 5;

x2 = 3;

// CODE

}

.
The SMN theorem will be used from now on without calling on it explicitly,
with sentences like “for every x, let ex be the code of the program which
takes y as input, and does . . . [something which depends on x and y]”, it
being understood then that the process to obtain e from x is computable.
We also say in this case that the process is uniform in x.

Acceptable coding
The universal program existence theorem and the SMN theorem are
not valid for all coding functions. Let us recall the one we use here:
each program P is encoded by the integer corresponding to the binary
representation of the string which contains P .
Rogers [191] proved that any coding function satisfying the Universal
Program Theorem and the SMN Theorem was the result of a computable



38 3. Foundations of computability

permutation of this canonical coding. However, there are other codings
of partial computable functions which do not satisfy these theorems. In
particular, Friedberg [67] defined a computable encoding of all partial
functions computable without repetition. This is of course not the case
for our coding, for which the same partial function has an infinity of
di↵erent codes. This is what we are about to do with Lemma 5.1.

5. Padding lemma

The padding lemma is useful from time to time and indicates that for any
computer program e, there exists an infinite number of equivalent pro-
grams, the code of which can also be computed from e: it su�ces to add
instructions that are useless.

Lemma 5.1 (Padding lemma). There exists a total computable func-
tion h : N2

! N such that for all e, n 2 N, we have h(e, n) > n, and �h(e,n) =
�e. ?

Proof. Given the code e and an integer n, decode e to obtain the pro-
gram Pe. Add n unnecessary instructions to Pe, then encode the new
program to an integer i.

For example, if the language has an instruction skip which does nothing,
then it su�ces to add to the program a sequence of instructions skip as
follows:

function MyProgram (x){

// CODE

skip;

skip;

...

}

.

Note that �h(e,n) and �e are equal as mathematical functions, but have
di↵erent computer codes.

6. Kleene’s fixed point theorem

Kleene’s fixed point theorem, also known as recursion theorem, is much
more subtle than the SMN theorem. Stephen Cole Kleene is considered



6. Kleene’s fixed point theorem 39

with Kurt Gödel, Alan Turing, Emil Post and Alonzo Church, his teacher,
as one of the founders of computability theory. He formalizes with Post
the notion of degree of unsolvability, which we will call later Turing degree
and which will be precisely defined in Chapter 4.

Stephen Cole Kleene, 1909–1994

Among his most remarkable works, fig-
ure the definition and the study of hy-
perarithmetic sets and computable ordi-
nals [118], which we will see in Part IV
and for which we will need to create
computer programs which can access
their own code. The notion may seem
doubtful: how can we use in the defini-
tion of an object A the object A itself?
Self-references often lead to paradoxes.
However, we will see that in the case of
computer programs, access to its own
code is quite valid, and even very useful
in some cases. We will see a remarkable
example of the use of the fixed point
theorem in the proof of Theorem 19-1.7.
Let’s see more precisely what it is. The
theorem states that for any function that modifies programs, there exists
a program whose behavior is not modified by the function.

Theorem 6.2
For any total computable function f : N ! N, there exists e 2 N such
that for any n,

�f(e)(n) = �e(n).

Before moving on to the proof, let’s see how this mysterious claim allows
you to create programs with access to their own code. Suppose that a
program M uses a variable var that was initialized to a certain value at
the start of its execution. We can then easily define a total computable
function f which takes an integer n as a parameter, and returns the code
of the program M , which begins its execution with var initialized to n.
According to the fixed point theorem, there is a value e such that the
programs of code e and f(e) have the same behavior. So e is a program
code equivalent to that of the M program running with the variable var

initialized to e: there is a version of M that can access its own code. Here
is, more formally, what we have just stated.



40 3. Foundations of computability

Corollary 6.3
For any partial computable function g : N2

! N, there exists e 2 N such
that for any n, we have

�e(n) = g(e, n)

Proof. Let i be such that �i(x, n) = g(x, n) for all x, n. By the SMN
theorem (see Theorem 4.1), for all x, n, we have �S

1
2(i,x)

(n) = �i(x, n).

Let f be the function defined by f(x) = S1
2(i, x). By the fixed point theorem

(see Theorem 6.2), there exists e such that, for all n, �f(e)(n) = �e(n). In
particular, �e(n) = �f(e)(n) = �i(e, n) = g(e, n).

The proof of Theorem 6.2, although concise, is somewhat obscure; this is
why we provide beforehand a piece of code whose objective is to give the
programmer an intuition of how to write a program with access to its own
code. The example is given here in the JavaScript language.

In the following, the two ellipses must each contain the same code, no
matter which one. In JavaScript, “backquotes” delimit a string over several
lines. Function replace will replace the first occurrence of ‘# ’with the
content of variable v.

function fct (){

let v = �
function fct (){

let v = '#'
v = v.replace ('#', v)

... // my code

} �
v = v.replace ('#', v)

... // my code

}

The execution of this program will be done with the variable v having for
content the program itself, except that the “backquotes” are then trans-
formed into simple “quotes”. It is of course possible to make the variable v
contain exactly the program, but that would make the example much less
understandable. Aiming to give an intuition and not a proof, we have kept
it that way. Let us now proceed to the formal proof of our theorem, within
the framework of the notations and principles that we have defined so far.

Proof of Theorem 6.2. Let a be the code of a one-parameter machine,
which on input n returns the code of a one-parameter machine m, which
performs the following operations.



6. Kleene’s fixed point theorem 41

(1) It starts the computation of f
�
�n(n)

�
.

(2) If we have f
�
�n(n)

�
#, then it returns the result of the computation of

the code machine f
�
�n(n)

�
on the input m (and otherwise does not

halt).

Formally, a is such that, for all n,m 2 N,

��a(n)(m) = �f(�n(n))(m).

There is a slight abuse of notation here: if �n(n) ", then m 7! �f(�n(n))(m)
denotes the nowhere defined function. Note that �a is a total function: for
any n, in the computation of �a(n), we do not try to do the steps (1)
and (2), but only to compute the code of a machine that makes them

The proof that such a code a exists is given by the SMN theorem, here is
how. The function (n,m) 7! �f(�n(n))(m) is computable (possibly partial),
and there is therefore a code b such that

�b(n,m) = �f(�n(n))(m).

According to the SMN theorem, there is a total computable function s such
that �s(b,n)(m) = �f(�n(n))(m). As s is total computable, there is a code a
such that �a(n) = s(b, n).

The fixed point will then be �a(a). Indeed, we have

8m, ��a(a)(m) = �f(�a(a))(m).

This concludes the proof.

Fixed point theorem and paradox
As explained above, Kleene’s fixed point theorem makes it possible to
design self-referential programs, i.e., programs which can read their code
during execution, and adapt their behavior accordingly. The ability to
self-refer is often a source of paradoxes.
The Barber’s Paradox, for example, tells the story of a philanthropic
barber who decided to shave all the people who did not shave themselves.
Should he shave himself? Paradox . . . In mathematics, Russel’s paradox
follows the same pattern: let E be the set of all sets which do not
belong to themselves. For example, N is not an integer, so N /2 N,
therefore N 2 E. The problematic question is then “Does E 2 E?”
Why does Kleene’s fixed point theorem not generate a paradox? If we
try to follow the same scheme as the two previous paradoxes, we will
define a function �e which knows its code e, and therefore can decide,
for any input n, to execute �e(n) and return a di↵erent value than
the one returned by �e(n). We would therefore have �e(n) 6= �e(n).



42 3. Foundations of computability

The solution comes from the partiality of the functions: indeed, �e will
simply not be defined in n and will run indefinitely.

The reader wishing to explore the possibilities of the fixed point theorem
can tackle the following exercise, the object of which is to prove Rice’s
theorem, which will be discussed in more detail in Section 5-6.

Exercise 6.4. (?) Let A ✓ N be such that A 6= N, A 6= ; and such that A
is computable.

1. Show that there exists a computable function f such that we have x 2 A
i↵ f(x) /2 A.

2. Using the fixed point theorem, deduce that there are i, j such that �i =
�j , with i 2 A and j /2 A.

3. Deduce that there are no computable predicates A such that e 2 A i↵ e
is the code of a program which multiplies by 2.

4. Generalize the previous question to show Rice’s theorem: for all “non-
trivial behavior”, it is not possible to compute the set of program codes
having this behavior. Formally: let a predicate P ✓ N with P 6= N
and P 6= ; such that, for all e1, e2 for which �e1 = �e2 , we have e1 2
P $ e2 2 P . Then, P is not computable. ⇧

7. Computably enumerable sets

Computability places “computable” as the reference computational power.
This is the weakest computational notion that this paradigm allows to
identify. As we have seen, a set E is computable if there is a procedure
which, given an element, indicates whether this element belongs to E or
not. The procedure should always halt and give a correct answer.

There are, however, a certain number of mathematical problems which can
be expressed naturally in the form of sets whose elements are enumerable by
a computable procedure, but out of order. These sets are called computably
enumerable.

For example, let E be the set of mathematical theorems. There is no proce-
dure which, given a mathematical formula, returns true or false depending
on whether this formula is provable or not. However, it is possible to enu-
merate the theorems, listing all possible strings, testing whether this is a
valid proof, and if so, listing the conclusion of the proof (we will discuss
this in more detail in Chapter 9).



7. Computably enumerable sets 43

We are now going to formally define the notion of computably enumerable
set in a form which may seem far from the informal definition that we
have just given. We will see through Proposition 7.2 that these definitions
coincide.

Definition 7.1. A set A ✓ N is computably enumerable (c.e.) If there
exists a program code e such that n 2 A$ �e(n)#, for all n 2 N. }

Note that computably enumerable sets were historically called recursively
enumerable. It is still common to see articles using the old terminology,
and in particular the abbreviation r. e. instead of c.e.

We can see the machine code e as a process which enumerates A: for each
integer n, we look for an integer t such that �e(n) halts in t computation
steps. If such a t is found, then we enumerate n in our set. Knowing that
there is an infinity of integers, we need to fix an order of execution to carry
out only a finite number of computations at each step. The idea is to break
it down step by step as follows.

1. Test if �(0)[0]#.

2. Test whether �(0)[1]# or �(1)[1]#.

3. Test whether �(0)[2]# or �(1)[2]# or �(2)[2]#.

4. . . .

The first time that we find a step t such that �(n)[t]# for a certain integer n,
we enumerate the latter. Such an enumeration can be seen as a computable
function f : N ! N where f(n) is the n-th element listed in A. This idea
is repeated in the proof of the following proposition.

Proposition 7.2. An infinite set A is computably enumerable i↵ there
exists an injective total computable function f : N! N such that

f(N) = A.

Proof. Let A be an infinite computably enumerable set, and let e be such
that �e(n) # i↵ n 2 A. We define the computable function f : N ! N as
follows.

• To compute f(0), we look for the smallest t such that �e(s)[t] # for
some s 6 t, and we then return the smallest such integer s 6 t.

• To compute f(n+1), we first run the computation of f(i) for all i 6 n,
then we look for the smallest t such that �e(s)[t]# for some s 6 t such
that s is di↵erent from each f(i) for i 6 n, and we then return the
smallest such integer s 6 t.



44 3. Foundations of computability

The process for determining f(n) is indeed computable, and since our com-
putably enumerable set is infinite, the function f will halt on all its values.
It is then clear that f(N) = A.

Suppose now that f(N) = A for a total computable function f . We define
the function g which on n searches for the smallest t such that f(t) = n,
and then halts (and otherwise searches indefinitely without ever halting).
We have g(n)# i↵ 9t f(t) = n.

It should be clear to the reader that a computable set is computably enu-
merable.

Exercise 7.3. Show that any computable set is computably enumerable.
⇧

We will see that the reverse is not necessarily true: there are computably
enumerable sets which are not computable. The following proposition gives
more precisely the connection between these two concepts.

Proposition 7.4. A set A is computable i↵ A and N \ A are both com-
putable enumerable. ?

Proof. Let A be a computable set. According to Exercise 7.3, it is com-
putably enumerable. Moreover, the set N \ A is also computable, and
therefore computable enumerable.

Suppose now that we have two codes e1, e2 such that �e1(n) # i↵ n 2 A
and �e2(n)# i↵ n 2 N \A. We define the computable function f(n) which
searches for the smallest t such that �e1(n)[t] # or such that �e2(n)[t] #,
then returns 1 in the first case and 0 in the second. It is clear that the
function f computes the set A.

If a computably enumerable set is not in general computable, it can be
approximated by an increasing sequence of uniformly computable sets, in
the following sense. We say that a sequence of sets A0, A1, . . . is uniformly
computable if there exists a computable function f : N ⇥ N ! {0, 1} such
that, for all x, n, we have f(x, n) = 1 i↵ x 2 An.

Definition 7.5. A c.e. approximation of a set A is a uniformly com-
putable sequence of sets A0, A1, . . . such that An ✓ An+1 for all n,
and

S
n
An = A. }

Proposition 7.6. A set A is computably enumerable if, and only if, it has
a c.e. approximation ?



7. Computably enumerable sets 45

Proof. Suppose that A is c.e. By definition, there is a program code e
such that x 2 A$ �e(x)#, for all x 2 N. Let A0, A1, . . . be the uniformly
computable sequence of sets defined by An = {x : �e(x)[n]#}. It is clear
that An ✓ An+1, because if the machine �e halts on an input x before n
steps, it will halt before n+ 1 steps.

Suppose now that the set A has a c.e. approximation, namely, A0, A1, . . .
Let �e be the program which, for an input x, computes A0(x), then A1(x),
thenA2(x), and so on, untilAn(x)=1 for some n and halts there. IfAn(x) =
0 for all n, then �e(x) ", otherwise �e(x) #. By construction, {x : �e(x) #
} =

S
n
An = A.

Notation

Given a c.e. set A, we denote by A[0], A[1], . . . a fixed c.e. approxima-
tion of A. In particular, A[s] is the approximation of A at step s. By
convention, A[s] is a finite set with maxA[s] < s if A[s] 6= ;. We will
sometimes also use the notation As instead of A[s].

As we have said, there are computably enumerable sets which are not com-
putable. The canonical example is known as the “halting problem”.

Definition 7.7. The halting problem ;0 is the set

;
0 = {n 2 N : �n(n)#}. }

Alan Turing demonstrates in 1936 that the halting problem is not com-
putable, using a diagonal argument, like the one introduced by Cantor to
demonstrate the non-countability of real numbers. Before giving a mathe-
matical proof, we give an intuition via a little code using Java syntax.

Let us absurdly assume that we have at our disposal a function boolean

Halt(String p, String v) which returns true if the function in the
string p halts when it is executed with the parameter v, and returns false
otherwise. As usual, if p contains a string that does not match a valid
function or does not match a function taking a parameter of type String,
then Halt returns false. Consider the following program.

function Diagonal (x){

if (Halt (x, x)){

while (true); //infinite loop

} else{

return; //end

}

}



46 3. Foundations of computability

What does the execution of program Diagonal return with as parameter
a string x corresponding to the program Diagonal itself? We see that we
come up with paradox:

• if Halt(x,x) returns true, then Diagonal does not halt on Diagonal

as a parameter;

• in the opposite case, Diagonal halts on Diagonal as parameter.

Thus, the function Halt does not keep its promises.

Theorem 7.8
The halting set is a computably enumerable set which is not computable.

Proof. The partial function f : n 7! �n(n) is clearly computable, and we
have f(n) # i↵ �n(n) #. By definition, ;0 = {n : f(n) #}. Therefore, ;0 is
computably enumerable.

Let us now assume absurdly that ;0 is a computable set. In particular,
according to Proposition 7.4, the set N \ ;

0 is computably enumerable, and
there exists a code e such that n 2 N \ ;

0 i↵ �e(n)#. Then, for all n,

�e(n)# $ n 2 N \ ;
0
$ �n(n)" .

In particular, for n = e,

�e(e)# $ e 2 N \ ;
0
$ �e(e)",

which is a contradiction. The sentence is therefore not computable, and in
particular the negation of the sentence is not computably enumerable.

We invite the reader to consider the following two exercises, which should
not pose any di�culties and which allow us to reflect a little on computably
enumerable sets.

Exercise 7.9. (?) An infinite set is computably enumerable in the or-
der if there exists a total function f : N ! N such that f(N) = A and
such that f(n) < f(n + 1). Show that if an infinite set A is computably
enumerable in order, then A is computable. ⇧

Exercise 7.10. (?) Show that any infinite computable enumerable set
contains an infinite computable subset. ⇧

Exercise 7.11. (??) Two sets A and B are computably inseparable if A \
B = ; and if no computable set C allows to separate A and B; in other
words, no computable set C is such that A ✓ C and C \ B = ;. Show
that there are two computably inseparable c.e. sets. ⇧



7. Computably enumerable sets 47

Exercise 7.12. (??) Show that given A,B ✓ N two computable sets,
the set DA,B = {x � y : x > y and x 2 A and y 2 B} is not necessarily
computable.

Indication .– Show that for any c.e. set C ✓ N, there exist two computable
sets A,B ✓ N such that x 2 C i↵ 2x 2 DA,B . ⇧

Some people —a small minority— will perhaps have integrated with great
ease everything that has been seen so far, to the point no doubt of getting
bored a little. This is what the following exercise is aimed at, which should
occupy them for a little while . . .

Exercise 7.13. (???) (Friedberg [67]). A c.e. set X is maximal if N\X
is infinite and if any c.e. set Y ◆ X is such that Y \ X is finite or such
that N \ Y is finite. Show that there exists a maximal c.e. set.

Indication .– We denote by We the c.e. set given by {n 2 N : �e(n) #}.
We can start by finding a uniform process which, on each e 2 N, associates
a code d such that N \ Wd is infinite, and such that if Wd ✓ We, then
either We is finite, or N \We is finite. ⇧





Chapter 4
Turing degrees

A non-computable set can be seen as an insoluble problem: there is no
algorithm making it possible to decide whether or not an integer belongs
to this set. One of the goals of computability theory is to study and under-
stand the universe of insoluble problems, through di↵erent comparisons and
classifications. Various tools are introduced for this. The most important
of them is the subject of this chapter and finds its genesis in “Systems of
logic based on ordinals” [235], the famous article by Alan Turing presenting
his thesis work, and will be formalized and studied later by Post [189] then
Post and Kleene [122]: given a non-computable set X, we imagine being
able to use it as “oracle” in order to increase the computational power of
our machines. We will then say that two sets are in the same degree of
insolubility or in the same Turing degree, if each can be computed with an
algorithm using the other as “oracle”.

1. Finite strings

Before getting to the heart of the matter, we need to introduce some vo-
cabulary and notation about binary strings. Formally, a binary string is a
partial function from N to {0, 1} whose domain of definition is an initial
segment of N. More informally, it is a finite sequence of 0 and 1.

Definition 1.1. We denote by 2<N the set of finite sequences of 0 and 1.
The variables �, ⌧, ⇢ will normally be used to denote elements of 2<N,
which will generally be called strings. These sequences will be handled
via the following symbols:

– 49 –



50 4. Turing degrees

• ✏: the empty string, of length 0

• in for i 2 {0, 1}: a sequence of n bit repetitions i

• �⌧ or �ˆ⌧ : the concatenation of � and ⌧

• � � ⌧ : the string � is a prefix of ⌧ , that is 9⇢ tel que �⇢ = ⌧

• � � ⌧ : the string � is a strict prefix of ⌧ , ie 9⇢ 6= ✏ such that �⇢ = ⌧

• |�|: the length of �

• �(n) for n < |�|: the value of the n-th bit of �, starting at 0

• We will say that two strings �, ⌧ are incompatible if we have nei-
ther � � ⌧ nor ⌧ � � (we will also write � � ⌧ and ⌧ � �). If, on the
other hand, � � ⌧ or ⌧ � �, the two strings � and ⌧ are compatible.
}

We will sometimes identify a bit i 2 {0, 1} with the string of length 1
whose only bit is i. Thus, we will denote by �i or �ˆi the concatenation
of a string � and a bit i. According to the previous definitions, |✏| = 0,
and for any non-empty string �, the first and last bit are respectively �(0)
and �(|�|� 1). Chains and infinite sequences can be combined.

Definition 1.2. We adopt the following notations for � 2 2<N

and X 2 2N:

• �X: the concatenation of � and X

• � � X: the string � is a prefix of X, that is 9Y 2 2N �Y = X

• X �n for n > 0: the prefix of X of size n. }

2. Computation with oracle

Intuitively, a computation with an oracle X ✓ N is easy to understand:
it is a computation which can at any time use an instruction of the form
“does n belong to X?”. This instruction can be compared to a function
call, which always returns the correct answer.

If the oracle used is not computable, it is therefore possible to write com-
puter programs which computes, using this oracle, objects which would
not be computable otherwise. In particular, X itself with computable with
oracle X. Our goal now is to study sets of integers in terms of the compu-
tational power they provide when used as oracles.



2. Computation with oracle 51

Definition 2.1. A Turing functional or simply a functional is a function
computable by an algorithm in a programming language enriched with
instructions of the form “does n belong to the oracle?”. }

A functional therefore has two kinds of parameters: the usual integer pa-
rameters, as for computable functions, and one oracle parameter, which is
an infinite binary sequence, or equivalently a set of integers, representing
the oracle. We will also call first-order parameters the integer parame-
ters and second-order parameter the oracle parameter. A functional can be
seen as a scheme of partial functions, parameterized by the oracle: the same
functional “fed in” with a di↵erent oracle will yield a di↵erent function.

Notation

We note �e(X,n) or �X

e
(n) for the result of the computation of the

functional �e with the oracle X and on the input n. We will write
in the same way �e(X,n) #, �e(X,n) ", �e(X,n)[t] #, �e(X,n)[t] " to
signify that the functional �e respectively halts, does not halt, halts in
time lower than t, does not halt in time lower than t, with the oracle X
and on the input n.

In order to have a uniform vision, we now suppose that we only work with
functionals. It is easy to see that the computable functions are exactly
those which are computable by functions using the empty set as oracle (or
any other computable set).

Definition 2.2. A set A is said to be X-computable or computable rela-
tive to X if it is computable by a Turing functional using X as an oracle.
A set A is said to be computably enumerable relative to X if it is the
domain of definition of a Turing functional using X as an oracle. }

The notion of oracle is generalized to functions. With an oracle f : N! N,
a computation consists in adding the function f to the primitives of the
programming language. Thus, the program can at any time query f on
inputs to know the results. We can therefore speak of an f -computable set
if it is computable by a Turing functional using f as an oracle. Equivalently,
a set is f -computable if it is Gf -computable, where Gf 2 2N is an encoding
of the graph of the function f by an element of 2N, for example with hn,mi 2
Gf i↵ f(n) = m.

Notation
We will also write X-c.e. to mean computably enumerable relative to X.



52 4. Turing degrees

Example 2.3. Suppose for example that we have an oracle X ✓ N
such that the function f which to n associates the n-th element of X
increases fast enough to dominate the halting time of computer programs.
Formally: �e(e) # implies �e(e)[f(e)] # for all e 2 N. It is then easy to
create a Turing functional allowing to compute ;0 from X: to know
if e 2 ;0, it su�ces to browse X until you find its e-th element f(e), then
to compute �e(e) during f(e) stages of computation. If �e(e)[f(e)] #,
then e 2 ;0. Otherwise, e /2 ;0.

3. Relativization of proofs

Most of the computability-theoretic arguments apply to oracle machines by
replacing “machine” by “machine with an oracle X”. This purely syntactic
operation, which we call relativization (to an oracle), therefore gives for
free a scheme of similar results, parameterized by an oracle X. Let us take
the example of the undecidability of the halting problem, by replacing the
notion of computation by that of computation with oracle X.

Theorem 3.1
For any oracle X, the set Y = {n : �X

n
(n)#} is not X-computable.

Proof. The partial function f : n 7! �X
n
(n) is clearly X-computable, and

we have f(n)# i↵ �X
n
(n)#. By definition, Y = {n 2 N : f(n)#}. Then, Y

is X-computably enumerable.

Let us now assume absurdly that the set Y is X-computable. In par-
ticular, according to Proposition 3-7.4 relativized to X, the set N \ Y
is X-computably enumerable, and there exists a code e such that n 2 N\Y
i↵ �X

e
(n)#. We then have for all n

�X
e
(n)# $ n 2 N \ Y $ �X

n
(n)" .

In particular, for n = e, we have

�X
e
(e)# $ e 2 N \ Y $ �X

e
(e)",

which is a contradiction. Therefore, Y is not X-computable, and in partic-
ular the complement of Y is not X-computably enumerable.

However, one must be a little cautious when relativizing an argument. In-
deed, some definitions mask calls to machines, and their definition must
therefore also be relativized. For example, if we define the halting problem
as the set {n : �n(n) #}, the relativization of the statement “The halt-
ing problem is not computable” is not “For all X, the halting problem is



3. Relativization of proofs 53

not X-computable”, but “For all X, the halting problem relativized to X
is not X-computable”, where the “halting problem relativized to X” is in
fact defined as the set {n : �X

n
(n)#}.

In general, the relativization of a theorem is obtained by adding an oracleX
to each machine, and by replacing computable by X-computable. This is
for example the case for a naive relativization of the SMN theorem.

Theorem 3.2 (Relativized SMN theorem - version 1)
For any oracle X, and for all non-zero integers n and m, there exists
a total X-computable function Sm

n
: Nm+1

! N such that for all e,

�X
Sm
n (e,x1,...,xm)(y1, . . . , yn) = �

X
e
(x1, . . . , xm, y1, . . . , yn).

An analysis of the proof of the SMN theorem reveals however that the func-
tion Sm

n
does not depend on the oracle X, because it performs purely syn-

tactic manipulations on the machine. It is therefore possible to formulate
a stronger relativized version of the SMN Theorem, where the function Sm

n

is computable, although the previous version is also valid.

Theorem 3.3 (Relativized SMN theorem - version 2)
For any oracle X, for any n,m 2 N⇤ there exists a total computable
function Sm

n
: Nm+1

! N such that for all e,

�X
Sm
n (e,x1,...,xm)(y1, . . . , yn) = �

X
e
(x1, . . . , xm, y1, . . . , yn).

The relativization of arguments is an empirical phenomenon which in a
way reflects our partial understanding of the notion of calculus. However,
and especially in complexity theory, proofs not necessarily relativize. The
emblematic example is the question of the separation of the complexity
classes P and NP. Each of these classes can be relativized to an oracle.
Baker, Gill, and Solovay [9] have shown that there are oracles X for
which PX = NPX and others for which PX

6= NPX. In order to solve the
question P vs NP, it is then necessary to use an argument which cannot
be relativized. This is in computability theory something quite unusual,
but not necessarily in complexity theory, where we have other examples
of solved problems that do not relativize. We know for example that
the IP and PSPACE classes coincide [204], while being able to produce
oracles X for which IPX

6= PSPACEX [63].

Digression



54 4. Turing degrees

4. Use property

Given a computation �e(A, n) on an oracle A, when �e(A, n) #, then the
functional �e has only used a finite part of the oracle A to return the result:
this follows simply from the fact that a computation is always carried out
in a finite number of steps. There is therefore an initial segment � � A
such that for any other oracle B having the same initial segment, �e(A, n)
and �e(B,n) have exactly the same behavior. This leads us to define the
notion of computation with finite oracles.

Notation

Given a finite sequence � 2 2<N, we write �e(�, n)# or ��

e
(n)# to signify

that the computation halts on the input n and with � as a partial oracle,
where the oracle has not been accessed outside of its domain.

In the previous notation, if the computation needs to access oracle values
that exceed the size of �, then we write �e(�, n) " or ��

e
(n) ". The finite

part of the oracle A queried until the computation �e(A, n) finishes is called
the use of the computation.

Proposition 4.1 (Use property). Let �e be a Turing functional, X an
oracle and n 2 N an input. Then, �e(X,n)# if, and only if, there exists a
finite prefix � � X such that �e(�, n)#. ?

We will see in Section 8-2 that the use property corresponds to the concept
of continuity on Cantor space. Despite its conceptual simplicity, the use
property plays a primordial role in computability theory. For example, we
will make a strong use of it (no pun intended) in Section 8 on the finite
extension method.

Definition 4.2. Given a functional � and an oracleX, we denote by useX� :
N ! N the partial X-computable function which on n returns the mini-
mum length of the prefix of X used in the computation of �(X,n). }

Remark
According to the use property, any Turing functional � can be repre-
sented by the c.e. set W of triples (�, x, y) such that if (�, x, y) 2 W ,
then ��(x) #= y. Such an enumeration satisfies the following consis-
tency property: for all (�, x, y) 2W and (⌧, x, y0) 2W such that � � ⌧ ,
we have y = y0.

Exercise 4.3. Show that if Y is X-computable and Z is Y -computable,
then Z is X-computable. ⇧



5. Turing degrees 55

5. Turing degrees

Oracle machines induce a notion of relative computability. Informally, a
set Y is X-computable if X is at least as powerful as Y , in the sense that
everything that is computable by Y is also computable by X. This gives
rise to the Turing reduction.

Definition 5.1 (Turing reduction). Given two sets X,Y ✓ N, we say
that X is Turing reducible to Y — written X 6T Y — if X is Y -
computable. We write X <T Y if X 6T Y but Y ⇥T X. }

The Turing reduction forms an pre-order on the sets of integers, i.e., this
relation is reflexive and transitive. Indeed, if Y isX-computable and Z is Y -
computable, Z is X-computable. However, it is not a partial order on the
sets, because the Turing reduction is not anti-symmetric. For example, the
sets of even numbers and odd numbers are trivially mutually computable
since they are both computable, but they are not equal as sets of integers.

It is however possible to transform this pre-order into a partial order by
identifying all the mutually computable sets. This gives the notion of Tur-
ing degree which represents a more robust computational power than the
notion of set for the Turing reduction.

Definition 5.2. We write X ⌘T Y if X 6T Y and Y 6T X. We will
then say that X and Y are Turing-equivalent. We call Turing degrees the
equivalence classes of the relation ⌘T . The Turing degree of a set X is
the collection deg

T
(X) = {Y : Y ⌘T X}. }

By construction, if X 6T Y , then any element in the Turing degree of Y
computes any element in the Turing degree of X. The Turing reduction
therefore induces a partial order on the Turing degrees, which we will simply
note 6.

Notation

We denote by (D,6) the set of Turing degrees D partially ordered
by 6. In general, the letters a,b, c,d, e, . . . will be used to designate its
elements. We will sometimes write X 6T d for deg

T
(X) 6 d.

Exercise 5.3. Show that if X ⌘T Y and A ⌘T B, then we have X 6T A
i↵ Y 6T B. ⇧

Two sets are therefore Turing-equivalent if they have the same computa-
tional power, and the relation 6 makes it possible to compare no longer
sets, but degrees of computational power. In particular, the Turing degrees
are stable under finite variations, in the sense that if X 2 d and Y =⇤ X,



56 4. Turing degrees

then Y 2 d. Here, Y =⇤ X means that X and Y di↵er only over a finite
number of bits.

Exercise 5.4. Show that Turing degrees are stable under finite variation.
⇧

A large part of classical computability theory consists in understanding the
structure (D,6 ). Is the order 6 total over D? Is it well founded? If it is a
partial order, what is the maximum size of an anti-chain? We will see that
the structure of the Turing degrees is of great richness, but also of great
complexity. Let’s start with some immediate observations.

First of all, Turing degrees have a minimal element, namely the degree of
computable sets. We will note it 0. We then have the following proposition.

Proposition 5.5. Any Turing degree is countably infinite. ?

Proof. Let d be a Turing degree and let X 2 d. In particular,

d = deg
T
(X) = {Y : X ⌘T Y } ✓

�
{n : �X

e
(n)#= 1} : e 2 N

 
,

therefore d is countable. Moreover, d is stable under finite variations,
therefore is infinite. Thus, d is countably infinite.

The collection of subsets of N being uncountable, and each belonging to
a Turing degree, it follows from the previous proposition that there are
uncountably many Turing degrees. Suppose indeed the opposite. Then,
according to Exercise 2-3.11, the union of all Turing degrees would be a
countable set, as a countable union of countable sets is countable. As this
union is equal to 2N, there we obtain a contradiction. Note that Exercise 2
-3.11 uses the axiom of choice (which we will discuss in detail in Section 9
-4). The use of the axiom of choice is however not necessary: we will see
several e↵ective constructions of functions f : 2N ! 2N (see Exercise 8-5.4
or Exercise 8-5.3) such that f(X) and f(Y ) are in degrees Turing di↵erent
for all X 6= Y , which makes f an injection of 2N into Turing degrees and
in particular shows |2N| 6 |D|

1.

Definition 5.6. The e↵ective join of two sets A and B is the set A�B =
{2n : n 2 A} [ {2n+ 1 : n 2 B} (note that the intersection between the
two sets is disjoint). }

The e↵ective join of two sets is a way of encoding the information of each
set so as to be able to decode it computably. There are of course many

1The inequality |D| 6 |2N| seems obvious, but it uses the axiom of choice, in order
to uniformly select an element in each Turing degree. We will discuss this briefly in
Section 12-2.3.



5. Turing degrees 57

ways to encode two sets into one, the e↵ective join being the most direct
and e�cient, in the following sense.

Proposition 5.7. Let A and B be two sets. Then, deg
T
(A � B) is the

least upper bound of the degrees deg
T
(A) and deg

T
(B), i.e., any degree

above deg
T
(A) and deg

T
(B) is also above deg

T
(A � B). Thus, any pair

of Turing degrees c and d admits an upper bound which we will denote
by c [ d. ?

Proof. It is clear that the join A � B allows to compute A and B.
Thus, deg

T
(A�B) is an upper bound of deg

T
(A) and deg

T
(B). Let deg

T
(C)

be an upper bound of deg
T
(A) and deg

T
(B). In particular, C >T A

and C >T B. Let i and j be codes such that �i(C, n) = A(n) and �j(C, n) =
B(n) for all n.

The function f : N! {0, 1} defined by

f(n) =

⇢
�i(C, n/2) if n is even
�j(C, (n� 1)/2) otherwise

is C-computable, and we have f(n) = 1 i↵ n 2 A � B for any integer n.
Then, C >T A�B.

Notation
In the proof of the previous proposition, we made use of the predicate
“�i(C, n) #= A(n)” for all n. Sometimes we will use the shorter nota-
tion �i(C) = A.

Beware, the least upper bound c [ d of c and d has of course nothing to do
with the set-theoretic union of the degrees c and d. In general, the letters
in bold type a,b, c,d, . . . will be used to talk about degrees as abstract
objects within a partial order, the detail of the sets of integers constituting
each degree then not being relevant.

We will now be juggling between sets of integers and Turing degrees. Since
each Turing degree can be represented by a set of integers (one of its mem-
bers), an operation on the Turing degrees will normally be done via an
operation on one of its representatives, so that the expected result is inde-
pendent of the choice of such representative. The e↵ective join constitutes
a first example illustrating our point.

Exercise 5.8. Show that if we assume that X 6T Y and A 6T B, then

X �A 6T Y �B. ⇧

The previous exercise shows that the e↵ective join induces an operation
on Turing degrees. We will study in the next section a new operation on



58 4. Turing degrees

degrees playing an essential role in computability theory: the Turing jump.

6. Turing jump

The Turing jump is a fundamental operation in computability theory, and
is defined as the relativization of the halting problem.

Definition 6.1. Given a set X, we define

X 0 = {n : �X

n
(n)#}.

The Turing jump is the X 7! X 0 operator. }

For example, we can now define the halting problem relative to the halting
problem: the set of computer program codes that halt on their own input,
but using the halting problem as an oracle. We denote it ;00. It is not
very di�cult to show that the Turing jump induces an operation on Turing
degrees, and we leave the proof as an exercise.

Exercise 6.2. (?) Show that if X 6T Y , then X 0 6T Y 0. ⇧

We will see a reinforcement of the result of the previous exercise with
Exercise 5-5.7. We will therefore denote by d0 the Turing jump of a Turing
degree d. In particular, 00 is the Turing degree of the halting problem.

Proposition 6.3. We have X <T X 0 for all X 2 2N. Thus we have d < d0

for any Turing degree d. ?

Proof. Let us first show that X 0 computes X. Let f : N⇥N! {0, 1} be
the partial X-computable function defined by

f(e, n) =

⇢
1 if e 2 X
" otherwise.

By the SMN theorem relativized to X (see Theorem 3.3), there exists a
total computable function g : N! N such that for all integers e and n, we
have �X

g(e)(n) = f(e, n). Thus, for all e:

• if e 2 X, then �X

g(e) is the constant function 1, and therefore g(e) 2 X 0;

• if e /2 X, then �X

g(e) is the nowhere defined function, and g(e) /2 X 0.

In particular, X 0 can compute X: to know if n 2 X, it su�ces to look at
whether g(n) 2 X 0.

The proof that X 6>T X 0 is a relativization of the fact that ;0 is not
computable, which was previously demonstrated with Theorem 3.1.



7. Limit computability 59

There is therefore a strictly increasing hierarchy of Turing degrees:

0 < 00 < 000 < . . .

In the previous proof, note that the Turing functional used to compute X
from X 0 is the same for any oracle X. This is something that will be used
from time to time, for example in Chapter 26. We give the unconvinced
reader the opportunity to reflect on this in the following exercise.

Exercise 6.4. Show that there exists a functional �e such that:

• �e(X 0, n) = X(n) for all X 2 2N and for all n 2 N.

• �e(Y, n)# for all Y 2 2N and for all n 2 N. ⇧

Finally, note that the Turing jump is not an injective operator, as we will see
later through the low and high sets. We will occasionally use the following
notion of Turing-completeness.

Definition 6.5. A set A is said to be Turing-complete or (simply) com-
plete if A >T ;

0. A complete Turing degree is a degree d > 00. A set or
degree which is not complete is incomplete. }

7. Limit computability

We are now going to study certain properties of sets computable by the
halting problem. These sets admit in particular a very natural characteri-
zation in terms of approximations.

Definition 7.1. A function f : N ⇥ N ! N is stable if for all x 2 N,
limy f(x, y) exists, that is, for every x 2 N, there is some threshold t 2 N
such that for every y > t, f(x, y) = f(x, t). A set A is limit-computable
if there exists a computable stable function f : N⇥ N! {0, 1} such that
for all x

lim
y

f(x, y) = 1 i↵ x 2 A
}

We obtain our first characterization of the ;0-computable sets.

Lemma 7.2 (Shoenfield limit lemma). A set A ✓ N is ;0-computable
if, and only if, it is limit-computable. ?

Proof. We can refer to figures 7.4 and 7.3 to help us in understanding
the proof.

). Suppose that A 6T ;
0 via a functional �e. Let ;00 ✓ ;

0

1 ✓ . . . be a
c.e. approximation of ;0. Let f : N ⇥ N ! {0, 1} be the function which,



60 4. Turing degrees

for an input (x, s), checks if �e(;
0

s
, x)[s] #. If so, f(x, s) = �e(;

0

s
, x)[s].

Otherwise, f(x, s) is assigned an arbitrary value.

Let us show that f is stable and that its limit is A. Let x 2 N. By the use
property, as �e(;

0, x)#, this computation is done using the n first bits of the
oracle for some integer n. Let then s be large enough so that ;0

s
�n= ;0 �n

and so that �e(;
0, x)# halts before s stages of computation (any su�ciently

large s works). Then, for all t > s,

�e(;
0

t
, x)[t]#= �e(;

0, x),

in which case limt f(x, t) = �e(;
0, x) = A(x).

(. Let us now suppose that A is limit-computable, by a computable stable
function f : N⇥ N! {0, 1}. Then,

A = {x : 9y8z > y f(x, z) = 1} and A = {x : 9y8z > y f(x, z) = 0}.

We will define a ;0-computable procedure to determine if x 2 A or x 2 A.
Let u, v : N ⇥ N ! N be two total computable functions such that for
all x, y, n,

�u(x,y)(n) =

⇢
1 if 9z > y f(x, z) 6= 1
" otherwise,

�v(x,y)(n) =

⇢
1 if 9z > y f(x, z) 6= 0
" otherwise.

Specifically,

u(x, y) /2 ;0 i↵ 8z > y f(x, z) = 1 et v(x, y) /2 ;0 i↵ 8z > y f(x, z) = 0.

Thereby,

A = {x : 9y u(x, y) /2 ;0} and A = {x : 9y v(x, y) /2 ;0}.

Ǵiven an integer x, to know if x 2 A or x 2 A, it su�ces to look for the
smallest y such that u(x, y) /2 ;0 or v(x, y) /2 ;0. We will necessarily end
up finding such an integer y. If u(x, y) /2 ;0, then x 2 A. If v(x, y) /2 ;0,
then x /2 A. The procedure is ;0-computable, and we thus have A 6T ;

0.

Exercise 7.5. Show that if Y is X-c.e. and Z is Y -c.e., then Z is not
necessarily X-c.e. ⇧

Any ;0-computable set A is therefore associated with a stable function f
whose limit is A. This function is often presented in the form of a succession
of uniformly computable sets A0, A1, . . . defined by Ay = {x : f(x, y) = 1}
for all y.



7. Limit computability 61

0

1

0

0

1

0

0

. . .

Approximation of the bit x

u(x, 0) and v(x, 0)

u(x, 1) and v(x, 1)

u(x, 2) and v(x, 2)

u(x, 3) and v(x, 3)

u(x, 4) and v(x, 4)

u(x, 5) and v(x, 5)

u(x, 6) and v(x, 6)

Machine codes

Figure 7.3: Illustration of the reciprocal (() of the proof of Shoenfield’s
lemma : to approximate the bit x at stage y, one create the code u(x, y) of
the program which halts everywhere if a value di↵erent from 1 occurs for x
at a stage later than y, and the code v(x, y) of the program which halts
everywhere if a value di↵erent from 0 occurs for x at a stage later than y.

Uniform computability
We have introduced the concept of uniformly computable se-
quence A0, A1, . . . : each element An of the sequence is computable by
the same function, parameterized by an additional parameter n which
indicates that the n-th element of the sequence is computed.
Let us insist on the fact that a sequence of computable sets (Xi)i2N is
not necessarily uniformly computable: there does not necessarily exist
an algorithm allowing to compute Xi as a function of i. As a trivial
example, each Xi can simply be an infinite sequence of 0, except for the
bit in position i which is equal to the i-th bit of ;0. Each Xi is a finite set
and is therefore computable. On the other hand, an algorithm allowing
to compute uniformly Xi as a function of i would make it possible to
compute the halting set, and therefore cannot exist.

Definition 7.6. Let A 6T ;
0 be a set. A �0

2 approximation of A is a uni-
formly computable sequence of setsA0, A1, . . . such that for all x, limy Ay(x)
exists and is equal to A(x). }

The �0
2 approximations are not canonical. It is always possible for ex-

ample to “accelerate” a �0
2 approximation A0, A1, . . . by considering the

sequence Ag(0), Ag(1), . . . for a computable and strictly increasing func-

tion g : N! N.



62 4. Turing degrees

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0

0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0

t0

t1

t2

t3

t4

. . .

. . .

. . .

. . .

Approximation of ;0
Approximation of
the value of �e(;

0, x)

�e(;
0

t0
, x)[t0]#= 0

�e(;
0

t1
, x)[t1]"

�e(;
0

t2
, x)[t2]#= 0

�e(;
0

t3
, x)[t3]#= 1

�e(;
0

t4
, x)[t4]#= 0

. . .

Figure 7.4: Illustration of the forward direction ()) of the proof of Shoen-
fiel’s lemma. The first column represents successive approximations of ;0.
The underlined part represents the use of the computation �e(;

0, x)[tn]
when it halts. While we enumerate the ith element in the halting set at
stage ti, one launches the computation of �e with the current approxima-
tion of the halting set as oracle, for ti steps of computation. By the use
property, the process converges necessarily.

Remark

The name “�0
2 approximation” will be justified in Chapter 5, where we

will give a new characterization of ;0-computable sets as those definable
by a �0

2 predicate.

The �0
2 approximations make it possible to define two important functions,

namely the modulus and the computation function. These functions ex-
press the computational complexity of the set A in the form of growth rate:
any function increasing faster than the modulus of A or than its computa-
tion function allows to recompute A.

Definition 7.7. Let A0, A1, A2, . . . be a �0
2 approximation of a set A.

1. The modulus of the �0
2 approximation is the function µA : N !

N which to x associates the smallest integer n such that the se-



7. Limit computability 63

quence An�x, An+1�x, . . . is constant.

2. The computation function of the �0
2 approximation is the function

cA : N! N which to x associates the smallest integer n > x such
that An �x= A�x. }

Note that any c.e. approximation is a degenerate�0
2 approximation. In par-

ticular, every c.e. set is ;0-computable. Unlike c.e. approximations which,
when they cause an element to appear in A, never remove it again, a �0

2 ap-
proximation of A has the right to “change its mind” an arbitrarily large
(but finite) number of times, whether x belongs to A or not. In particular,
the computation function generally grows slower than the modulus, because
a set An can coincide with the set A on a long initial segment without hav-
ing reached its threshold of stability on this segment.. The computation
function, unlike modulus in general, is computable by the set A.

It is easy to verify that any function dominating the modulus of a �0
2 ap-

proximation of a set computes this set.

Exercise 7.8. Let A0, A1, . . . be a �0
2 approximation of a set A. Let µA

be its modulus. Show that any function dominating µA computes A. A
function f dominates a function g if f(n) > g(n) for all n 2 N. ⇧

However, it is not clear that this is also the case with the computation
function. This is however what the following proposition shows.

Proposition 7.9 (Martin and Miller [162]). LetA0, A1, . . . be a�0
2 ap-

proximation of a set A. Let cA be its computation function. Any function
dominating cA computes A. ?

Proof. Let f be a function dominating cA. Let M(x) be the largest y 6 x
such that for all x 6 t 6 f(x), At �y= Af(x) �y. The function M is total f -
computable. Moreover, M tends towards +1, because the approximation
of A being �0

2, it will stabilize on increasingly larger initial segments. Fi-
nally, as x 6 cA(x) 6 f(x), then if M(x) = y, Ax �y= AcA(x) �y= A �y.
Then, to decide if n 2 A, it su�ces to find an integer x such that M(x) > n,
then test if n 2 Ax. This procedure is f -computable.

Note that it is important to ask that cA(x) > x in the definition of the
computation function. The preceding proposition becomes false when this
precision is omitted.

Remark
The notions of modulus and computation function are not characteristic
of a ;0-computable set, but of a �0

2 approximation of a set.



64 4. Turing degrees

The same ;0-computable set has an infinity of �0
2 approximations, each

having its modulus and its computation function.

8. Finite extensions method

We are now going to present a relatively simple and yet very powerful
method, allowing to create sets satisfying “custom” computational proper-
ties. This is the finite extension method.

In computability theory, we call weakness property a property on sets, which
is downward-closed under the Turing reduction, i.e., if X has a weakness
property and if Y 6T X, then Y also has this weakness property. Con-
versely, a strength property is a property on sets, which upward-closed under
the Turing reduction, that is, if X has a strength property and if X 6T Y ,
then Y also has this strength property.

The finite extension method is particularly suitable when we ask ourselves
the question of the existence of sets simultaneously satisfying some strength
and some weakness properties. It is then necessary to create a made-to-
measure set, neither too strong nor too weak from a computational point
of view. We will illustrate this method by proving two propositions.

Proposition 8.1 (Kleene and Post, 1954). There are two setsA andB
which are incomparable by the Turing reduction. ?

Proof. We are going to build simultaneously two sets A and B, seen as
infinite binary sequences — remember the correspondence between the
two.

The set A must satisfy a strength property (A is not computable by B)
and a weakness property (A does not compute B). The set B must for its
part satisfy the dual properties of strength and weakness.

Requirements. Computational properties, whether of strength or weak-
ness, are in general schemes of properties, in the sense that they are declined
in an infinity of more elementary properties and easier to satisfy indepen-
dently. For example, the property “A 6>T B” corresponds to the collection
of properties “�A

e
6= B” for any functional code e, where “�A

e
6= B” means

that either �A

e
is a partial function, or �A

e
(x) #6= B(x) for an x 2 N.

These elementary properties are called requirements. The first step in a
construction using the finite extension method consists in identifying the
requirements. We therefore have two kinds (Re)e2N and (Se)e2N:

Re : 9x �A

e
(x)" _ 9x �A

e
(x)#6= B(x)

Se : 9x �B

e
(x)" _ 9x �B

e
(x)#6= A(x).



8. Finite extensions method 65

If all the R-requirements are satisfied, then A 6>T B, while if all the S-
requirements are satisfied, B 6>T A. Since we are only interested in func-
tionals computing elements of 2N, we will consider —as often in this kind
of case— that �e(X,n)" if ever �e(X,n)#/2 {0, 1}.

Satisfaction of a requirement. Suppose we want to satisfy only one
requirement, say Re. Two cases arise.

• Case 1: there exists a set X such that �X

e
(0)#= i for a given i 2 {0, 1}.

We can then fix A = X and B can be any set such that B(0) 6= i. We
will then have satisfied the requirement Re by ensuring that �A

e
(0)#6=

B(0).

• Case 2: whatever the set X, we have �X

e
(0) ". This case is even

simpler, A and B can be any set.

The previous argument fully specified the sets A and B in order to satisfy a
requirement Re, without leaving freedom for the other requirements to be
satisfied. We will therefore try to be more economical to leave room for the
satisfaction of other requirements. For that, we will make sure to specify
only a finite initial segment of A and B to satisfy a given requirement.

Construction. The sets A and B will be built by finite approximations, in
the form of two sequences of finite binary strings, representing increasingly
long prefixes of A and B.

�0 � �1 � . . . and ⌧0 � ⌧1 � . . .

We do not necessarily ask that �n � �n+1: the sequence of strings may stag-
nate for a certain time. On the other hand, for all n, we ask that for m > n
su�ciently large we have �n � �m. In this way, the strings �0 � �1 � . . .
gradually converge towards a single infinite sequence A and the strings ⌧0 �
⌧1 � . . . gradually converge towards a single infinite sequence B. Formally,
we define A and B via new notations: given a binary string �, we will
denote by [�] the set of infinite binary sequences having � as a prefix. We
will therefore have A 2 [�n] and B 2 [⌧n] for all n 2 N. By making sure
that there are arbitrarily long strings, we make

T
n
[�n] and

T
n
[⌧n] each

contain exactly one element: A and B respectively.

The finite approximations of A and B will be defined in stages, so as to
successively satisfy each requirement. As at a given step, only finite prefixes
of A and B are known, it will therefore be necessary to satisfy a requirement
whatever comes after these prefixes in the rest of the construction. A pair
of strings �n and ⌧n force a requirement Re (or a requirement Se) if the
requirement property is satisfied for all A ⌫ �n and B ⌫ ⌧n. We must
therefore ensure that the requirement is satisfied for all the elements of [�n]



66 4. Turing degrees

and [⌧n]. Note in passing that if �n and ⌧n force a requirement, then for
all � ⌫ �n and ⌧ ⌫ ⌧n we have [�] ✓ [�n] and [⌧ ] ✓ [⌧n], and therefore �
and ⌧ still force the requirement.

The di↵erent requirements are going to be intertwined so that each receives
attention at a stage of the construction. During an even step n = 2e, we will
define �n+1 and ⌧n+1 so as to forceRe, while during an odd step, n = 2e+1,
we will force Se. The requirements will therefore be satisfied in the order

R0,S0,R1,S1,R2,S2, . . .

Satisfaction of a requirement. We are now going to satisfy the require-
ment Re again, this time specifying only a finite prefix of the oracles A
and B. The case of Se requirements is symmetrical. Suppose that initial
segments �n and ⌧n have already been specified for A and B (we start
the construction with �0 = ⌧0 = ✏ where ✏ is the empty word). In other
words, the final infinite binary sequences A and B must respect �n � A
and ⌧n � B. Let x = |⌧n|. In particular, x is the first position where B
is not yet specified. All the values of B in the positions preceding x are
already set by ⌧n. The following two cases arise.

• Case 1: there exists a set X ⌫ �n, such that �X

e
(x)#= i for a given i 2

{0, 1}. In this case, by the use property, this computation calls upon
a finite number of bits of the oracle, and there thus exists an initial
segment �n+1 � X such that ��n+1

e (x) #= i, or in other words such
that �Y

e
(x) #= i for any set Y ⌫ �n+1. We can choose the initial

segment �n+1 so that it is at least as long as �n, which ensures �n+1 ⌫

�n. Knowing that the set A will have �n+1 for initial segment, we
ensured that �A

e
(x) #= i. Let ⌧n+1 be the string obtained from ⌧n by

adding the bit 1� i to it. In other words, |⌧n+1| = |⌧n|+ 1, ⌧n+1 ⌫ ⌧n
and ⌧n+1(x) = 1 � i. We then ensured that for all B ⌫ ⌧n+1, B(x) =
1� i. Thus, the strings �n+1 and ⌧n+1 extend �n and ⌧n respectively,
and force the requirement Re by making sure that �A

e
(x)#6= B(x) for

all A ⌫ �n and B ⌫ ⌧n.

• Case 2: for any setX ⌫ �n, we have �X

e
(x)". In this case, �n and ⌧n al-

ready force the requirement Re by making sure �A

e
(x)" for a certain x.

It is therefore su�cient to take �n+1 = �n and ⌧n+1 = ⌧n.

We will ensure that the lengths of the elements of the sequences (�n)n2N

and (⌧n)n2N are increasingly large, by adding an arbitrary bit at the end
of each string at the end of each step, before moving on to next step. As
explained previously, forcing a requirement is closed under strings exten-
sion, so this will not alter the validity of the construction. The proof of
Proposition 8.1 is complete.



8. Finite extensions method 67

A new notation has been introduced in the previous proof; we oficialize its
use below.

Notation

Given � 2 2<N, we denote by [�] the set of X 2 2N such that � � X.

We will give another illustration of the finite extension method by proving
a stronger proposition, implying Proposition 8.1. This time, we fix an
arbitrary non-computable set A. We then construct a set B that A does
not compute, and which does not compute A. This is a priori more di�cult
construction, because only one of the two sets is controlled. Note also that
it will be necessary for this proof to use the fact that A is non-computable:
indeed, if it were computable, it would be in particular computable from
any set B.

Proposition 8.2. For any non-computable set A, there exists a set B such
that B 66T A and A 66T B. ?

Proof. Unlike Proposition 8.1, the set A is already fixed. We are going to
build only the set B by the finite approximation method. The set B must
still satisfy a strength property (B 66T A) and a weakness property (A 66T

B). The requirements are therefore identical to those of Proposition 8.1,
namely

Re : 9x�A

e
(x)" _ 9x�A

e
(x)#6= B(x)

Se : 9x�B

e
(x)" _ 9x�B

e
(x)#6= A(x).

However, the sets A and B no longer playing a symmetrical role, the re-
quirements Re and Se will each be satisfied in their own way.

Construction. The set B will be built by successive approximations

⌧0 � ⌧1 � ⌧2 � . . .

to define B as the only element of the set
T

n
[⌧n]. A string ⌧n forces

a requirement Re (or a requirement Se) if the property is satisfied for
all X 2 [⌧n]. At each stage of the construction, a requirement will be
forced, by interlacing them as before:

R0,S0,R1,S1,R2,S2, . . .

Satisfaction of a requirement Re. At step n, assume that the string ⌧n
is defined. We want to find an extension ⌧n+1 ⌫ ⌧n forcing the require-
ment Re. The satisfaction of this type of requirement is very similar to
that of Proposition 8.1. Let x = |⌧n|. Two cases arise.



68 4. Turing degrees

• Case 1: �A

e
(x) #= i for an i 2 {0, 1}. It is then enough to define ⌧n+1

as the unique string of length |⌧n|+ 1 extending ⌧n such that

⌧n+1(x) = 1� i.

As B 2 [⌧n+1], B(x) = ⌧n+1(x) = 1� i, so �A

e
(x)#6= B(x).

• Case 2: �A

e
(x)". In this case, the requirement Re is trivially satisfied,

because �A

e
is a partial function. It is therefore su�cient to take ⌧n+1 =

⌧n.

Note that no assumptions were made on the set A to satisfy the require-
ments Re. The assumption according to which A is not computable will
be exploited to satisfy the requirements Se.

Satisfaction of a requirement Se. The di�culty in satisfying a require-
ment such as Se comes from the fact that we have no control over the
set A, which is fully specified. More precisely, during the satisfaction of a
requirement Re, we fix an input x which is not yet specified for B, so as
to choose its value in case 1 to make it di↵erent from the value of �A

e
(x).

This is not possible in the case of the Se requirement, all the values of A
being fixed. It will therefore be necessary to exploit the fact that the set A
is not computable. Note on the other hand that the satisfaction of the
requirements Re left a certain freedom, in particular in the choice of x.
Indeed, only a finite number of entries is specified at a given step for B,
and therefore almost all entries can be chosen for x. We will exploit this
freedom of choice to satisfy the requirements Se. Three cases arise.

• Case 1: there is an input x and a set X ⌫ ⌧n such that

�X

e
(x)#6= A(x).

By the use property, then there exists a finite string ⌧n+1 ⌫ ⌧n such
that �X

e
(x) #6= A(x) for all X 2 [⌧n]. The string ⌧n+1 therefore forces

the requirement Se.

• Case 2: there is an input x such that for all setsX ⌫ ⌧n, we have �X

e
(x)".

In this case, the string ⌧n already forces the requirement Se ensuring
that �B

e
(x)".

• Case 3: neither of the two previous cases occurs. We will then show
that it is possible to compute the set A, and therefore to deduce a con-
tradiction from it.
Here is the procedure to compute the value of A(x): find a finite
string ⌧ ⌫ ⌧n such that �⌧

e
(x) # and return the result of this com-

putation. We claim the following two facts:

(1) there is such a string, so the search will end,



9. Low degrees 69

(2) whatever ⌧ such that �⌧

e
(x)#, then �⌧

e
(x)#= A(x).

To show (1), notice that the negation of case 2 means that for any x
(and in particular for this x considered), there exists a set X ⌫ ⌧n such
that �X

e
(x) #. By the use property, there then exists an initial seg-

ment ⌧ ⌫ ⌧n of X such that �⌧

e
(x)#.

Let us show (2). If �⌧

e
(x) #6= A(x), then case 1 would be true tak-

ing any X ⌫ ⌧ . It follows that �⌧

e
(x) # implies �⌧

e
(x) = A(x). We

have therefore described a computable procedure to determine the value
of A(x) whatever x, contradicting the hypothesis according to which A
is not computable.

This concludes the proof of Proposition 8.2.

Before concluding this section dedicated to the finite extension method,
let us mention that in general, this method is not e↵ective, in the sense
that no computability constraint is imposed on the finite strings under
construction. It is however possible to do a fine analysis of the argument
to determine the computational power necessary to find a ⌧n+1, given ⌧n.
We then obtain upper bounds on the complexity of the constructed set.

9. Low degrees

As we have seen, the Turing jump is invariant by Turing degree. Thus, for
any computable setX,X 0

⌘T ;
0. It is natural to wonder if only computable

sets have a Turing jump equivalent to ;0, and more generally if the Turing
jump is an injective function on Turing degrees. The following proposition
shows that this is not the case.

Proposition 9.1. There exists a non-computable set A such that

A0
⌘T ;

0. ?

Proof. The set A will be built using an e↵ective version of the finite
extension method (see Section 8), making sure that the entire construction
is computable in ;0.

Requirements. The set A must satisfy a strength property (A non-
computable) and a weakness property (A0 6T ;

0).

The strength property comes in an infinity of requirements (Re)e2N:

Re : 9x�e(x)" _ 9x�e(x)#6= A(x).

The weakness property is of a new type. To satisfy it, we will make sure
to “control” the Turing jump of A as the construction progresses, while



70 4. Turing degrees

making sure that the whole construction itself is computable in ;0. With
the help of this fact, we will have a ;0-computable function f for which we
will have to satisfy an infinity of requirements (Se)e2N:

Se : �A

e
(e)# ! f(e) = 1 and �A

e
(e)" ! f(e) = 0.

Informally, the requirement Se is satisfied if, at a finite moment of the con-
struction, we know whether �A

e
(e)# or �A

e
(e)", whatever the continuation

of the construction.

Construction. The set A will be built by successive approximations

�0 � �1 � �2 � . . .

to define A as the only element of
T

n
[�n]. A string �n forces a require-

ment Re or Se if the property is satisfied for all B 2 [�n]. At each stage
of the construction, a requirement will be forced, by interlacing them as
before:

R0,S0,R1,S1,R2,S2, . . .

We must also make sure that the construction is computable in ;0. Thus, to
know the value of A0(e), it will su�ce to execute using ;0 the construction
up to step 2e satisfying Se, and return the result. This ;0-computable
procedure ensures that A0 6T ;

0. We will therefore show how to satisfy
each type of requirement independently, while analyzing the computational
complexity of each step to ensure that �n+1 can be obtained from �n using
the oracle ;0.

Satisfaction of a requirement Re. Suppose �n is already defined. We
want to find �n+1 ⌫ �n forcing the requirement Re. Let x = |�n|. In other
words, x is the first value of A that is not yet specified. Two cases arise.

• Case 1: �e(x) " in which case Re is trivially satisfied, and we can
define �n+1 = �n

• Case 2: �e(x) #, in which case the string �n+1 obtained from �n by
adding the bit 1� �e(x) force Re.

Depending on the case, we will therefore define a di↵erent �n+1 extension.
It must be ensured that this extension can be obtained computably using
the oracle ;0. The distinction between the two cases is not computable in
itself, because it asks to decide if �e(x) halts or not. However, we can
use ;0 to answer this question as follows: let �i be the partial computable
function defined for all n by �i(n) = �e(x). The code i can be computably
constructed, because it is a simple machine manipulation. It follows that
we are in the first case i↵ i /2 ;0. In the first case, �n+1 = �n is trivially



10. High degrees 71

computable, while in the second case, it su�ces to run �e(x) to retrieve
the returned value, and thus obtain �n+1. We can therefore find an exten-
sion �n+1 forcing the requirement Re using the oracle ;0.

Satisfaction of a requirement Se. Suppose �n is already defined. We
want to find �n+1 ⌫ �n such that the behavior of �A

e
(e) is already defined

by �n+1, in other words �X

e
(e)# for all X 2 [�n+1] or �X

e
(e)" for all X 2

[�n+1]. Two cases still arise.

• Case 1: there is a string ⌧ ⌫ �n such that �⌧

e
(e) #. In this case,

taking �n+1 = ⌧ , we ensure that �A

e
(e)#, because A 2 [�n+1].

• Case 2: for any string ⌧ ⌫ �n, �⌧

e
(e)". In this case, by the use property,

whatever the oracle A 2 [�n], �A

e
(e) ". By defining �n+1 = �n, we

therefore force �A

e
(e)".

Then, in each case, we have forced the behavior of �A

e
(e) with a finite prefix

of the oracle.

Here again, we have to find �n+1 from �n computably using the ora-
cle ;0. As for the requirement Re, we define a partial computable func-
tion �i which, for each of its inputs, searches for a string ⌧ ⌫ �n such
that �⌧

e
(e)[|⌧ |] #, and halts if it finds any. Thus, i 2 ;0 if, and only if, we

are in the first case. Once the case has been determined, the string �n+1

can be found computably. This concludes the proof of Proposition 9.1.

Among the first notions of weakness introduced and studied in Computabil-
ity Theory by Cooper and Soare independently, is the hierarchy of lown sets,
of which we give here the first level.

Definition 9.2. A set A ✓ N is low if A0 6T ;
0. }

Informally, a set is low if it is indistinguishable from a computable set from
the point of view of the Turing jump. We have seen that if X 6T Y ,
then X 0 6T Y 0.
Thus, as ; 6T A for any set A, ;0 6T A0. It follows that a set is low
i↵ A0

⌘T ;
0. We will see further examples of non-computable low sets, in

particular computably enumerable sets (see Chapter 13).

10. High degrees

If we consider a set A 6T ;
0, what are the extreme powers that can be

taken by its Turing jump A0?



72 4. Turing degrees

Recall that if X 6T Y , then X 0 6T Y 0. In particular, A0 >T ;
0. On the

other hand, A0 6T ;
00 because A 6T ;

0. So we have

;
0 6T A0 6T ;

00 if A 6T ;
0.

Note that in the case where A 66T ;
0, the Turing jump of A can be arbi-

trarily complex.

The sets whose Turing jump is equal to the minimum bound, namely ;0,
are the low sets. We have seen that there are non-computable low sets.
We are now going to look at the sets whose Turing jump computes the
maximum bound ;00.

Definition 10.1. A set A ✓ N is high if ;00 6T A0. }

Remark
The notion of high set has historically been defined only for sets A 6T

;
0. It has since been extended to all sets, but it’s important to keep
this historical di↵erence in mind when reading the founding articles on
computability theory.

Now let’s think about the high sets. Unlike the low, their Turing jump has
more computational power than expected: it allows the double jump to be
computed. The halting problem itself is obviously a trivial example of a
high set. As for low sets, the notion of high set is useful for non-trivial
examples: high sets which do not compute ;0. It is in fact possible to show
that for any non-computable set C there exists a high set which does not
compute C.

In the following proof, we use for the first time oracles which are not sets
of integers, but functions f : N ! N. Such a function can be represented
by the infinite binary sequence Gf such that Gf (hn,mi) = 1 i↵ f(n) = m.
It is clear that Gf allows to compute f , and that any set Y allowing to
compute f can also compute Gf : the set Gf is a minimum representation of
the function f in Turing degrees. Other equivalent representations in terms
of Turing degree are possible, for example with Gf = 1f(0)01f(1)01f(2)0 . . .
(We start with the f(0) first bits at 1, followed by a 0, then we continue
with the next f(1) bits to 1, followed by a 0, etc.).

Proposition 10.2. For any non-computable set C, there exists a high
set A such that A 6>T C. ?

Proof. The proof is quite similar to that of Proposition 8.2 with the finite
extension method.

Requirements. The set A must satisfy a strength property (A0 >T ;
00)

and a weakness property (C 66T A). Requirements for the weakness prop-



10. High degrees 73

erty are standard, namely

Se : 9x�A

e
(x)" _ 9x�A

e
(x)#6= C(x).

The case of the strength property is di↵erent. First of all, it is not a
question of controlling what the set A computes, but of controlling what
its Turing jump computes. Then, this strength property is not expressed in
a negative form (not to be computed by another set) but in a positive form
(to compute a complicated object). Negative formulations are often proven
by diagonalization, while positive formulations are more constructive. We
are therefore not going to express the strength property in the form of
requirements, but to impose it structurally in the nature of the object that
we construct.

In previous uses of the finite extension method, we constructed a set by
creating an infinite sequence of binary strings forming finite approximations
of the set.

This time, we are going to build a stable function f : N ⇥ N ! {0, 1}
whose limit is ;00. As explained in the paragraph preceding the proof, let
us recall that this can be reduced to the construction of an element of 2N

by considering the set Gf defined by hn,mi 2 Gf i↵ f(n) = m. By the
relativization of the Shoenfield limit lemma to f (see Lemma 7.2), a set B is
limit-f -computable i↵ B 6T f 0. In particular, for B = ;00, if ;00 is limit-f -
computable, then ;00 6T f 0, in other words f is high. The set A is therefore
any set in the Turing degree of f .

Construction. The function f will be built from successive finite approx-
imations which are more and more precise. These approximations, instead
of being binary strings, will be pairs (g,m), where

• g ✓ N ⇥ N ! {0, 1} is a partial function with two parameters whose
domain is finite, representing a piece of the function f that we are
building.

• m is an integer meaning that henceforth, when we extend the domain
of g with a new input (x, y), if x < m then g(x, y) = ;00(x).

In other words, the limit of the m first “columns” of the function f has
already been reached and has the correct value. We will call these couples
conditions, because they condition part of the behavior of the function f .

In the same way that the su�x relation � � ⌧ for binary strings means
that ⌧ is a more precise approximation of the sequence that we construct,
we will define an extension relation on the conditions (g,m) � (h, n) to
mean that the condition (h, n) is more precise, or more restrictive, than
the condition (g,m).



74 4. Turing degrees

m = 3
y f(0, y) f(1, y) f(2, y) f(3, y) f(4, y) f(5, y) f(6, y)
0 0 1 0 0 0 0 0
1 0 0 0 0 1 0 0
2 1 1 1 0 1 1 0
3 0 0 1 0 0 1 1
4 1 0 0 1 1 0 1
5 1 0 0 0 0 1 1
6 1 0 0 0 1 1 1
7 1 0 0 1 0 0 0

1 0 0 0 1 1 0
= = = = = = =
;
00(0) ;

00(1) ;
00(2) ;

00(3) ;
00(4) ;

00(5) ;
00(6)

Figure 10.3: The dark grey part represents a condition with m = 3. The
light grey part represents an extension of this condition: each ith column
for i < m is fixed for every extension to a value which has to correspond
to the ith bit of ;00.

Given a partial function h ✓ N⇥N! {0, 1}, we denote by domh its domain
of definition. We therefore say that the condition (h, n) extends (g,m)
(denoted (h, n) ⌫ (g,m)) if n > m and if, in addition,

(P1) g ✓ h, i.e. dom g ✓ domh and for all (x, y) 2 dom g,

g(x, y) = h(x, y) ;

(P2) for all (x, y) 2 domh \ dom g, if x < m, then h(x, y) = ;00(x).

The property (P1) means that the finite functions must be compatible, and
more precisely that the function h must extend the function g, while the
property (P2) formalizes the idea according to which the second param-
eter of a condition fixes the columns of the function by stabilizing them.
Figure 10.3 illustrates what has just been explained.

Let’s stop for a moment to familiarize ourselves with this new mathematical
object and learn how to manipulate it. First, for any condition (g,m) and
any n, (g, n) is also a condition. If in addition n > m, then (g, n) is
an extension. The integer m does not impose any constraint in itself on
the finite function g to form a condition (g,m). On the other hand, m
imposes restrictions on the extensions of (g,m). More precisely, if n > m,
then the set of extensions of (g, n) is a subset of the extensions of (g,m).
Finally, (;, 0) is a valid condition, where ; is the function defined nowhere.



10. High degrees 75

From the point of view of computability theory, the set of conditions is a
computable set. On the other hand, the extension relation between two con-
ditions cannot be computed because of the property (P2) which involves ;00.
However, if we fix m, then the extension relation between conditions hav-
ing m for second component is computable, because this only involves a
finite segment ;00 �m of the set ;00. It su�ces to “hardcode” this initial
segment in the program. This observation will be exploited to satisfy the
requirements Se.

In the same way that we denote by [�] the set of infinite binary sequences
having for initial segment �, we will denote by [g,m] the set of total func-
tions f : N⇥N! {0, 1} such that g ✓ f and such that for all (x, y) /2 dom g

with x < m we have f(x, y) = ;00(x). Thus, [g,m] is the collection of the
set of candidate functions that can be obtained by completing the par-
tial approximation (g,m). Note that [g,m] does not only contain stable
functions.

We are therefore going to build f by successive approximations in the form
of conditions

(g0,m0) � (g1,m1) � (g2,m2) � . . .

to define f =
S

t
gt. In other words, dom f =

S
t
dom gt, and for any

pair (x, y) 2 dom f , f(x, y) = gt(x, y) for a t such that (x, y) 2 dom gt.
The function f is well defined thanks to the compatibility property (P1).
If we make sure that the integers mt become arbitrarily large, it is easy to
verify by the property (P2) that the resulting function f is stable, and has

a limit of ;00. Note in particular that f 2
T

t
[gt,mt].

A condition (g,m) forces a requirement Se if the property is satisfied for
all f 2 [g,m]. Here, we have replaced the occurrences of A by f in the
requirement Se. At each stage of construction, a requirement is going to
be forced.

Satisfaction of a requirement Se. The argument is similar to that of
Proposition 8.2, but handling conditions and not binary strings. Let (gt,mt)
be a condition. The following three cases arise.

• Case 1: there is an input x and a function f in [gt,mt] such that

�f

e
(x)#6= C(x).

In this case, by the use property, there exists an extension (gt+1,mt)
of (gt,mt) such that �f

e
(x) #6= C(x) for all f in [gt+1,mt]. Note

that mt+1 = mt. The condition (gt+1,mt) therefore forces the re-
quirement Se.



76 4. Turing degrees

• Case 2: there is an input x such that for all the functions f in [gt,mt],
we have �f

e
(x)". In this case, the condition (gt,mt) already forces the

requirement Se ensuring that �f

e
(x)".

• Case 3: neither of the two previous cases occurs. We will then show
that it is possible to compute the set C, and therefore to deduce a
contradiction from it. Here is the procedure to compute the value
of C(x): look for a condition (h,mt) extending (gt,mt) with the same
second component mt, such that �h

e
(x) #. We claim the following two

facts:

(1) there is such an extension, and therefore the search will end,
(2) whatever (h,mt) ⌫ (gt,mt), �h

e
(x)#! �h

e
(x) = C(x).

To show (1), notice that the negation of Case 2 means that for any x
(and in particular for this x considered), there exists a function f 2
[gt,mt] such that �f

e
(x) #. By the use property, there then exists a

condition (h,mt) ⌫ (gt,mt) such that �h

e
(x)#.

Let us show (2). If �h

e
(x) #6= C(x), then Case 1 would be true taking

any f 2 [h,mt] ✓ [gt,mt]. It follows that �h

e
(x)#= C(x). Finally, no-

tice that we only considered conditions with the same mt. As explained
above, for mt fixed, the extension relation is computable.

We have therefore described a computable procedure to determine the
value of C(x) whatever x, contradicting the hypothesis according to
which C is not computable.

It is then enough to satisfy each requirement Se by gradually extending our
conditions, while making “artificially” their second components increase
towards +1 in order to ensure that the final solution is indeed a stable
function whose limit is ;00. This concludes the proof of Proposition 10.2.

Corollary 10.4
There is a set A both high and Turing-incomplete. In other words, A0 >T

;
00 and A 6>T ;

0.

Proof. Immediate by Proposition 10.2, taking C = ;0.

Remark
The name “condition” is a generic name borrowed from the theory of
forcing, and which will be called upon to designate very di↵erent mathe-
matical objects throughout this work, although all corresponding to the
idea of an approximation of an object that we construct. This notion
will be developed in Chapter 11.



10. High degrees 77

Note that the argument of the previous proof does not depend specifically
on ;00 and we could have constructed, for any B, a set A such that A0 >T B
and A 6>T C. We will see in Chapter 13 that there are non-computable
low c.e. sets. Sacks [195] has also shown the existence of high c.e. sets of
incomplete degrees.

There is a big di↵erence between the low and high sets: the former are all
computable in ;0, and they are therefore in countable quantity. The second,
on the other hand, can be arbitrarily complex, and it is easily shown that
they are in uncountable quantity. However, we will see with Corollary 19
-3.9 and Proposition 10-3.38 that there are “few” high sets, from the point
of view of measure theory and the theory of categories of Baire.

Let’s end this chapter with a few exercises.

Exercise 10.5. (?) Adapt the proof of Proposition 10.2 to show that
for any set B and any non-computable set C, there exists a set A such
that A0 >T B and A 6>T C. ⇧

Exercise 10.6. (??) Adapt the proof of Proposition 10.2 to show that
there exists an incomplete and ;0-computable high set. ⇧

Exercise 10.7. (??) Show by the finite extension method that there exists
a sequence of sets (An)n2N pairwise incomparable for the Turing reduction,
i.e., such that

An ⇥T Am et Am ⇥T An,

for all n 6= m 2 N. ⇧





Chapter 5
Arithmetic hierarchy

We introduce a complexity hierarchy on the sets of integers. The com-
putably enumerable sets are called ⌃0

1 and their complements are called ⇧0
1.

The e↵ective countable intersections of ⌃0
1 sets are said to be ⇧0

2 and the
e↵ective countable union of ⇧0

1 sets are said to be ⌃0
2, and so on.

We call this construction arithmetic hierarchy, because the sets it contains
are exactly those which are definable by a first-order formula in the lan-
guage of Peano arithmetic. We will talk about this equivalence again in
Section 9-3. There is a direct correspondence between the definition of a
set by meetings/intersections, and the fact of being able to define it by
a formula comprising quantifiers 9/8. Thus, a union corresponds to an
existential quantifier and an intersection to a universal quantifier.

Example 1. The set of codes e for the total computable functions can
be written

{e 2 N : 8n 9t �e(n)[t]#} =
\

n

[

t

{e 2 N : �e(n)[t]#}.

It is a ⇧0
2 set, that is to say a countable intersection of ⌃0

1 sets, each of
them being moreover a countable union of computable sets.

1. Elementary properties

Let’s start with a formal definition of the arithmetic hierarchy.

– 79 –



80 5. Arithmetic hierarchy

Definition 1.1. Let m,n > 1.

1. A set A ✓ Nm is said to be ⌃0
n
if there exists a computable set R

included in Nn+m such that

A = {(y1, . . . , ym) :

n quantifiersz }| {
9x18x2 . . . Qxn (x1, . . . , xn, y1, . . . , ym) 2 R},

where Q is 9 if n is odd, and 8 if n is even.

2. A set A ✓ Nm is said to be ⇧0
n
if there exists a computable set R

included in Nn+m such that

A = {(y1, . . . , ym) :

n quantifiersz }| {
8x19x2 . . . Qxn (x1, . . . , xn, y1, . . . , ym) 2 R},

where Q is 8 if n is odd, and 9 if n is even. }

Beware, in the preceding definition, it is the alternation between the quan-
tifiers 9 and 8 which counts.

Then, for example, the set

{y : 9x18x2 R(y, x1, x2)}

for R computable is a ⌃0
2 set, but the set

{y : 9x19x29x3 R(y, x1, x2, x3)}

is, despite its three quantifiers, a ⌃0
1 set: one can easily eliminate repetitions

of quantifiers of the same type. Consider for example a formula of the form

9x1 9x2 8y1 8y2 R(x1, x2, y1, y2).

The latter can simply be rewritten as 9x 8y R0(x, y) where R0 will be a mod-
ified version of R, which will consider x and y respectively as pairs hx1, x2i

and hy1, y2i. The predicate R0 will then use the projections ⇡1 and ⇡2 re-
alizing the inverse functions of the computable coupling bijection h , i :
N2
! N, in order to recover x1, x2, y1, y2. The reader can go back to Exer-

cise 3-2.3 to convince himself that the bijection h i and that its two inverse
functions are computable. An abuse of notation will consist for example of
writing 9hx1, x2i 8hy1, y2i R(x1, x2, y1, y2), meaning that the predicate R
takes care of recovering x1, x2 from hx1, x2i, and the same for y1, y2.

Predicates

We will sometimes speak of ⌃0
n
predicates to denote a formula of the

form 9x1 8x2 . . . Qxn R(x1, x2, . . . , xn), where R is a computable pred-
icate.



1. Elementary properties 81

Note that by using the fact that the complement of a computable set is
computable, we can easily see that the ⌃0

n
sets are the complements of the

⇧0
n
sets. It is also quite possible for a set to be both ⌃0

n
and ⇧0

n
. For this,

the following notion is introduced.

Definition 1.2. Let m > 1. A set A ✓ Nm is said to be �0
n
for n > 0 if

it is both ⌃0
n
and ⇧0

n
. }

The arithmetic hierarchy establishes a first level of distinction between
arithmetically definable sets. Intuitively, a ⌃0

n+1 set is strictly more com-
plex than a ⌃0

n
or even ⇧0

n
set. Indeed, each of the last two can be written

in a ⌃0
n+1 form by simply adding unused quantifiers.

Example 1.3. The ⌃0
2 set given by {y : 9x18x2 R(y, x1, x2)} can also

be written in a ⇧0
3 form: {y : 8z9x18x2 R(y, x1, x2)} or in a ⌃0

3 form: {y :
9x18x29z R(y, x1, x2)}.

However, it is not always possible to use fewer quantifiers. We will show
with Corollary 5.6 that for all n > 0, there exist �0

n+1 sets which cannot
be described in a ⌃0

n
or ⇧0

n
way: the arithmetic hierarchy is strict.

⌃0
1 ⌃0

2 ⌃0
3

⇧0
1 ⇧0

2 ⇧0
3

�0
1 �0

2 �0
3

. . .

Figure 1.4: Representation of the arithmetic hierarchy. The upper left
triangle represent ⌃0

1 sets. The lower left hatched triangle represents ⇧0
1

sets. The intersectuion between the two — the double hatched triangle—
represents �0

1 sets. The remainder of the diagram follows similarly.

Before continuing, let us give some examples of sets of the arithmetic hier-
archy.

Example 1.5.

• Any computable set A ✓ N is �0
1 (we will see a proof of this with



82 5. Arithmetic hierarchy

Proposition 3.4). It su�ces to add an unnecessary existential or
universal quantification to the computable predicate A to be able to
express it respectively as a ⌃0

1 or ⇧0
1 set.

• Any computably enumerable set A ✓ N is ⌃0
1 (we will see this pre-

cisely with Proposition 3.3). Indeed, such A is described as {x :
9t �e(x)[t]#} for some e.

• We have seen with Example 1 that the set of total function codes
is ⇧0

2. Its complement, namely the set of partial function codes, is
therefore ⌃0

2: {e : 9n 8t �e(n)[t]"}

• The set of function codes which are total, except for a finite number
of elements, is ⌃0

3:

{e : 9n 8m 9t such that m < n or �e(m)[t]#}.

We will see a little later that the previous examples are optimal. For
example, the set of function codes which are total except for a finite number
of elements cannot be expressed in a ⇧0

3 way: it is a strict ⌃0
3 set.

We now show a series of three propositions on the stability of ⌃0
m

and ⇧0
m

sets under di↵erent operations. For example, the stability under finite union
means that a finite union of ⌃0

m
sets is still a ⌃0

m
set. The propositions will

be proved only by considering subsets of N, but generalize without problem
to subsets of Nn for arbitrary n.

Proposition 1.6. The ⌃0
m

(resp. ⇧0
m
) sets are stable under finite unions

and finite intersections. ?

Proof. Let m > 0. Be

A0 = {n : 9x1 8x2 . . . Qxm R0(n, x1, . . . , xm)}
A1 = {n : 9y1 8y2 . . . Qym R1(n, y1, . . . , ym)}

two ⌃0
m

sets, where Q is the symbol 9 if m is odd and 8 if m is even. We
leave it to the reader to show, by inclusion in one direction and then in the
other, that:

A0 \ A1 =
n
n :
9hx1, y1i 8hx2, y2i . . . Qhxm, ymi
such that R0(n, x1, . . . , xm) ^R1(n, y1, . . . , ym)

o
.

The ⌃0
m

sets are therefore stable under finite intersections. We also have
in the same way:

A0 [ A1 =
n
n :
9hx1, y1i 8hx2, y2i . . . Qhxm, ymi
such that R0(n, x1, . . . , xm) _R1(n, y1, . . . , ym)

o
.

The ⌃0
m

sets are therefore stable under finite union. By passing to the com-



1. Elementary properties 83

plement, the ⇧0
m

sets are also stable under finite unions and intersections.

Let us remember the concept of uniformly computable sequence, introduced
on the occasion of the developments which follow Lemma 4-7.2. The con-
cept of uniformity passes to the arithmetic hierarchy as follows: in the next
proposition, a countable union (Ai)i2N of sets uniformly ⌃0

m
is therefore a

union such that each set Ai admits the same ⌃0
m

description, but with i as
a parameter. Formally, if

Ai = {n : 9x1 8x2 . . . Qxm Ri(n, x1, . . . , xm)},

there must be a computable process allowing from i to return a code for
the predicate Ri. Equivalently, we can consider that Ai is described as

Ai = {n : 9x1 8x2 . . . Qxm R(i, n, x1, . . . , xm)},

where R is a computable predicate taking i as an additional parameter.

Proposition 1.7. The ⌃0
m

(resp. ⇧0
m
) sets are stable under uniform count-

able unions (resp. uniform countable intersections). ?

Proof. Let m > 0 and let (Ai)i2N be a uniform sequence of ⌃0
m

sets:

Ai = {n : 9x1 8x2 . . . Qxm R(i, n, x1, . . . , xm)},

where Q is the symbol 9 if m is odd and 8 if m is even. It is easily shown
by mutual inclusion that

[

i

Ai = {n : 9hi, x1i 8x2 . . . Qxm R(i, n, x1, . . . , xm).

The ⌃0
m

sets are therefore stable under uniform countable unions. By
passing to the complement, the ⇧0

m
sets are themselves also stable under

countable uniform intersections.

Note that the stability of ⌃0
n
sets by uniform countable union is equivalent

to stability under existential quantification (resp. universal quantification
for ⇧0

n
sets).

Exercise 1.8. Show that the ⌃0
n
sets are not stable under non-uniform

countable unions. ⇧

We now show the stability under uniform bounded quantification. A bounded
quantification of the form 8x < m can be seen as a finite union of m sets
parameterized by x. The following proposition is however not identical to
Proposition 1.6: here we want uniformity as a function of the bound which
can itself be a variable, or depend on other variables on which we quantify.



84 5. Arithmetic hierarchy

Roughly speaking, what the following proposition says is that the set

{n : 9x 8y < x 9t R(n, x, y, t)},

where R is a computable predicate, can be rewritten as

{n : 9x 9t 8y < x 9s < t R(n, x, y, s)}.

The predicate 8y < x 9s < t R(n, x, y, s) being computable, the set is ⌃0
1.

Proposition 1.9. The ⌃0
m

and ⇧0
m

sets are stable under uniform bounded
quantifications. ?

Proof. We show that we can always move the bounded quantification to
the right, until it is found next to the computable predicate.

Let A = {(n, k) : 8y < k 9x R(n, y, x)}, where R is a computable or ⇧0
m

set for m > 0. So we also have

A= {(n, k) : 9x 8y <k 9z <x R(n, y, z)}.

The equality comes from the fact that if for all y < k a certain xk witnesses
that a formula is true, since the number of witnesses is finite, these are
bounded in N. The variable x which previously served as a witness is now
used as a bound on all possible witnesses. We have in the same way by
passing to the complement

{(n, k) : 9y <k 8x R(n, y, x)}= {(n, k) : 8x 9y <k 8z <x R(n, y, z)},

where R is a computable or ⌃0
m

set.

If we now have A= {(n, k) : 9y <k 9x R(n, y, x)}, where R is a computable
or ⇧0

m
set, then we also have A= {(n, k) : 9x 9y <kR(n, y, x)} immedi-

ately. We have in the same way by passing to the complement {(n, k) :
8y <k 8x R(n, y, x)}= {(n, k) : 8x 8y <k R(n, y, x)}, where R is a com-
putable or ⌃0

m
set.

By induction, we thus move the bounded quantifications to the right until
they are all stuck to the computable predicate. Finally, we use the fact
that the computable predicates are stable under bounded quantifications
(see Exercise 3-2.4) to conclude.

2. Arithmetic hierarchy and computability

Now let’s see what the first levels of the arithmetic hierarchy correspond
to.



3. Relativization to an oracle 85

Proposition 2.1. A set A ✓ N is ⌃0
1 i↵ it is computably enumerable. ?

Proof. Suppose that the set A is computably enumerable. Then, A = {n :
9t �e(n)[t] #} for some e. The predicate �e(n)[t] # being computable, A
is ⌃0

1. Suppose now that A is ⌃0
1. Let A = {n : 9t R(n, t)}, where R

is a computable predicate. Then, we easily define the code machine e
which on the input n searches for the smallest t such that R(n, t) and
halts, or continues its search indefinitely otherwise. We then have �e(n)#
i↵ 9t R(n, t).

Proposition 2.2. A set A ✓ N is �0
1 i↵ it is computable. ?

Proof. A set A is �0
1 i↵ A and N \ A are ⌃0

1 i↵ A and N \ A are com-
putably enumerable (according to Proposition 2.1), or equivalently if A is
computable (according to Proposition 3-7.4).

We have seen that there are computably enumerable sets which are not
computable, and in particular whose complement is not computably enu-
merable. This implies that some sets are ⌃0

1 but not �0
1, and in particular

not ⇧0
1. We will see in the next sections that the hierarchy is strict ev-

erywhere: for all n, there are ⌃0
n
sets which are not ⇧0

n
, and there are

�0
n+1 sets which are not neither ⌃0

n
, nor ⇧0

n
.

Intuitively, the number of quantifiers corresponds to the “number of times
it would take to infinity” to determine the membership of an element in the
set. Thus, for a ⌃0

1 set written as {n : 9t R(t, n)}, where R is a computable
predicate, it would be necessary to test the truth value of R(t, n) for all
integers t, so to find one which witnesses the belonging of n to the set, or
else in order to be sure that n does not belong to it.

For a ⇧0
2 set of the form

{n : 8t1 9t2 R(t1, t2, n)},

we would need a first procedure which tests all the integers t1, and which
for each of these tests, examines the truth value of R(t1, t2, n) for all the
integers t2. This would sort of correspond to two nested loops each ranging
over the set of all integers.

3. Relativization to an oracle

The arithmetic hierarchy makes it possible to define more and more com-
plex sets, and in a sense less and less computable. However, the class of
arithmetically definable sets remains countable. So there remain “many”



86 5. Arithmetic hierarchy

sets, so to speak the majority, which cannot be computed, nor even defined
by an arithmetic formula. It is obviously di�cult to speak about them,
and any attempt to define them more precisely would make them definable
in a certain language, widening only a little more the inevitably countable
class of the sets of which one manages to say something, leaving aside the
majority of the other sets, hidden, inaccessible.

We’ll work around this problem throughout the next few chapters, primar-
ily by looking at “groups of sets” rather than each set individually. We will
see in particular in the chapters to come many computational properties
shared by certain sets, in general an uncountable quantity of them. We
will then carry out in Part II a study of the typical sets from the point of
view of measure theory, that is to say of the sets which one obtains with
probability 1 if one selects their bits at random.

For the moment, we are content to relativize the arithmetic hierarchy to an
oracle: given any set X, we consider the ⌃0

n
,⇧0

n
and �0

n
sets that we can

define relative to the knowledge of X. We base ourselves for this on the
oracle computations of Definition 4-2.2, and we iterate as in Definition 1.1.

Definition 3.1. Let m,n > 1. Let X ✓ N.

1. A set A ✓ Nm is said to be ⌃0
n
(X) if there exists an X-computable

set R ✓ Nn+m such that

A = {(y1, . . . , ym) :

n quantifiersz }| {
9x18x2 . . . Qxn (x1, . . . , xn, y1, . . . , ym) 2 R},

where Q is 9 if n is odd, and 8 if n is even.

2. A set A ✓ Nm is said to be ⇧0
n
(X) if there exists an X-computable

set R ✓ Nn+m such that

A = {(y1, . . . , ym) :

n quantifiersz }| {
8x19x2 . . . Qxn (x1, . . . , xn, y1, . . . , ym) 2 R},

where Q is 8 if n is odd, and 9 if n is even. }

Definition 3.2. Let m > 1. Let X ✓ N. A set A ✓ Nm is said to
be �0

n
(X) for n > 0 if it is both ⌃0

n
(X) and ⇧0

n
(X). }

The following propositions are proved in the same way as their respective
equivalents of the previous section.

Proposition 3.3. A set A ✓ N is ⌃0
1(X) i↵ it is X-c.e. ?



4. Many-one degrees 87

Proposition 3.4. A set A ✓ N is �0
1(X) i↵ it is X-computable. ?

Note that an oracle will be able to provide additional computational power,
allowing certain sets that are normally not ⌃0

n
, to become ⌃0

n
(X). We

can even for example define an oracle X such that all arithmetic sets,
that is to say ⌃0

n
for a certain n, become �0

1(X). However, whatever the
computational power of X, the arithmetic sets in X remain in countable
quantity.

4. Many-one degrees

The classification of the arithmetic hierarchy in terms of ⌃0
n
and ⇧0

n
sets is

not a notion on Turing degrees, because a ⌃0
n
set can be Turing equivalent

to a set which is not. In fact, any ⌃0
n
set A is Turing equivalent to its

⇧0
n
complement A. In this sense, the Turing reduction is “coarse”, because

it does not distinguish a set from its complement.

We are going to introduce a concept finer than the Turing reduction, in the
sense that it implies the latter. This is the many-one reduction, which as
we will see, preserves the arithmetic hierarchy. In fact, a lot of proofs of
Turing reduction that we have seen are actually many-one reductions.

Definition 4.1. Let A,B be two sets. We say that A is many-one re-
ducible to B, and we write A 6m B if there exists a total computable func-
tion f : N ! N such that n 2 A $ f(n) 2 B. If A 6m B and B 6m A,
we write A ⌘m B. We write A <m B if A 6m B but B ⇥m A. We call
degrees many-one the equivalence classes of the relation ⌘m. }

When A 6m B holds, the knowledge of B is su�cient to compute A, and
we have in particular A 6T B: let f be the total computable function such
that n 2 A $ f(n) 2 B. Then, to know if n 2 A, we use f for “ask a
question” to the set B: is that f(n) 2 B? If the answer is yes, then n 2 A.
Otherwise, n /2 A. The many-one reduction is very restrictive: if A 6m B,
then to know a bit of A we only have the right to ask the oracle B only one
question. As if that were not enough, the answer to the question directly
determines whether the bit belongs to A without it being possible to reverse
this decision. The importance of this very restrictive reduction comes from
the fact that it preserves the arithmetic hierarchy.

Proposition 4.2. Let A ✓ N be a ⌃0
m
(X) set (resp. ⇧0

m
(X)) for a cer-

tain X ✓ N, and let B 6m A. Then, B is ⌃0
m
(X) (resp. ⇧0

m
(X)). ?

Proof. Let A be a ⌃0
m
(X) set. Then,

A = {n : 9x1 8x2 . . . Qxm R(n, x1, . . . , xm)},

where R is an X-computable set. Let f be the total computable function



88 5. Arithmetic hierarchy

such that n 2 B i↵ f(n) 2 A. So we have

B = {n : 9x1 8x2 . . . Qxm R(f(n), x1, . . . , xm)},

which is a ⌃0
m
(X) description of B.

We show in the same way that if A is ⇧0
m
(X) and B 6m A, then B

is ⇧0
m
(X).

Among the ⌃0
1 sets, the halting problem plays a particular role: it is the

most “powerful” of the ⌃0
1 sets, in the sense that any ⌃0

1 set is many-one
reducible to the halting problem.

Proposition 4.3. A set A is ⌃0
1 i↵ A 6m ;

0. ?

Proof. Suppose A is ⌃0
1. Then, there exists e such that n 2 A i↵ �e(n)#.

Using the SMN theorem, we define a computable function s : N! N such
that for all m we have �e(n) = �s(n)(m). We will have in particular n 2 A

i↵ �e(n)#, or equivalently if �s(n)(s(n))#, or even if s(n) 2 ;0. Then, A 6m

;
0.

Suppose now A 6m ;
0. Then, as ;0 is ⌃0

1, the set A is also ⌃0
1, according

to Proposition 4.2.

We also say that ;0 is a ⌃0
1-complete set, as we will see with Definition 5.2.

5. Post’s theorem

We will see that there is a precise correspondence between the iterations of
the Turing jump and the arithmetic hierarchy.

Definition 5.1. Given a set X ✓ N, we define recursively on n > 0:

1. X(0) = X

2. X(n+1) = X(n)0 . }

Thus, ;(1) = ;0, ;(2) = ;00, etc. We are now going to show that, for all n,

the set ;(n) is ⌃0
n
-complete: it is a ⌃0

n
set, which also has a maximum

computational power among the ⌃0
n
sets, in the sense that any ⌃0

n
set is

many-one reducible to ;(n).

Definition 5.2. A setA ✓ N is ⌃0
n
(X)-complete (resp. ⇧0

n
(X)-complete)



5. Post’s theorem 89

if it is ⌃0
n
(X) (resp. ⇧0

n
(X)) and if, for any ⌃0

n
(X) set (resp. ⇧0

n
(X)) B,

we have B 6m A. }

Proposition 5.3. Let n > 0. The set ;(n) is ⌃0
n
-complete. Likewise, for

any set X ✓ N, the set X(n) is ⌃0
n
(X)-complete. ?

Proof. Let us show by induction on n that for all n > 0 the set ;(n)

is ⌃0
n
. By definition, the set ;(1) is ⌃0

1. Suppose the set ;(n) is ⌃0
n
. Then,

the set ;(n+1) is defined as:

(
m : 9t2N 9� 2 2<N

⇣
8s< |�|

�
�(s) = 1 and s2 ;(n)

�

or
�
�(s) = 0 and s /2;(n)

�
⌘

and �m(�, m)[t]#

)
.

The description of ;(n+1) is therefore done with existential quantifiers, fol-

lowed by a predicate using s 2 ;(n), which is ⌃0
n
by induction, and us-

ing s /2 ;(n), which is ⇧0
n
by induction, and therefore ⌃0

n+1. Using the
stability properties of propositions 1.9 and 1.6, the predicate which follows
existential quantifiers 9t 2 N 9� 2 2<N is in particular ⌃0

n+1 uniformly
in m,� and t. Now using the uniform countable union stability of Propo-

sition 1.7, the set ;(n+1) is therefore ⌃0
n+1.

Let us now show by induction on n that any ⌃0
n
set is many-one reducible

to ;(n). This is the case with Proposition 4.3 for n = 1. Suppose this is
the case for some n. Let A = {x : 9y R(x, y)}, where R is a ⇧0

n
set.

By induction, there exists a total computable function g : N ! N such

that (x, y) 2 R i↵ g(hx, yi) /2 ;(n). We define the total computable func-

tion f such that �;
(n)

f(x) halts on any input if 9y g(hx, yi) /2 ;(n), and

does not halt on any input otherwise. We therefore have f(x) 2 ;(n+1)

i↵ �f(x)(;
(n), f(x))#,in other words if 9y g(hx, yi) /2 ;(n), or even if 9y R(x, y),

or finally if x 2 A. The set A is therefore many-one reducible to ;(n+1).

The relativization to an oracle X is similar and does not present any par-
ticular di�culty.

Corollary 5.4
A set A is ⌃0

n
(X) i↵ A 6m X(n).

Proof. By the previous proposition and by the definition of ⌃0
n
(X)-completeness.

We finally come to Post’s theorem.



90 5. Arithmetic hierarchy

Theorem 5.5 (Post’s theorem)
Let A be a set and n > 0.

(1) A is ⌃0
n+1 i↵ A is ⌃0

1(;
(n)), i↵ A is ;(n)-c.e.

(2) A is �0
n+1 i↵ A is �0

1(;
(n)), i↵ A 6T ;

(n)

Proof. Let us show (1). By Corollary 5.4, A is ⌃0
n+1 i↵ A 6m ;

(n+1).

By relativizing Proposition 4.3 to ;(n), we obtain A 6m ;
(n)0 (which is

equal to ;(n+1)) if A is ⌃0
1(;

(n)). Finally, according to Proposition 3.3, A

is ⌃0
1(;

(n)) i↵ A is ;(n)-c.e.

Let us show (2). By definition, A is �0
n+1 i↵ A and A are both ⌃0

n+1. By

the previous point, this is equivalent to saying that A and A are ;(n)-c.e. By

relativizing Proposition 3-7.4 to ;(n), A and A are ;(n)-c.e. i↵ A 6T ;
(n).

Finally, according to Proposition 3.4, we have A 6T ;
(n) i↵ A is �0

1(;
(n)).

Corollary 5.6
The arithmetic hierarchy is strict. In other words,

• for all n > 0, there exists a ⌃0
n
set which is not ⇧0

n
and a ⇧0

n
set

which is not ⌃0
n
;

• for all n > 0, there exists a �0
n+1 set which is neither ⌃0

n
nor ⇧0

n
.

Proof. According to Proposition 5.3, the set ;(n) is ⌃0
n
. It cannot be ⇧0

n

in which case it would be �0
n
, and therefore computable in ;(n�1) according

to Theorem 5.5, contradicting the fact that X never computes its Turing

jump. We show the same way that N \ ;
(n) is ⇧0

n
, but not ⌃0

n
.

Finally, we can construct for all n the following �0
n+1 set: the set X such

that X(2m) = ;(n)(m) and such that X(2m+1) = (N\;
(n))(m). It is clear

that X is ;(n)-computable, and therefore �0
n+1 according to Theorem 5.5.

Finally, if we assume by the absurd that X is ⌃0
n
(resp. ⇧0

n
), this allows

to give a ⌃0
n

description of N \ ;
(n) by keeping only the odd bits of X

(resp. a ⇧0
n
description of ;(n) keeping only the even bits of X), which

is in contradiction with the fact that ;(n) is not ⇧0
n
(resp. with the fact

that N \ ;
(n) is not ⌃0

n
).

Exercise 5.7. (?) Show that, for all X,Y 2 2N, we have X ⌘T Y
i↵ X 0

⌘m Y 0. ⇧



6. Rice’s theorem 91

6. Rice’s theorem

Rice’s theorem basically says that no semantic property of programs is de-
cidable. For example, as seen in Exercise 3-6.4, it is impossible to decide
whether a computer program performs a multiplication by 2 or not. We
mean semantic properties as opposed to syntactic properties. The latter are
sensitive to code variations, for example “this program has three distinct
variables” or “this program contains two loops for”. Semantic properties
do not speak directly about programs, but about the functions they rep-
resent. For example, property “this function is defined on input 42” or
property “this function only returns even values” do not depend on their
code. Semantic properties do not depend on the implementation details of
the function.

Definition 6.1. An index set is a set A included in N, such that for
all x, y 2 N,

if x 2 A and �x = �y, then y 2 A.

Among the index sets, we will note the empty set ; which corresponds to
a property never satisfied, and the set N representing a property that is
always true. An index set is non trivial if A 6= ; and A 6= N.

Theorem 6.2
If A is a non-trivial index set, then either ;0 6m A or ;0 6m A.

Proof. Let �e0 be the nowhere-defined function. Suppose that e0 2 A,
the other case being treated by symmetry. Since A is non-trivial, A is
non-empty. Let’s fix a code e1 2 A. In particular, �e0 6= �e1 . By the
SMN theorem (see Theorem 3-4.1), there exists a total and computable
function f : N! N such that

�f(x)(y) =

⇢
�e1(y) if x 2 ;0

" if x /2 ;0.

Let us show that the function f is a many-one reduction from ;0 to A.
If x 2 ;0, then �f(x) = �e1 , and so f(x) 2 A. Conversely, if x /2 ;0, �f(x) =

�e0 , then f(x) 2 A.

Rice’s theorem asserts that no non-trivial property on partial computable
functions is decidable. Although the applications of this theorem are rel-
atively limited in computability theory, Rice’s theorem is of great impor-
tance for the understanding it brings about the nature of computability.
In particular, the undecidability of the halting problem is not an isolated



92 5. Arithmetic hierarchy

phenomenon, because it is shared by all the properties on the partial com-
putable functions.

Corollary 6.3 (Rice’s theorem)
Let C be a class of partial computable functions N ! N. Then, the
set A = {x : �x 2 C} is non-computable unless C = ; or C is the class of
all partial computable functions.

Proof. The set A is an index set. If C = ; or C is the class of all partial
computable functions, then A = ; or A = N and, in both cases, A is com-
putable. If C is neither empty nor the class of all partial computable func-
tions, then A is non-trivial, and by Theorem 6.2 either ;0 6m A or ;0 6m A.
In both cases, ;0 6T A, and A is not computable.

7. Arithmetic codes

Sets of integers are generally infinite objects, and therefore cannot be rep-
resented by natural integers without some of them being omitted from this
representation. This is the object of Cantor’s diagonal argument (see Sec-
tion 2-4). Certain sets of integers can however be described in a finite way,
starting with the computable sets.

Definition 7.1. A �0
1 code of a computable set A is an integer e such

that �e = A (ie 8n �e(n) #= A(n)). }

Note that a set is computable i↵ it has a�0
1 code. By the Padding lemma 3-

5.1, any computable set is represented by an infinity of�0
1 codes. According

to Rice’s theorem, the set of �0
1 codes of a fixed computable set is not

decidable. There is not even a procedure for deciding whether an integer e
is a�0

1 code of a set. Indeed, that would amount to being able to enumerate
in a computable way all the computable sets, and would leave place to
Cantor’s diagonal argument.

Exercise 7.2. (?) Let TOT be the set of �0
1 codes, in other words

TOT = {e : �e is total}

(assuming without loss of generality that �e(n) returns 0 or 1 for all n).
Prove that TOT is ⇧0

2-complete, ie. that N \ ;
00 6m TOT. ⇧

The �0
1 codes allow to give a new definition of a uniformly computable

sequence of sets. Recall that a sequence X0, X1, . . . of sets is uniformly
computable if the function f : N ⇥ N ! {0, 1} defined by f(x, s) = 1
i↵ x 2 Xs is total computable.



7. Arithmetic codes 93

Proposition 7.3. A sequence X0, X1, . . . of sets is uniformly computable
if, and only if, there exists a computable sequence e0, e1, . . . such that es
is a �0

1 code of Xs for all s. ?

Proof. ). Suppose that X0, X1, . . . is uniformly computable through
the function f : N ⇥ N ! {0, 1}. By the SMN theorem, there exists a
total computable function h : N ! N such that for all e, x, we have the
equality �h(e)(x) = f(x, e). It follows that the sequence h(0), h(1), . . . is a
computable sequence such that h(s) is a �0

1 code of Xs.

(. Suppose now that there exists a computable sequence e0, e1, . . . of
�0

1 codes. Then, given the existence of a universal machine, the function f
defined on N ⇥ N by f(x, s) = �es(x) 2 N is total computable, and shows
that the sequence of sets X0, X1, . . . is uniformly computable.

Computably enumerable sets are also representable by a code system. The
following notation will often be used for this.

Notation

We denote by We the set {n 2 N : �e(n) #}, which is computably enu-
merable. The notation is relativized to an oracle X, and WX

e
or We(X)

will thus denote the set {n 2 N : �e(X,n)#}.

Definition 7.4. A ⌃0
1 code of a c.e. set A is an integer e such that We =

A. }

Still by Rice’s theorem, the set of ⌃0
1 codes of a fixed c.e. set is not com-

putable. However, unlike �0
1 codes, any integer is a ⌃0

1 code. The com-
putable sets being a fortiori computable enumerable, they have both �0

1

and ⌃0
1 codes. The representation by �0

1 codes is however computation-
ally more informative, in the sense that it gives access to more informa-
tion on the set that it represents. In particular, the partial function f :
N⇥ N! {0, 1} such that if e is a �0

1 code of a set A, is defined for x 2 N
by f(e, x) #= 1 if x 2 A and f(e, x) #= 0 if x /2 A, is computable1, while
the equivalent function for the ⌃0

1 codes is not.

Exercise 7.5. Show that there is no function f : N ⇥ N ! {0, 1} which
is total, computable and such that f(e, x) = 1 if x 2 We and f(e, x) = 0
if x /2We. ⇧

In general, we can represent any set of the arithmetic hierarchy by integers
using Post’s theorem.

1If e is not a �0
1 code, the function f still acts as if it were the case, and we will

eventually have f(e, x) ".



94 5. Arithmetic hierarchy

Definition 7.6. A ⌃0
n+1 code (resp. �0

n+1) of a set A is an integer e such

that We(;
(n)) = A (resp. �e(;

(n)) = A). }

Remark
Given a set A, we will tend to favor the type of code which provides the
most computational information on A. Thus, if A is computable, it is
often better to manipulate a �0

1 code rather than a ⌃0
1 code.

This recommendation also applies to more elaborate computability-theoretic
concepts, such as low sets. As a reminder, a set A is low if A0 6T ;

0.
As A 6T A0 6T ;

0, the low sets are in particular �0
2, and can therefore be

represented by a �0
2 code, that is to say an integer e such that �e(;

0) = A.
However, this representation loses information specific to low sets (see Ex-
ercise 7.11), such as the ability of ;0 to decide A0. It is therefore preferable
to represent the set A by a code e such that �e(;

0) = A0.

Definition 7.7. A lowness code of a setA is an integer e such that �e(;
0) =

A0. }

Finally, in the case of finite sets, it is possible to store more information than
the simple fact of being computable. Indeed, given a sequence e0, e1, . . . of
�0

1 codes of finite sets, it is not possible to compute uniformly the cardi-
nality of these sets (see Exercise 7.10). We will therefore prefer the notion
of canonical code which notably contains information on the size of the set.

Definition 7.8. The canonical code of a finite set F is the natural inte-
ger

P
i2F

2i. }

We can easily verify via the following exercise that a canonical code contains
all the information of a finite set, including the possibility of knowing its
last element.

Exercise 7.9. Let D0, D1, . . . be the sequence of finite sets such that Dn

has canonical code n.

1. Show that the function f : N ! N defined by f(n) = |Dn| is com-
putable.

2. Show that the function g : N ⇥ N ! {0, 1} defined by g(n, x) = 1
i↵ x 2 Dn is computable.

⇧

The following two exercises allow us to show that the information given to
us by canonical codes of finite sets or by lowness codes cannot be obtained
via computable or �0

2 codes.



7. Arithmetic codes 95

Exercise 7.10. (??) Suppose absurdly that there exists a partial com-
putable function f : N ! N such that if e is a �0

1 code of a finite set,
then f(e) returns the size of this set. Using the fixed point theorem, show
that there exists a �0

1 code a of a finite set such that the size of this set is
di↵erent from f(a). ⇧

Exercise 7.11. (??) Suppose absurdly that there exists a partial com-
putable function f : N ! N such that if e is a �0

2 code of a low set X,
then f(e) returns a �0

2 code for X 0. Using the fixed point theorem, show
that there exists a �0

2 code a of a computable set X such that f(a) is the
�0

2 code of a di↵erent set of X 0. ⇧





Chapter 6
Church-Turing thesis

1. The Entscheidungsproblem and the quest
for the Grail

In the year 1928, in a period troubled by deep questioning of the founda-
tions of mathematics, David Hilbert and Wilhelm Ackermann asked the
question of the existence of an algorithm allowing to decide the validity of
any mathematical statement. Here, the word algorithm is to be taken in
a broad sense, to designate a set of elementary computation steps that a
mathematician can perform. This challenge raised to logicians, and passed
down to posterity under the name of Entscheidungsproblem — decision
problem—, marks the beginning of a long foundational quest on the for-
malization of the notion of algorithm.

The incompleteness theorems of Gödel1 proved in 1931, stating the exis-
tence of fundamentally undecidable statements in any reasonable theory
allowing formalization of arithmetic, were particularly unwelcome in a a
period which sought to initiate a new wave of optimism and confidence
in mathematics. They also tipped the scales towards the existence of a
negative solution to the Entscheidungsproblem.

A positive response to the Entscheidungsproblem would have been an al-
gorithm or a series of deterministic steps, allowing to demonstrate any
mathematical statement or its negation. A negative answer consists in the
proof that such a systematic method cannot exist. This direction poses
a completely di↵erent problem, namely to formally define the concept of

1See Chapter 9

– 97 –



98 6. Church-Turing thesis

algorithm, or in a roughly equivalent way, to find a robust and consensual
formalization of the concept of computable function.

It should be noted that the first computer, the ENIAC, was built in 1940,
a decade after the formulation of the Entscheidungsproblem. The notion
of e↵ectively computable function therefore does not refer to what can be
computed by a computer, but by the human mind. It was a question of
finding a systematic process, or algorithm in the informal sense of the term,
allowing a mathematician to answer any mathematical question.

Several definitions were proposed in the years that followed, each conjec-
tured more or less convincingly as exactly capturing the epistemological
notion of e↵ectively computable function. These definitions were fairly
quickly proved to be equivalent, but struggled to convince the scientific
community of their capacity to capture all the functions that could be
e↵ectively computed. It was not until 1936 that Alan Turing came to
a consensus by presenting his computational model, the Turing machine,
with a striking demonstration of its equivalence with other models, in par-
ticular with the one used by Gödel to show his famous incompleteness
theorem, thus providing a definitive answer to the Entscheidungsproblem.
The reader interested in the history of computability theory will find an ex-
cellent chapter dedicated to the subject in the work Turing computability:
Theory and Applications by Robert Soare.

Although the di↵erent computational models have since been proven to be
equivalent, we will detail the main among those which marked this history,
each one presenting its own interest, by emphasizing a di↵erent aspect of
the notion of computable function. In what follows, we will only consider
partial functions, from Nn to N for n > 1. We will write g(x) #= y to
mean that g is defined on x 2 Nn and is equal to y; the notation x being a
shorthand for x1, . . . , xn.

General recursive functions. Recursive functions were introduced in a
restricted form by Gödel as part of his incompleteness theorems in 1931.
This class of functions was generalized by Gödel and Herbrand in 1934 to
obtain the general recursive functions, capturing according to the thesis of
Church-Turing — thesis detailed in the following section— the entirety of
the computable functions.

The idea underlying the definition of general recursive functions is very
simple: start from a few elementary functions, the computability of which
leaves no room for doubt, then combine them to obtain new, more complex
functions, which are still computable. What are the valid combinations for
creating new functions? If two functions are computable, their composition
should naturally be computable: it su�ces to execute in series the steps



1. The Entscheidungsproblem and the quest for the Grail

of computing each of the functions. In a slightly less obvious way, func-
tions defined by recursion from computable functions are still computable.
Indeed, if we define a function f : N ! N by f(0) = v for an integer v,
and f(n+1) = g(n, f(n)) for a computable function g : N⇥N! N, to obtain
the value of f(n), it su�ces to successively compute f(1), f(2), . . . , f(n)
using the preceding values and by following the steps of computing the
function g. Finally, if a function g : N ! N is computable, the search for
the smallest input n such that g(n) = 0 is also computable, via a loop which
increments n until having g(n) = 0 (this research may never be successful).

Definition 1.1. The class C of general recursive functions is the smallest
class of partial functions containing the following basic functions:

(a) The successor function: succ(x) = x+ 1

(b) The constant functions: cn
m
(x1, . . . , xn) = m for all n,m > 0

(c) The projections: pn
i
(x1, . . . , xn) = xi for all n and all i 2 1, . . . , n

and which is closed under the following operations:

(i) Composition: if g1, . . . , gm 2 C are functions of n variables and h 2 C

is a function of m variables, then the function

f(x) = h(g1(x), . . . , gm(x))

is in C.

(ii) Primitive recursion: if g, h 2 C are partial functions of respectively n
and n+2 variables, the function f defined by f(x, 0) = g(x) and f(x,m+
1) = h(x,m, f(x,m)) is a partial function of n+ 1 variables in C.

(iii) Minimization: if g 2 C is a partial function of n + 1 variables, then
the partial function f which to x associates the smallest integer m, if
it exists, such that g(x, i) # for all i 6 m and such that g(x,m) = 0,
is in C. If m does not exist, then f is not defined on x.

The class of primitive recursive functions is the smallest class of total
functions containing the functions of (a), (b), (c) and closed under the
schemes (i) and (ii) of composition and primitive recursion. }

General recursive functions have the advantage of highlighting the closure
properties of the notion of computable function, starting with closure under
composition. Note that the primitive recursive functions are total, unlike
the general recursive functions, for which the minimization scheme intro-
duces a possibility of partiality. Intuitively, its programming implementa-
tion would consist of a loop while exhaustively searching for an integer m



100 6. Church-Turing thesis

satisfying the property. If this integer does not exist, program execution
will never exit the loop, and the program will not halt. We will study this
model in detail in Section 3 by trying to show that it corresponds well to
the notion of e↵ectively computable function. Let us mention before that
two other computation models.

�-calculus. Defined by Church in the 1930s, �-calculus is a minimalist for-
malism serving as a theoretical foundation for programming languages. Un-
like general recursive functions, which handle two types of objects, namely
integers and functions on integers, �-calculus has only one primitive ob-
ject: the �-functions. These do not take integers as parameters, but �-
functions. It will therefore be necessary to resort to the coding of integers
by �-functions to define a notion of computable function on integers.

�-functions are defined by an expression language, as it is often the case in
mathematics. For example, x, y 7! x+ y is an expression defining the sum
of two integers. However, in �-calculus, the parameters themselves being �-
functions, the only valid operations are those for manipulating functions,
namely, adding a parameter to a function, and the application of a function
to its parameters. For example, f 7! (g 7! f(g)) defines the function which
takes as parameter a function f , and returns the function which takes as
parameter a function g, and returns the result of applying f to g.

The minimalist aspect of �-calculus facilitates reasoning on the formal-
ism itself, but requires much more work to define non-trivial functions on
integers. In particular, it is more di�cult to convince oneself that all the
computable functions can be represented by �-functions. As expressed pre-
viously, one needs to fix a convention to represent the integers. It seems
quite natural to identify the integer n with the �-function taking as input
a �-function f and returning its n-th iteration. For example, the integer 0
is represented by the function which takes as input a function f , and re-
turns its 0th iteration, in other words returns the function identity. In the
formalism of �-calculus, it is written f 7! (x 7! x). Likewise, the integer 2
corresponds to the function f 7! (x 7! f(f(x)). Let us call n the �-function
representing the integer n. A function g : N ! N is �-definable if there
exists a �-function h which to n associates g(n).

The syntax of �-calculus is rather abstruse at first glance, and requires a
little manipulation to become familiar with the concepts. Nowadays, many
variations and enrichments are studied in order to provide a theoretical
basis for functional programming languages. This is a very active area of
research.

Turing machines. If �-calculus provides a theoretical basis for program-
ming languages, Turing machines can be seen as precursors of the modern
computer.



1. The Entscheidungsproblem and the quest for the Grail 101

Alan Turing, 1912–1954

Designed in 1936 by Alan Turing, this
machine was inspired by his father’s
typewriter. It has a tape, which can be
seen as a succession of cells indexed by
integers. We can make the analogy with
bits which are accessed in the memory
of a computer via an addressing system.
The machine also has a read/write head
which can move from one cell to an-
other, then read or modify its content.
The machine will run based on an in-
put n. At the start of the computation,
the read head is at the start of the tape,
the first n cells of which are initialized
to 1, while the remaining cells are equal
to 0.

1 1 0 1 0 0 1 0 . . .

 !

Figure 1.3: Representation of a Turing machine, with its head, moving
along the cells of the tape

The machine also has a finite number of states, including a start state
in which it is at the start of the computation, as well as a final state
which indicates the end of the computation when the machine is in it. The
movements of the read head, the replacement of the value of the current
cell, as well as the changes of states, are subject to a set of instructions
represented as follows: given the current state of the machine and the
value from the cell where the head is located, a rule will decide the next
state of the machine, possibly change the value of the cell, and move the
head one cell to the right or to the left. A Turing machine is therefore an
elaborate automaton designed to perform a specific task. In his founding
article, Turing demonstrated the existence of a universal Turing machine:
a machine able to simulate the computation of any other Turing machine.

Unlike general recursive functions or �-calculus, Turing’s model constitutes
a very concrete mechanical process. We can in fact actually build a univer-



102 6. Church-Turing thesis

sal Turing machine. This model has in particular the advantage of making
explicit the notion of atomic step of computation as well as of quantifying
the memory space used. For these reasons, Turing machines are taken as
a reference model to define the theory of Algorithmic Complexity.

Getting away from models. Like a quote from Michael Fellows2, com-
putability theory is no more the study of computational models than as-
tronomy is the science of telescopes. Computability is very quickly freed
from the details of implementation of computational models, to manipulate
programs in an abstract way. It is nevertheless instructive to see in detail
at least one model of computation, in particular to forge an intuition when
it is lacking, and this is what we will do very soon in Section 3.

2. Church-Turing thesis

In 1934, facing the success of �-calculus, Church submitted the idea to
Gödel that �-definable functions would capture the notion of an e↵ectively
computable function, leaving Gödel doubtful. With the development of the
general recursive functions of Herbrand and Gödel the same year and the
proof of their equivalence with the �-calculus, Church publicly formulated
his thesis, known as Church thesis, asserting that general recursive functions
coincided with e↵ectively computable functions. His argument did not
convince Gödel, although he was one of the instigators of general recursive
functions. With his eponymous machine model, Alan Turing finally reached
consensus in 1936, by demonstrating that Turing machines were equivalent
to �-calculus model and to general recursive functions, which led to what
is called today the Church-Turing thesis.

Thesis 2.1 (Church-Turing).
The e↵ectively computable functions are those computable by a Turing
machine, or equivalently the general recursive functions or the �-definable
functions.

If Church was the first to formulate the thesis according to which the �-
definable functions corresponded to the e↵ectively computable functions,
we generally attribute the fathership of computability theory to Turing.
The Church-Turing thesis not being a mathematical statement, it is not
possible to prove it formally. It can nevertheless be validated by what
comes closest to a proof in the social sense of the term, that is to say by an
argument generating a consensus in the scientific community. This is what
Turing achieved by the following proof.

2“Computing is no more the study of computers than astronomy is that of telescopes.”
[62]



2. Church-Turing thesis 103

Turing’s proof. To justify his thesis, Turing resorted to three types of
arguments: (1) a description of the process by which a mathematician
performs a computation and its formalization by a Turing machine, (2)
the proof of the equivalence of Turing machines with existing computa-
tional models, (3) the explicit development of large classes of functions
computable by Turing machines. Here is the outline of Turing’s first argu-
ment:

Consider a mathematician, Mr. Smith, performing a computation. Mr.
Smith has a pencil, and a potentially unlimited amount of paper. Given
the finite precision of his pencil, each sheet can only contain a finite number
of symbols. For simplicity, and without loss of generality, we can consider
that each sheet is a cell of an infinite tape, containing only one symbol
belonging to a su�ciently large finite alphabet. The computation process
is as follows: while he is in a mental state e0, Mr. Smith is located in front of
the current sheet, in his field of vision. He reads the notes, before correcting
them, erasing and changing the symbol written on the sheet. This reading
will change his thoughts, and he will find himself in a mental state e1. He
will potentially turn the page, or go back to reread previous notes, until
he reaches the end of his computation. Mr. Smith will then consider his
computation finished, and will find himself in the corresponding mental
state which we will call final state.

Proper use of the Church-Turing thesis. It is important to get a
clear idea of what the Church-Turing thesis says, its limits and its use.
Church-Turing’s thesis is neither a theorem nor a conjecture. It cannot be
formally proven or refuted, by the simple fact that it is not a mathematical
statement, but rather a bridge between a mathematical concept and an
epistemological concept. This thesis is not, however, an arbitrary assertion,
for it is supported by reasoning which can be subject to criticism.

If Church-Turing’s thesis can be called into question, and even one day
mostly rejected, the development of computability theory nonetheless rests
on solid foundations, independent of this correspondence. The equivalence
between functions computable by Turing machines, general recursive func-
tions, �-definable functions, and functions programmable in C, Java or
Python, is indeed a theorem which does not depend on the Church-Turing
thesis. While it is common in computability theory to informally describe
an algorithm and then deduce the existence of a Turing machine imple-
menting it, this process is not strictly speaking a call to the Church-Turing
thesis. Rather, it is an informal proof to convince the interlocutor that, if
necessary, it would be easy to program this algorithm in any programming
language.

Moreover, if Church-Turing’s thesis were to be invalidated, the conceptual
edifice built around computability theory would remain, and would likely



104 6. Church-Turing thesis

continue to be studied. There is a hierarchy of formal languages and com-
putational models, called Chomsky hierarchy. We find there for example
the rational languages, corresponding to the languages recognized by a class
of machines called finite automata. Although these models are for the most
part less expressive than the Turing machines, they are nonetheless a very
active subject of research today. If one day new computational paradigms
were found, the existing notion of computable function would nonetheless
remain a very robust class of functions, and would likely continue to be
studied in the same way as rational languages or any other level of Chom-
sky hierarchy.

Some natural phenomena are studied in the hope of solving non-computable
problems. These notions of computability are united under the name of hy-
percomputing (we will see a formal approach of it in Part IV). To date, there
is no prospect of making such computations. The discovery of new compu-
tational phenomena in nature would however probably not invalidate the
Church-Turing thesis because they would have little chance of satisfying the
definition of an e↵ectively computable function according to Rosser [192],
i.e., say “a method in which each step is precisely predetermined and which
will reliably produce an answer in a finite number of steps.”

3. Detailed study of recursive functions

The objective of this section is to convince the reader that general recur-
sive functions coincide with the e↵ectively computable functions as defined
informally in sections 3-2 and 3-1, that is, “functions that can be pro-
grammed ”. The interests of such a study are manifold. In the first place,
it makes it possible to have a precise mathematical definition of what a
computable function is: without loss of generality, it is a general recursive
function. Then the study which we give will provide at the same time
a mathematical proof of the existence of a universal machine such as de-
fined in Theorem 3-3.1, concept used throughout this work. Finally, our
study will isolate the notion of primitive recursive function as a strict sub-
class of computable functions; besides a certain epistemological importance
(see Theorem 3.22), this subclass presents an undeniable interest in math-
ematical logic. We will see an example of its use in the study of reverse
mathematics, in Section 23-7.

3.1. Register machines and programming diagrams

In order to convince ourselves that the general recursive functions coincide
with the computable functions, we start from a computational model close



3. Detailed study of recursive functions 105

Program

Control Unit

Program Counter

R0

R1

R2

. . .

Rn

Figure 3.1: Model of register machines

to modern programming languages: structured programs, executed by regis-
ter machines. The developments in this section comes in broad outline from
the computability theory course of Arnaud Durand and Paul Rozière [54]
of the Master of mathematical logic of the University of Paris Diderot.

Register machines. The scientific literature has declined several ver-
sions, under the name of “random access machine” (Melzak [160], Lam-
bek [139], Shepherdson and Sturgis [205], Peter [182], Elgot and Robin-
son [58]). These are machines known as “random access memory” or RAM,
a generic name today to designate the random access memory of computers.
The term “random access” should be understood as opposed to “sequential
access”, and refers to the fact that each memory slot can be accessed di-
rectly from its address, unlike, for example, the model of Turing machines,
for which a read head must move cell after cell in memory to arrive at the
desired location.

The memory of a register machine will however be more elementary than
modern RAM: it is simply a finite number of registers R0, R1, . . . , Rk for k 2
N arbitrary. Each register can contain any positive or zero integer. Note
that the integers can be arbitrarily large, and therefore that each register
represents an “unbounded” memory space.

Structured programs. A register machine will execute a program which
consists of a finite list of instructions for performing computations. There
are many possible variations on the instruction set that one allows one-
self. We present one deliberately close to that of a modern imperative
programming language.



106 6. Church-Turing thesis

Definition 3.2. A structured program can contain the following instruc-
tions:

1. • Incrementation of a register: “Ri := Ri + 1”.

• Decrementation of a register “Ri := Ri � 1”.

• Assignment of a register: “Ri := x” for x 2 N or “Ri := Rj”

These instructions respectively increment the value of Ri by 1, decre-
ment it by 1 (unless the value is 0 in which case nothing happens),
set the value of Ri to x or set it to that of Rj).

2. The conditional statement: “if Ri = 0 then S else S0”, where S =
(S0, . . . , Sn) and S0 = (S0

0, . . . , S
0
m
) are finite sequences of structured

instructions.

Each instruction in S is executed sequentially if Ri is equal to 0.
Otherwise each instruction in S0 is executed sequentially.

3. The for loop statement: “for i = 1 toRi do S”, where S = (S0, . . . , Sn)
is a finite sequence of structured instructions.

Let N be the number present in register Ri when the program starts
this instruction. Each S instruction is executed sequentially, all N
times. Note that if the value of Ri changes while the instructions
of S are being executed, this does not change the number of times the
loop occurs.

4. The while loop statement: “whileRi 6= 0 do S” where S = (S0, . . . , Sn)
is a finite sequence of structured instructions.

Each instruction in S is executed sequentially as long as the register Ri

is di↵erent from 0.

The execution of a structured program halts after the last instruction has
been executed. }

Note that a structured program has only a finite number of instructions
and can therefore only use a finite number of registers.

for loop vs while loop
The reader may notice that the for loop statement is redundant in that
it can always be replaced by a while loop statement. We will see that
the reverse is not true. In particular the number of times that a for

loop is executed is necessarily finite, which is not the case for while

loops, within which a computation can get stuck in what is classically
called in programming an infinite loop. We will see that the while loop



3. Detailed study of recursive functions 107

instruction is essential, and that some computable (and total) functions
cannot be programmed using only for loops.

Programming diagrams. Structured programming finds its genesis in
the work of Goldstine and von Neumann [78] who, from 1946, show a
concern no longer to capture mathematically the notion of computation,
but that of developing a programming system. They develop a way of
presenting algorithms based on programming diagrams. We give here the
simplified presentation that one finds in the reference work of Piergiorgio
Odifreddi [177].

Definition 3.3. A programming diagram is obtained by connecting be-
tween them basic bricks of two types:

• Assignment instructions:

Ri := Ri + 1 Ri := Ri � 1 Ri := 0

• A conditional instruction:

Ri = 0 ?
true false

A programming diagram has one input and one or more outputs. The
computation is carried out linearly by executing each block from the input
to one of its outputs. }

By way of example, Figure 3.4 is a programming diagram corresponding to
the addition function.

Programming diagrams can be programmed on register machines with an
instruction set including conditional and unconditional jumps (the latter
simply called “jumps”), that is, instructions of type goto, which allow to
determine which is the next instruction of the program which will be ex-
ecuted. It is still today the mechanism at work in the di↵erent assembly
languages of micro-processors.



108 6. Church-Turing thesis

R1 = 0 ?

start

R0 := R0 + 1

R1 := R1 � 1

R2 = 0 ? R0 := R0 + 1

R2 := R2 � 1

end

true false

#

true false

#

Figure 3.4: A programming diagram for the addition function of two in-
tegers. One supposes that the computation starts with R0 = 0, R1 =
n1, R2 = n2. At the end of the execution, one will have R0 equal to n1+n2.

Definition 3.5. A goto program is a numbered sequence of instruc-
tions I0, I1, . . . , In where each instruction is of one of the following types:

1. • Incrementation of a register: “Ri := Ri + 1”.

• Decrementation of a register “Ri := Ri � 1”.

• Assignment of a register: “Ri := 0”.

2. The conditional jump instruction: “if Ri = 0 goto n1 else goto n2”.

If Ri is equal to 0, instruction number n1 is the next to be executed,
otherwise it is instruction number n2.

3. The unconditional jump: “goto m”.

Instruction number m is the next to be executed.

The execution of a goto program halts when there is no more next in-
struction to execute (which in particular can happen after an instruction
of type “goto m” in a program with less than m instructions.) }



3. Detailed study of recursive functions 109

Remark
Note that the unconditional jump “goto m” can be replaced by a condi-
tional jump “if Ri = 0 goto n else goto n”. A goto program can therefore
be expressed without instruction 3.

It is clear that programming diagrams are interchangeable with goto type
programs, and we will use one formalism or the other depending on the
situation.

Computable functions. Notations �e(x1, . . . , xn) #= y and �e(x1, . . . ,
xn) " used throughout the book naturally apply to programs executed by
register machines, once the conventions for passing parameters and retriev-
ing the result have been fixed:

Definition 3.6. Given a structured or goto type program P , we write
P (x1, . . . , xk) to denote the execution of P with the registers R1, . . . , Rk

initialized to x1, . . . , xk, and all the other registers initialized to 0. We
write P (x1, . . . , xk) #= x to signify that such an execution halts with
the value x in the R0 register, and P (x1, . . . , xk) " to signify that the
execution does not halt. }

We can now use our computational model to give a precise mathematical
definition of a computable function. Let us formalize beforehand the nota-
tions dom f and Imf which denote respectively the domain and the image
of a function f .

Notation

Given a (possibly partial) function f : A! B, we denote by dom f the
domain of definition of f , and Imf = {Y 2 B : 9X 2 dom f f(X) = Y }

its image.

Definition 3.7. A (possibly partial) function f : Nn
! N is computable

by structured program (resp. by goto program) if there is a structured pro-
gram (resp. a goto program) Pf , such that Pf (x1, . . . , xn) #= f(x1, . . . , xn)
for all x1, . . . , xn 2 dom f and such that Pf (x1, . . . , xn) " for all x1, . . . , xn /2
dom f . }

Justification of the model of computation. The programmer will per-
haps not be convinced by the fact that the model of register machines with
structured programs (or goto) indeed allows to program all the functions
which he could write in his favorite language.

One aspect in particular may cause concern: A modern programming lan-
guage allows the use of arrays, and even dynamic arrays, which can increase



110 6. Church-Turing thesis

in size as needed. We will see for example in Definition 3.24 that the func-

tion known as Ackermann is computed naturally using a stack structure,

and that it is not clear at all that we can do without it. Fortunately, we

will show with Proposition 3.26 that it is perfectly possible to simulate the

manipulations of dynamic arrays within register machines, by coding the

latter in registers, which, let us remember, can contain arbitrarily large

integers.

Simulation of structured programs by goto programs. We start

by showing that goto programs, despite their simplicity, are su�cient to

compute everything that structured programs can compute.

Proposition 3.8. Let n 2 N⇤ and f : Nn
! N be a function computable

by a structured program. Then, f is computable by a goto program. ?

Proof. It su�ces to show that each instruction of a structured program

can be replaced by a programming diagram.

Ri = 0?

start

Ri := Ri � 1

Ri := Ri + 1 Ri := Ri + 1 end

true false

#

. . .

The “Ri := n” assignment in-
struction can be replaced by the
following programming diagram,
where the instruction “Ri :=
Ri + 1” is repeated n times.



3. Detailed study of recursive functions 111

start
PROGRAM

Ri := 0

Rj = 0? Ri := Ri + 1

Rk := Rk + 1

Rj := Rj � 1

Rk = 0 ?end Rj := Rj + 1

Rk := Rk � 1

true false

#

true false

#

The “Ri := Rj” assignment instruc-
tion can be replaced by the following
programming diagram, where Rk

is a new register that we assume
to equal 0, and di↵erent from Ri

and Rj .

start

PROGRAM
Rk := Ri

Rk = 0?end
PROGRAM

S

Rk := Rk � 1

true false

#

The “for i = 1 to Ri do S” loop instruction can
be replaced by the following programming dia-
gram, where the “PROGRAM S” box is a pro-
gramming diagram corresponding to the list of in-
structions S, and where Rk is a new register dif-
ferent from Ri and unused in the “PROGRAM S”
programming diagram.

start

Ri = 0?end PROGRAM S
true false

#

The “while Ri 6= 0 do S” loop
instruction can be replaced by
the following programming diagram,
where the “PROGRAM S” box
is the programming diagram cor-
responding to the list of instruc-
tions S.



112 6. Church-Turing thesis

start

Ri = 0?

PROGRAM S PROGRAM Q

true false

The “if Ri = 0 then S else Q” conditional
instruction can be replaced by the fol-
lowing programming diagram, where both
boxes “PROGRAM S” and “PROGRAM
Q” are programming diagrams correspond-
ing to the lists of instructions S and Q,
respectively.

.

3.2. Recursive functions are computable

Structured programs follow the concepts of so-called imperative program-
ming: instructions modifying the state of the machine are executed one
after the other. The general recursive functions follow the paradigm of
so-called functional programming: a program is a composition of mathe-
matical functions and a computation is the evaluation of these functions.
An advantage of functional programming often highlighted is the absence of
side e↵ects: the result of a function depends on its parameters and only on
its parameters (the state of the machine on which the function is executed
has no e↵ect). For example, you can connect the output of one function to
the input of another without expecting any unpleasant surprises. By way
of comparison, the combination of structured programs Pf , Pg computing
functions f, g : N ! N in a program computing the function x 7! f(g(x))
requires a little work, in order to avoid side e↵ects.

Definition 3.9. A structured or goto type program is clean if it finishes
its computation with all its registers —except R0— in the same state as
at the start of the computation. }

Exercise 3.10. Show that for any structured program M , there exists a
clean structured program N such that M(x) #= y $ N(x) #= y. ⇧

Theorem 3.11 (Wang [238], Peter [183], Ershov [60])
Any (possibly partial) general recursive function can be computed by a



3. Detailed study of recursive functions 113

structured program. Any primitive recursive function can be computed
by a structured program with no while loops.

Proof. We leave it to the reader to show that the constant functions, the
projection functions and the successor function are all computable by a
structured program. The following cases remain to be dealt with:

Composition scheme. Let

f(x1, . . . , xm) = g(h1(x1, . . . , xm), . . . , hk(x1, . . . , xm))

for functions g : Nk
! N and h1, . . . , hk : Nm

! N computable by
structured programs G,H1, . . . , Hm. By Exercise 3.10 we can assume
that G,H1, . . . , Hm are proper. Suppose each of these programs uses at
most the registers R0, . . . , Rz for z > m. The program F for computing f
is given by the following sequence of instructions.

Program F

hInstructions of H1i

Rz+1 := R0

R0 := 0

hInstructions of H2i

Rz+2 := R0

R0 := 0

. . .

hInstructions of Hki

Rz+k := R0

R0 := 0

R1 := Rz+1

. . .

Rk := Rz+k

hInstructions of Gi

Note that if G,H1, . . . Hm does not use a while loop, then the program to
compute F does not use one either.

Primitive recursion scheme. Let

f(x1, . . . , xn, 0) = g(x1, . . . , xn)
f(x1, . . . , xn, y + 1) = h(x1, . . . , xn, y, f(x1, . . . , xn, y))

for g and h computable respectively by clean structured programs G andH,
using at most the registers R0, . . . , Rz for z > n + 2. The following pro-
gram F allows to compute f :



114 6. Church-Turing thesis

Program F

Rz+1 := Rn+1

hInstructions of Gi

Rn+1 := 0

Rn+2 := R0

for i = 1 to Rz+1 do
R0 := 0

hInstructions of Hi

Rn+1 := Rn+1 + 1

Rn+2 := R0

end

Note once again that if G,H does not use while loops, then the program
to compute F does not use any either.

Minimization scheme. Let

f(x1, . . . , xn) = min{x 2 N : 8i 6 x (g(x1, . . . , xn, i)# ^g(x1, . . . , xn, x) = 0)}

for g computable by a clean programG, using at most the registersR0, . . . , Rz

for z > n+ 1. The following program computes f :

Program F

Rz+1 := 1

Rn+1 := 0

while Rz+1 6= 0 do
R0 := 0

hInstructions of Gi

Rz+1 := R0

Rn+1 := Rn+1 + 1

end

Rn+1 := Rn+1 � 1

R0 := Rn+1

This concludes the proof.

3.3. Study of primitive recursive functions

We now move on to the more di�cult part of this chapter. In order to
show that the functions computable by structured programs are general
recursive functions, we need a certain number of tools, in particular on
the primitive recursive functions. We alternate di↵erent propositions and



3. Detailed study of recursive functions 115

exercises allowing to see that it is a large class of functions. Let us recall
the notations of Definition 1.1 for the basic primitive recursive functions:

Notation

We denote by pn
i
: Nn

! N the projection such that pn
i
(x1, . . . , xn) =

xi. We denote by cn
i

: Nn
! N the constant function such

that cn
i
(x1, . . . , xn) = i. We denote by succ : N ! N the successor

function, defined by succ(n) = n+ 1.

Exercise 3.12. (?) Show that addition, multiplication and the exponential
function are primitive recursive. ⇧

Exercise 3.13. (?) Show that the predecessor and subtraction functions
are primitive recursive (as our functions are valued in N, we will use 0
instead of the result if it is negative). ⇧

Exercise 3.14. (?) Show that the function sg : N! N which associates 0
with 0 and which associates 1 with all other integers, is primitive recursive.
Show that the function sg : N ! N which associates 0 with 1 and which
associates 0 with all other integers, is primitive recursive. ⇧

Definition 3.15. A predicate P ✓ Nn is primitive recursive (resp. gen-
eral recursive) if there exists a primitive recursive (resp. general recursive)
function f : Nn

! {0, 1} such that (x1, . . . , xn) 2 P $ f(x1, . . . , xn) = 1
for all x1, . . . , xn 2 N. }

Example 3.16. The comparison predicates 6, <,>, >,=, 6= are primi-
tive recursive via the following functions:

a 6 b = sg(succ(b)� a) a > b = b < a
a < b = sg(b� a) a = b = (a 6 b)⇥ (b 6 a)
a > b = b 6 a a 6= b = sg(a = b)

Formally, the projections are used if necessary, for example to reverse
the order of the parameters in the definition of > from that of 6.

Proposition 3.17. The primitive recursive functions are closed under def-
inition by case on a primitive recursive predicate: if g and h are two prim-
itive recursive functions from Np to N, and if P is a primitive recursive
predicate on Np, then the function

f(x1, . . . , xp) = g(x1, . . . , xp) if P (x1, . . . , xp)
= h(x1, . . . , xp) otherwise



116 6. Church-Turing thesis

is primitive recursive. ?
Proof. Since P is a primitive recursive predicate, there exists a func-
tion d : Nn

! N such that

d(x1, . . . , xp) = 1 if P (x1, . . . , xp)
= 0 otherwise.

We therefore define:

f(x1, . . . , xp) = g(x1, . . . , xp)⇥ sg(d(x1, . . . , xp))+
h(x1, . . . , xp)⇥ sg(d(x1, . . . , xp))

The proof of the following proposition provides an example of application
of the definition by case.

Proposition 3.18. The integer division is primitive recursive. ?

Proof. We use the primitive recursion scheme coupled with the case def-
inition scheme. We define div(a, b) = div(a, b, a) where:

div(a, b, 0) = 0
div(a, b, n+ 1) = succ(n) if succ(n)⇥ b = a

= div(a, b, n) otherwise.

Exercise 3.19. (?) Show that the primitive recursive predicates are
closed under conjunction, disjunction, negation, bounded existential quan-
tification and bounded universal quantification. ⇧

Exercise 3.20. (?) Show that the primitive recursive functions are closed
under bounded minimization: if f : Np+1

! N is primitive recursive, then
the function g : Np+1

! N which to x1, . . . , xp, n associates the smallest t 6
n such that f(x1, . . . , xp, t) = 0 (and 0 if such a t 6 n does not exist), is
primitive recursive. ⇧

Let us remember Cantor’s bijections as defined in Section 2-3. The en-
coding of the pairs hx1, x2i is a notation for the application of the bijec-
tion ↵2 : N2

! N defined by

↵2(x, y) = y +
(x+ y + 1)(x+ y)

2

The hx1, . . . , xki encoding of the n-tuples is a notation for the application of
the bijections ↵k : Nk

! N defined inductively by ↵k+1(x1, x2, . . . , xk+1) =
↵2(x1,↵k(x2, . . . , xk+1)).



3. Detailed study of recursive functions 117

Proposition 3.21. For all n the bijection

x1, . . . , xn 7! hx1, . . . , xni

is primitive recursive. For all n and all i 6 n the function

hx1, . . . , xni 7! xi

is primitive recursive. ?

Proof. Addition, multiplication and integer division being primitive re-

cursive, the function (x, y) 7! y +
(x+ y + 1)(x+ y)

2
is also primitive

recursive by the composition scheme. It is therefore the same for all n for
the functions x1, . . . , xn 7! hx1, . . . , xni which are defined inductively by
composition.

The function which to hx1, x2i associates x1 is primitive recursive using
bounded minimization and the closure of primitive recursive predicates by
bounded existential quantification:

f(n) = min{x 6 n : 9y 6 n hx, yi = n}.

We leave it to the reader to embroider on this idea to show that all the
projections are thus primitive recursive.

We have at this stage all the elements necessary to show an important first
theorem. We saw with Theorem 3.11 that primitive recursive functions can
be programmed by structured programs with no while loops. The converse
is true:

Theorem 3.22
Any function computable by a structured program without while loops
is primitive recursive.

Proof. For k 2 N given, and for a structured program P without while
loops and using at most the registers R0, . . . , Rk, we define the function fP :
N ! N by fP (hx0, . . . , xki) = hv0, . . . , vki where vi is the value of the
register Ri at the end of the execution of the program P , when its execution
begins with its registers initialized to the values x0, . . . , xk.

Let us show that for any structured program P without while loops, the
corresponding function fP is primitive recursive. It is clear that this is the
case for the empty program. Let Q be the program whose only instruction
is Ri := Ri + 1. Then, the function fQ is given by fQ(hx0, . . . , xki) =
hx0, . . . , xi + 1, . . . , xki. We leave it to the reader to find the primitive
recursive function corresponding to the instructions Ri := Ri � 1, Ri := c
for c 2 N and Ri := Rj .



118 6. Church-Turing thesis

Suppose now that the proposition is true for programs P, P 0, via func-
tions fP , fP 0 and let Q be the program “if Rj = 0 then P else P 0 ”. The
function fQ is therefore given by

fQ(hx0, . . . , xki) = fP (hx0, . . . , xki) if xj = 0
= fP 0(hx0, . . . , xki) otherwise.

Suppose now that the proposition is true for programs P , via functions fP
and let Q of the following form: “for i = 1 to Rj do P”. The function fQ
is given by:

fQ(hx0, . . . , xki) = g(hx0, . . . , xki, xj)

where
g(hx0, . . . , xki, 0) = hx0, . . . , xki

g(hx0, . . . , xki, z + 1) = fP (g(hx0, . . . , xki, z)).

Suppose now the proposition true for programs P, P 0, via functions fP , fP 0

and letQ consist of the instructions of P followed by those of P 0. Then, fQ =
fP 0(fP (hx0, . . . , xki)).

Using each of the cases described, we show by induction that the state of
the registers of any structured program without while loops is a primitive
recursive function. All we have to do is retrieve the value of the R0 register.

3.4. Study of the Ackermann function

There are several ways of seeing that not all computable functions are
primitive recursive. The following is the most natural for the expert in
computability theory for whom e↵ective diagonalizations no longer hold
any secrets:

Exercise 3.23. (?) Show that there exists a computable set A ✓ N such
that n 7! �e(n) is a primitive recursive function for all e 2 A and such
that every primitive recursive function has a code in A. Deduce that there
exists a total computable function which is not primitive recursive. ⇧

A commonly given example of a computable non-primitive recursive func-
tion is Ackermann’s function:

Definition 3.24 (Fonction d’Ackermann [3]). Define the functionsAn :
N! N by induction on n 2 N as follows.

• A0 is the function x 7! 2x;



3. Detailed study of recursive functions 119

• An+1(x) is the application x times of the function An on 1:

An(An(. . . (An(1)))).

Formally:
A0(x) = 2x

An+1(0) = 1
An+1(x) = An(An+1(x� 1)).

Ackermann’s function is the n 7! An(n) function. }

The Ackermann function is growing extremely fast: A(0) = 1, A(1) =
2, A(2) = 16, and A(3) is already equal to 65,536 iterations of the func-
tion x 7! 2x (starting at 0), that is:

A(3) = 2

 
2

✓
...(2

0)
◆!

where the power is iterated 65, 536 times.

Despite its very strong growth, the Ackermann function is computable:
to compute An(n), we can use a stack containing either functions An

(in practice a representation of these functions), or integers. For exam-
ple, if we stack An, An+1 and then k, this corresponds to the computa-
tion An(An+1(k)). So the top of the stack is always an integer, and the ele-
ment that follows (if it exists) is always a function. Also to compute An(n)
we proceed as follows:

1. We stack An, then we stack n.

2. As long as the stack contains more than one element:

(a) We unstack the integer k, then we unstack the function Am.

(b) If m = 0 we stack 2k.

(c) Otherwise, if k = 0 we stack 1.

(d) Otherwise we stack Am�1, then Am and finally k � 1.

The algorithm will halt when the stack contains only one element, the result
of the computation of An(n).

We leave in exercise the proof that Ackermann’s function grows faster than
any primitive recursive function, and is therefore not itself primitive recur-
sive.

Exercise 3.25 (Cori and Lascar[45]). (?)

(1) Show that An(x) > x for all n, x.

(2) Show that the function An is strictly increasing for all n.



120 6. Church-Turing thesis

(3) Show that the function n 7! An(x) is increasing for all x.

(4) Show that An+1(x + y) > A(y)
n (x) for all n, x, y, where f (m)(x) de-

notes f(f(. . . f(x) . . . )) where the function f is iterated m times.

(5) Show that for all n, we have An+2(x) > A(x+1)
n (x+1) for almost all x.

(6) Let n > 0 and f : Nn
! N. We denote by P (f) the predicate

9k 81x1, . . . , xn Ak(max(x1, . . . , xn)) > f(x1, . . . , xn).

Show that P (f) is true for any primitive recursive function f .

Deduce that Ackermann’s function is not primitive recursive. ⇧

Loops of type while are therefore essential to compute certain functions,
and with them comes the possibility of writing programs that do not halt.

3.5. Computable functions are recursive

We are now going to show that the recursive function minimization scheme
allows us to compute any programmable function with or without while

loops. To do this we start by seeing how to simulate list structures of
arbitrary size by integers. This indeed seems at the moment to be a lack of
our register machine model and structured programs. For example, we need
a stack to compute the Ackermann function via the algorithm mentioned
above.

Proposition 3.26. There exists a bijection [] :
S

n2N N
n
! N (where we

denote by [x1, . . . , xn] the integer corresponding to n-tuple (x1, . . . , xn),
such that the following operations are primitive recursive:

1. The function :: to add to the top of the list defined by a :: [x1, . . . , xn] =
[a, x1, . . . , xn].

2. The head and tail functions hd and tl, defined by

hd([]) = 0
hd(x :: l) = x

tl([]) = 0
tl(x :: l) = l.

3. The || size function of a list defined by |[x1, . . . , xn]| = n.

4. The get and set functions such that

get([x0, . . . , xn�1], i) = xi if i < n
get([x0, . . . , xn�1], i) = 0 otherwise



3. Detailed study of recursive functions 121

and

set([x0, . . . , xn�1], a, i) = [x0, . . . , xi�1, a, xi+1, . . . , xn�1] if i < n
set([x0, . . . , xn�1], a, i) = [x0, . . . , xn�1] otherwise

?

Proof. The bijection [] :
S

nıN N
n is defined by induction starting with

the empty list [] = 0 and applying the operation of adding to the head of
the list defined by a :: l = 1 + ↵2(a, l) where ↵2 : N2

! N is the bijection
of Exercise 2-3.7. It is clear that the addition function at the head is
primitive recursive, as are the functions hd and tl obtained thanks to the
inverse functions of (x1, x2) 7! hx1, x2i. Let us show that the coding of the
lists thus obtained is indeed a bijection.

Let us show by induction that two lists of di↵erent sizes cannot be encoded
by the same element. The code for an empty list is 0 and the code for a
non-empty list is of the form 1+↵2(a, l) 6= 0. So the code for an empty list
is always di↵erent from the code for a non-empty list.

Now suppose that all the lists of size n have a di↵erent code than the lists
of size m > n. Let us show that all lists of size n+ 1 have a di↵erent code
from that of lists of size m > n + 1. The codes of lists of size n + 1 are
of the form 1 + ↵2(a, l1) for l1 the code of a list of size n. The codes of
lists of size m > n + 1 are of the form 1 + ↵2(b, l2) for l2 the code of a
list of size m > n. By induction hypothesis, we necessarily have l1 6= l2
and since ↵2 is injective, we necessarily have 1 + ↵2(a, l1) 6= 1 + ↵2(b, l2).
So the codes of lists of size n + 1 are di↵erent from the codes of lists of
size m > n+1. By induction, we deduce that the codes of lists of di↵erent
sizes are di↵erent.

Let us now show by induction on k that if (a1, . . . , ak) 6= (b1, . . . , bk), then
we have [a1, . . . , ak] 6= [b1, . . . , bk]. For k = 1 we have that a1 6= b1 im-
plies 1 + ↵2(a1, 0) 6= 1 + ↵2(b1, 0) because ↵2 is injective. We therefore
have [a1] 6= [b1]. Suppose this is the case for k and show that this is
the case for k + 1. Suppose (a1, . . . , ak+1) 6= (b1, . . . , bk+1). If a1 6= b1,
then we have 1 + ↵2(a1, [a2, . . . , ak+1]) 6= 1 + ↵2(b1, [b2, . . . , bk+1]) be-
cause ↵2 is injective. If (a2, . . . , ak+1) 6= (b2, . . . , bk+1), then by induc-
tion hypothesis we have [a2, . . . , ak+1] 6= [b2, . . . , bk+1] and therefore 1 +
↵2(a1, [a2, . . . , ak+1]) 6= 1 + ↵2(b1, [b2, . . . , bk+1]) because ↵2 is injective.
By induction, for all k we have therefore (a1, . . . , ak) 6= (b1, . . . , bk) im-
plies [a1, . . . , ak] 6= [b1, . . . , bk]. The function [] is therefore injective.

Let us now show that [] is surjective. Let us assume absurdly that this
is not the case. In this case there exists a smallest n such that n is not
the code of any list. Note that we necessarily have n > 0 because 0 is the
code of the empty list. Also as ↵2 is surjective, there exists (a, b) such
that ↵2(a, b) = n � 1 and therefore such that 1 + ↵2(a, b) = n. We also



122 6. Church-Turing thesis

necessarily have b 6 n� 1 < n. Also by minimality of n, there must exist
a list l of which b is the code. So n is the code of the list a :: l, which
contradicts our hypothesis on n.

In order to show that the functions ||, get and set are primitive recursive,
we give a primitive recursive definition of the function tl(l, n) which cuts
o↵ a list l of its n first elements:

tl(l, 0) = l
tl(l, n+ 1) = tl(tl(l, n)).

The size is then defined via the minimization scheme bounded by |l| =
min{n 6 l : tl(l, n) = []}. The get function has the following primitive
recursive definition: get(l, n) = hd(tl(l, n)). The set function is defined in
two steps, by first adding an additional parameter:

set(l, a, i) = set(l, a, i, i)
set(l, a, n, 0) = a :: tl(l, succ(n))

set(l, a, n, i+ 1) = get(l, n� succ(i)) :: set(l, a, n, i)

We now have all the elements necessary to show that functions computable
by structured programs are recursive.

Theorem 3.27
Any function that can be computed by a goto program (and therefore
also by a structured program) is a general recursive function.

The rest of the section is devoted to the proof, for which we need to fix an
encoding of goto programs and register machines.

Coding of goto programs. We code the instructions of goto programs
as follows:

• “Ri = Ri + 1” is encoded by h0, ii

• “Ri = Ri � 1” is encoded by h1, ii

• “Ri = 0” is encoded by h2, ii

• “if Ri = 0 goto n1 else n2” is encoded by h3, hi, hn1, n2iii

• “goto n” is encoded by h4, ni

For uniformity reasons, it will be useful to have a bound on the maximum
index of the registers used. The code of a goto program is simply given by
the code: hk, [I1, . . . , In]i where k is such that the program uses at most
the registers R0, . . . , Rk, and where Ie is the code of the e-th instruction
for 1 6 e 6 n.



3. Detailed study of recursive functions 123

Coding of register machines. We now fix an encoding of the state of a k
register machine. This state is given by the value of the registers as well as
by the index of the next instruction to be executed. For a given number of
registers k, this code is hm, [R0, . . . , Rk]i where m is the instruction number
and Ri is the value of register number i for 0 6 i 6 k.

Initialization function. Let us now fix an initialization function init,
which given a code e = hk, Ii of a program (where I is a list of instructions),
and given values x1, . . . , xn (for n 6 k), returns the code representing the
state of the k register machine, at the start of the computation.

init(hk, Ii, x1, . . . , xn) = h0, 0 :: x1 :: . . . :: xn :: aux(k � n)i

with aux defined by

aux(0) = []
aux(k + 1) = 0 :: aux(k).

It is clear that the function init is primitive recursive.

Transition functions 1. We define a transition function tr1, which given
the code e = hk, Ii of a program and the code p = hm,Ri of the state of a
machine, returns the number of the next instruction to be executed at the
next computation step. We will use for that a function cur : N! N which,
given the code e = hk, Ii of a program and the code p = hm,Ri of the state
of a machine, allows to obtain the current instruction of the machine:

cur(hk, Ii, hm,Ri) = get(I,m).

Using the function cur, the functions ⇡1,⇡2 such that n = h⇡1(n),⇡2(n)i
we define tr1(e, p) as being:

⇡1(p) + 1 if ⇡1(cur(e, p)) 6 2
⇡1(⇡2(⇡2(cur(e, p)))) if ⇡1(cur(e, p)) = 3 and

get(⇡2(p),⇡1(⇡2(cur(e, p)))) = 0
⇡2(⇡2(⇡2(cur(e, p)))) if ⇡1(cur(e, p)) = 3 and

get(⇡2(p),⇡1(⇡2(cur(e, p)))) 6= 0
⇡2(cur(e, p)) if ⇡1(cur(e, p)) = 4.

It is clear that tr1 is primitive recursive.

Transition functions 2. We now define a transition function tr2 which,
given the code e of a program and the code p of the state of a machine,
allows to obtain the state of the registers from the machine to the next
computation step.



124 6. Church-Turing thesis

For that, we will use two primitive recursive functions inc : N ⇥ N ! N
and dec : N⇥ N! N, such that

inc([x0, . . . , xn], i) = [x0, . . . , xi + 1, . . . , xn]
dec([x0, . . . , xn], i) = [x0, . . . ,max(0, xi � 1), . . . , xn]

defined as follows.

inc(l, i) = set(l, succ(get(l, i)), i)
dec(l, i) = set(l, pred(get(l, i)), i).

We can now define tr2(e, p) as being:

inc(⇡2(p),⇡2(cur(e, p))) if ⇡1(cur(e, p)) = 0
dec(⇡2(p),⇡2(cur(e, p))) if ⇡1(cur(e, p)) = 1

set(⇡2(p), 0, cur(e, p)) if ⇡1(cur(e, p)) = 2
⇡2(p) otherwise.

It is clear that tr2 is primitive recursive.

End of the proof. We now define the function tr : N⇥N! N of transition
from one state to another:

tr(e, p) = htr1(e, p), tr2(e, p)i.

Then we define the primitive recursive function st : N ⇥ Nn
⇥ N ! N

such that st(e, x1, . . . , xn, t) returns the state of the machine which exe-
cutes the program e, with the registers R1, . . . , Rn, initialized respectively
to x1, . . . , xn, after t computation steps.

st(e, x1, . . . , xn, 0) = init(e, x1, . . . , xn)
st(e, x1, . . . , xn, t+ 1) = tr(e, st(e, x1, . . . , xn, t)).

We finally arrive at the stage for which we need a minimization scheme,
leaving the possibility for a function not to be defined on certain inputs.
The recursive function time : N⇥ Nn

! N gives the smallest computation
time necessary for the machine to halt, i.e., arrives at an instruction number
greater than the number of instructions in the program. The function
will be defined if and only if the machine halts for the program and the
corresponding inputs.

time(e, x1, . . . , xn) = min{t 2 N : ⇡1(st(e, x1, . . . , xn, t)) > |⇡2(e)|}.

Finally, here is the recursive function which corresponds to the computation
of the code machine e. We launch the transition function for the number



3. Detailed study of recursive functions 125

of steps necessary before the machine halts, and we return the value of the
register R0:

f(x1, . . . , xn) = hd(⇡2(st(e, x1, . . . , xn, time(e, x1, . . . , xn)))).

This concludes the demonstration.

3.6. Consequences

According to the previous proof, given our encoding of a program by an
integer e, its execution for t computation steps is a primitive recursive func-
tion and therefore itself computable by a structured program. The search
for this smaller computation time can be done using a while loop. Note
further that the proof is uniform: the same primitive recursive function
adapts according to any code e of a program.

This makes it possible to obtain Theorem 3-3.1 of the existence of a uni-
versal program, used throughout the book, via the notation �e for the code
program e.

Theorem (3-3.1)
Let n 2 N⇤. There exists a code e of a computer program for which �e :
Nn+1

! N is such that for all x1, . . . , xn we have

• �e(a, x1, . . . , xn)" i↵ �a(x1, . . . , xn)"

• �e(a, x1, . . . , xn)#= y i↵ �a(x1, . . . , xn)#= y

The code e of the above theorem is a code of the function

(x1, . . . , xn) 7! hd(⇡2(st(a, x1, . . . , xn, time(a, x1, . . . , xn))))

given at the end of the previous section. The function (a, x1, . . . , xn) 7!
time(a, x1, . . . , xn) which looks for the smallest computation time such that
the program halts is the only one which uses the minimization scheme. Note
that this also makes it possible to give a precise mathematical definition to
the notations �a(x1, . . . , xn)[t] # and �a(x1, . . . , xn)[t] ": they correspond
respectively to the primitive recursive predicates:

9s 6 t ⇡1(st(e, x1, . . . , xn, s)) > |⇡2(e)|
et 8s 6 t ⇡1(st(e, x1, . . . , xn, s)) < |⇡2(e)|





Chapter 7
Immunity and function growth

Computability theory studies the computational power of sets of integers,
modulo the Turing reduction. In this chapter, we will study in particular
two large families of computational properties, namely, the ability to com-
pute sets that are di�cult to describe (immune, hyperimmune, e↵ectively
immune set), and the ability to compute fast-growing functions (hyperim-
mune function, dominating function). Let us take a few examples.

Example 1. According to Exercise 3-7.10, any infinite c.e. set contains
a computable infinite subset. What computational power is needed to
obtain an infinite set that does not have any computable infinite subset?
We will study this in Section 1 under the concept of immune set.

Example 2. According to Kleene’s fixed point theorem 3-6.2, for any
total computable function f : N! N, there exists a program code e such
that �f(e) = �e. What is the computational power of a function with
no fixed point? This notion will be studied in Section 2.

Example 3. Every computable function is trivially dominated by a com-
putable function. How much computational power does it take to com-
pute a function that is not dominated by any computable function? This
will be the subject of Section 4.

It is di�cult to form an intuition on the a priori computational power of
properties formulated in such a diverse way, and in particular to compare
them. The properties taken from the three preceding examples however

– 127 –



128 7. Immunity and function growth

admit characterizations which will make this comparison easier. In gen-
eral, the existence of numerous characterizations of the same computational
power with very diverse formulations is a guarantee of the robustness of
the concept. This is particularly the case for the properties studied in this
chapter.

1. Immune sets

The first family of computational properties on sets relates to the ability to
approximate the elements of a set. A set is computable if it is possible to
compute e↵ectively which elements belong to it or not. At the next level, a
set is computable enumerable if there is a computable procedure for listing
all of the elements that belong to it, but potentially out of order, so it is
usually not possible to be certain that a element does not belong to the
set. We are now going to study the computational power of infinite sets for
which it is not even possible to enumerate in a computable way an infinite
quantity of its elements.

Definition 1.1. An infinite set A ✓ N is immune if it does not contain
any infinite c.e. subset. }

As we have seen, every infinite c.e. set contains a computable infinite subset.
Thus, in an equivalent manner, an infinite set is immune if and only if it
does not contain a computable infinite subset. In particular, any immune
set A is necessarily non-computable, because A would then be its own
infinite computable subset contradicting its immunity.

Immunity is a concept of set, but not of degree. Indeed, if A is an immune
set, the set A� N = {2n : n 2 A} t {2n+ 1 : n 2 N} has the same Turing
degree as A, but A�N has the infinite computable subset {2n+1 : n 2 N}.
Conversely, any non-computable Turing degree contains an immune set, as
the following proposition shows.

Proposition 1.2. Any non-computable set is Turing equivalent to an im-
mune set. ?

Proof. Let A be a non-computable set. LetB = {� 2 2<N : � � A} be the
set of initial segments of A. In particular, A ⌘T B. It is also obvious that
any infinite subset of B allows to compute arbitrarily large initial segments
of A, and therefore A (as well as B). Since A is not computable, B does
not have any computable infinite subset.

The notion of immunity has two orthogonal reinforcements, namely e↵ec-
tive immunity and hyperimmunity. These two notions are fundamental



2. DNC functions 129

computational properties in computability theory, and we will see for each
of them several equivalent definitions. Recall that We denotes the c.e. set
of code e: {n : �e(n)#}.

Definition 1.3. An infinite set A ✓ N is e↵ectively immune if there
exists a total computable function h : N ! N such that for any code e,
if |We| > h(e) then We 6✓ A. }

Intuitively, an infinite set A is e↵ectively immune if not only do infinite sets
end up erring and enumerating an element outside A, but even more so, this
error must occur after su�ciently few elements enumerated, depending on
the enumeration code. In particular, any group that is e↵ectively immune
is immune.

We will see that the concept of e↵ective immunity is particularly worthy
of interest from the point of view of Turing degrees. The computational
power corresponding to the capacity to compute an e↵ectively immune set
has many characterizations which will be studied in Section 2.

Recall that the canonical code of a finite set F is the integer n =
P

i2F
2i.

Let D0, D1, . . . be the collection of finite sets such that Dn is canonically
encoded by n for all n 2 N.

Definition 1.4. An array is a collection of mutually disjoint finite sets F0, F1, . . .
An array F0, F1, . . . is c.e. if there exists a computable function f : N! N
such that for all n, Fn = Df(n). An infinite set A is hyperimmune if for
any c.e. array F0, F1, . . . , there exists an integer n such that Fn \ A = ;.}

This more complex definition formalizes the idea according to which not
only is it not possible to computably list an infinity of elements of A, but
even more so it is not even possible to approximate infinitely many elements
by block, that is, to list an infinity of pairwise disjoint finite “blocks”, such
that each block contains at least one element of A.

As with the concept of e↵ective immunity, it is the extension of hyperim-
munity to Turing degrees that will be of particular interest to us in what
follows. The computational power corresponding to the capacity to com-
pute a hyperimmune set has many characterizations which will be studied
in Section 4.

Exercise 1.5. Show that any hyperimmune set is immune. ⇧

2. DNC functions

We now see an example of a remarkable Turing degree, the study of which
undoubtedly dates back to the work of Arslanov [8], who studied Turing



130 7. Immunity and function growth

degrees allowing to escape the famous Kleene fixed point theorem: given a
computable function f , there exists e such that �e = �f(e). What power
is needed to compute a function f for which there is no such e? This
work was extended by Jockusch, Lerman, Soare, and Solovay who found an
equivalent characterization, which today constitutes the modern definition
of DNC degree.

Definition 2.1. A function f : N ! N is diagonally non-computable
(DNC) if f(n) 6= �n(n) for all n. }

Let us insist on the fact that the function f must be total in the definition
above. Note that if �n(n) ", there is no restriction on the value of f(n).
A Turing degree is DNC if it contains a DNC function.

Exercise 2.2. (?) Show that the DNC degrees are upward-closed, that is
to say that if a set computes a DNC function, its degree is itself DNC. ⇧

The notion of DNC degree has many applications in the links between
computability theory and algorithmic randomness, as well as in reverse
mathematics. We will see in particular with Corollary 18-4.3 that the
DNC functions are numerous from the point of view of measure theory,
but according to Proposition 10-3.36 rare from the point of view of Baire
categories (we will see in particular the existence of non-DNC degrees which
are not computable).

Let us observe first of all that there is no computable DNC function, by a
simple diagonal argument, which is at the origin of the name “diagonally
non-computable”. On the other hand, the following proposition shows that
we can compute a DNC function using the halting problem.

Proposition 2.3. 00 is of DNC degree. ?

Proof. Let f : N! N be the ;0-computable function, which for an input e,
returns 1��e(e) if e 2 ;

0 and 0 otherwise. This function is DNC, because
it is total, and when �e(e)#, it returns a di↵erent value. Since ;0 computes
a DNC function, and the DNC degrees are upward-closed, 00 is DNC.

We will see in Section 3 that 00 is the only degree which is both DNC and
c.e. It is clear that the DNC degrees are in uncountable quantity, because
it is also the case of the degrees above 00. We will see with Proposition 10
-3.36 that the non-DNC degrees are also uncountable.

For the moment, we endeavor to show that the notion of DNC degree is
natural, in the sense that it has many characterizations via very di↵erent
formulations (and we will see others still in Part II on algorithmic random-
ness).



2. DNC functions 131

Definition 2.4. A function f is fixed-point free if �n 6= �f(n) for all n.}

Theorem 2.5 (Jockusch, Lerman, Soare, and Solovay [105])
Let X 2 2N. Then, the following statements are equivalent:

(1) X computes a diagonally non-computable function.

(2) X computes a free function of fixed point.

Proof. Let us show (1) ) (2). Let g 6T X be such that g(n) 6= �n(n)
for all n. Then also, f 6T X such that f(n) is a code for a computable
function defined only on the input n, and which to n associates g(n). We
have in particular �f(n)(n) #= g(n). Suppose that there exists n such
that �f(n)(m) = �n(m) for all m. Then, �n(n) #= �f(n)(n) #= g(n),
which contradicts the definition of g. So f is a free fixed-point function.

Let us show (2) ) (1). Let f 6T X be a free fixed-point function. Then,
from X we compute the function g : N! N which on the integer n creates
the code en of the function m 7! ��n(n)(m), and returns f(en). We use
here the same abuse of notation as in the proof of the fixed point of Kleene:
if �n(n) " then m 7! ��n(n)(m) denotes the function nowhere defined.
Note that g is total because it does not try to do the computation �n(n).
Suppose that g is not DNC, that is, there is n such that g(n) = �n(n).
By definition of g, f(en) = �n(n). In particular, �f(en) = ��n(n) = �en .
The function f is therefore not free of a fixed point, which contradicts the
definition of f . So g is a DNC function.

Let us now see the equivalence between DNC degree and e↵ectively immune
degree. The third equivalence of the theorem below is more technical, but
is of great interest and will be reused later. It is in fact a reinforcement of
the notion of being DNC: Let us consider the sequence (An)n2N of c.e. sets
defined by

An =

⇢
{�n(n)} if �n(n)#
; otherwise

Being of DNC degree is the ability to compute a function f such that f(n) /2
An for any n. The third equivalence extends this result to the uniform enu-
meration (Wn)n2N of all c.e. sets whose number of elements is known to be
bounded by an integer n.

Theorem 2.6
Let X 2 2N. The following statements are equivalent:

(1) X computes a diagonally non-computable function.



132 7. Immunity and function growth

(2) X computes an e↵ectively immune set.

(3) X compute a function h : N⇥ N! N such that for e, n 2 N,

|We| 6 n) h(e, n) /2We

Proof. (1) ) (3): Let f 6T X be a DNC function. We describe a
uniform process in e, n in order to compute a value which under the as-
sumption |We| 6 n, is not in We. For each 0 6 i < n we compute the
code u(e, i) of the partial computable function which, for any input, looks
for the i-th element k in the enumeration of We, s’ it exists. If such an
element k is found, the function interprets it as the n-tuple hk0, . . . , kn�1i,
and returns ki. Otherwise, the function does not halt. Note that �u(e,i) is
either a constant function or the function defined nowhere.

Let us show that the X-computable function

h(e, n) = hf(u(e, 0)), . . . , f(u(e, n� 1))i

satisfied (3). Let us reason by the absurd, and suppose that h(e, n) 2 We

with |We| 6 n. Let’s say that h(e, n) is the i-th element of We in the order
of enumeration. Then, �u(e,i) is the constant function which finds

k = h(e, n) = hf(u(e, 0)), . . . , f(u(e, n� 1))i

and returns the i-th element of the tuple, that is, f(u(e, i)). In particu-
lar, �u(e,i)(u(e, i))#= f(u(e, i)), which contradicts the hypothesis that f is
DNC.

(3) ) (2): Let h 6T X be a function satisfying (3). Let D0, D1, . . .
be an e↵ective enumeration of all finite sets such that n is the canonical
code of Dn. Let g : N ! N be a partial computable function such that
if |We| > e+1, then Dg(e) ✓We and |Dg(e)| = e+1. We are going to define
a sequence X-computable infinite increasing of integers x0 < x1 < . . . such
that for all s,

8e 6 s (|We| > e) Dg(e) 6✓ {xi : i 6 s}) (?)

It follows that H = {xn : n 2 N} is e↵ectively immune, because if We ✓ H,
then |We| 6 e. The fact that we want xi < xi+1 is simply so that the set H
is X-computable. Suppose that we have already defined x0 < · · · < xs

satisfying (?). Let

Wv(s) = {y : y 6 xs} [

[

e6s+1 t.q. g(e)#

Dg(e)

The goal is to use our function h to find an element which is not in Wv(s).
Let xs+1 be such an element - we’ll see how to get it later. Note first
that xs+1 is strictly greater than xs. Note then that for any e 6 s + 1



2. DNC functions 133

such that |We| > e and such that Dg(e) 6✓ {xi : i 6 s}, then also Dg(e) 6✓

{xi : i 6 s + 1}. Note finally that for e 6 s such that |We| > e we
have Dg(e) 6✓ {xi : i 6 s} by hypothesis, and for e = s + 1, if |We| > e,
we necessarily have Dg(e) 6✓ {xi : i 6 s} because Dg(e) has then s + 2
elements. In all cases we will have (?) for the following (xi)i6s+1. Now
let’s show how to find xs+1 using h. The set Wv(s) has at most xs + 1
plus 1+2+3+ · · ·+ s+2 elements, which gives by the sum of the terms of
an arithmetic sequence ts = xs+1+(s+2)(s+3)/2. We then define xs+1 =
h(v(s), ts). By definition of h, xs+1 /2Wv(s). In particular, xs+1 > xs, and
(?) is satisfied for s+ 1.

(2)) (1): Let H 6T X be an e↵ectively immune set. Let g : N! N be a
total computable function such that if We ✓ H, then |We| < g(e). We will
show that X computes a free function with a fixed point. Let f : N! N be
the X-computable function such that Wf(e) is the set of g(e) first elements
of H. Note that f is X-computable, but that the set Wf(e) is a c.e. set
which in particular does not need X for its enumeration: the elements to
be enumerated can be seen as “hardcoded” in f(e). Let us show that f is
free of a fixed point. Let e 2 N. If Wf(e) = We, then We ✓ H, but |We| =
|Wf(e)| = g(e), which contradicts the choice of H and g. As X computes
a free function of fixed point, then by Theorem 2.5, X computes a DNC
function.

We will stop there for now. We will see other characterizations of the
notion of DNC degree in relation to algorithmic randomness. Finally, let
us mention a hierarchy which follows naturally from the definition of DNC
degree.

Definition 2.7. Let f : N ! N be a function such that 2 6 f(n) 6
f(n + 1). A set X ✓ N is of DNCf degree if X computes a function g
such that g(n) < f(n) and g(n) 6= �n(n) for all n. }

An examination of the definition indicates that the slower the function f
grows, the more di�cult it seems for a function to be DNCf . This is indeed
the case, as we can see with the following theorem, due to Ambos-Spies,
Kjos-Hanssen, Lempp and Slaman [6]:

Theorem 2.8
Let f be a function such that 2 6 f(n) 6 f(n + 1). There exists
a function g such that 2 6 g(n) 6 g(n + 1) and with f < g for
which DNCf ( DNCg, i.e., there exists a set X which computes a DNCg

function but which does not compute any DNCf function.



134 7. Immunity and function growth

As announced earlier, we will see many examples of non-DNC and non-
computable degrees, but it is informative to ensure their existence by direct
construction.

Exercise 2.9. (??) Show by the finite extension method that there are
�0

2 degrees which are simultaneously non-DNC and non-computable. ⇧

3. Arslanov completeness criterion

The Arslanov completeness criterion reflects in a certain way an incompat-
ibility between the c.e. and DNC degrees.

C.e. degree
A Turing degree is said to be computably enumerable or c.e. if it contains
a computably enumerable set. We will see in Chapter 13 that 00 is far
from being the only c.e. degree

It is easy to compute a DNC function using the halting problem, as shown
in Theorem 2.3. On the other hand, the Arslanov completeness criterion
proves that 00 is the only degree at the same time c.e. and DNC.

Theorem 3.1 (Arslanov completeness criterion [8])
Let A 2 2N be a c.e. set Then, A is Turing complete i↵ A computes a
DNC function.

Proof. By Theorem 2.3, if A is Turing complete, it computes a DNC
function. Let’s show the converse. Let (As)s2N be a c.e. approximation
of A, that is to say with lims!1 As = A, and As ✓ As+1. Note that
if As �n= A�n then also for all t > s we will have At �n= A�n.
Let � be a total functional on the oracle A and such that �(A, n) 6= �n(n)
for all n. Uniformly in n, we compute the code an of the partial func-
tion which on any input k acts as follows: look for the smallest t such
that ;0[t](n) = 1, then if that happens and if �(At �m, an)[t] halts for
some m 6 t, then return the value of �(At �m, an)[t] and otherwise diverge.
Note that the code an is defined as a function of an itself, which is made
possible by the fixed point theorem.

We claim that for all n, if ever ;0(n) = 1, then the smallest t such that �(At �m
, an)[t] # for m 6 t such that At �m= A �m, is strictly greater than the
smallest t such that ;0[t](n) = 1. Suppose this is not the case, i.e., there
exists n for which ;0(n) = 1 and for which given t the smallest integer
such that ;0[t](n) = 1, we have also �(At �m, an)[t] # for m 6 t such



4. Hyperimmune functions 135

that At �m= A�m. In this case, by the procedure described above, we will
have �an(an) = �(At �m, an) and therefore �an(an) = �(A �m, an) which
contradicts the fact that � computes a DNC function on the oracle A.

The oracle A can therefore compute ;0 by simply looking for the smallest
computation time t such that At �m= A�m and �(At �m, an)[t]# for m 6 t,
and then looking if ;0[t](n) = 1. If so then ;0(n) = 1. Otherwise ;0(n) = 0.

The Arslanov completeness criterion knows several extensions, in particular
by Jockusch and al. [105]. We give one of them in an exercise that will allow
us to manipulate the principles of the previous proof.

Exercise 3.2. (??) (Bienvenu and al.[17]). A function g is DNC relative
to C, denoted DNC(C), if g(n) 6= �n(C, n) for all n. Let X 2 2N of DNC
degree, and C a c.e. set Show that either X � C >T ;

0 or X is of DNC
degree relative to C.

Indication .– Let g be a DNC function. Define codes an,m such that �an,m(an,m)

is equal to �m(Cs,m) for the smallest s such that n 2 ;0[s]. Show that
either there exists n such that the function m 7! g(an,m) is DNC relative

to C, or g � C computes ;0. ⇧

Note that the previous exercise implies the Arslanov completeness criterion,
because if X and C are of the same degree, either C >T ;

0, or C is of DNC
degree relative to C, which is impossible.

4. Hyperimmune functions

We now approach a second family of computational properties, based on
the ability to compute fast-growing functions. Exponential functions, or
even exponential towers, can be computed, and therefore do not provide
additional computational power. We are talking here about functions whose
growth rate makes any mental representation di�cult.

We have already seen in Section 4-7 that the capacity to grow faster than
certain functions allowed to compute the �0

2 sets. We are now going to
study the computational power related to functions which are not dom-
inated by any computable function. The study of these functions was
initiated by Martin and Miller [162].

Definition 4.1. A function g dominates a function f if g(x) > f(x) for
all x 2 N. A function f : N ! N is hyperimmune if it is not dominated
by any computable function. }



136 7. Immunity and function growth

In particular, the computable functions being stable under finite modi-
fications, a function f : N ! N is hyperimmune if for any computable
function g : N! N, f(x) > g(x) for an infinity of values x:

Exercise 4.2. Show that a function f is hyperimmune i↵ for any to-
tal computable function g, there is an infinite number of integers x such
that f(x) > g(x). ⇧

x

y

computable function

hyperimmune function

Figure 4.3: Illustration of a hyperimmune function: it does not necessarily
grow very fast, but for every computable function f , it is infinitely often
above f .

Like DNC degrees, Turing degrees for hyperimmune functions are upward-
closed. A Turing degree is hyperimmune if it contains a hyperimmune
function, or equivalently, if one of its elements computes a hyperimmune
function. The name “hyperimmune function” comes from the following
correspondence with hyperimmune sets.

Proposition 4.4. An infinite set X is hyperimmune i↵ the function pX :
N! N which to n associates the n-th element of X is hyperimmune. ?

Proof. ) Let X be a hyperimmune set and let g : N! N be a total com-
putable function. Let us show that pX is not dominated by g. Let h(x) =
g(x) + x + 1, and let (Fn)n2N, be the c.e. array defined by Fn = [h(n)(0),
h(n+1)(0)[, where h(n) is the n-th iteration of h, with h(0) the identity func-
tion. By hyperimmunity of X, there exists n such that Fn \ X = ;. This
means that pX(h(n)(0)) > h(n+1)(0) = h(h(n)(0)). By taking x = h(n)(0),
we have pX(x) > h(x) = g(x) + x+ 1, so pX is not dominated by g.

( Suppose that pX is a hyperimmune function. Let us reason by the
absurd, supposing that the set X is not hyperimmune. In other words,
there exists a c.e. array (Fn)n2N such that Fn \ X 6= ; for all n. Then, the
function g : N ! N defined by g(n) = max

S
i6n

Fi is total computable,
and dominates pX , contradicting the hyperimmunity of pX .

It follows that a degree is hyperimmune if and only if it contains a hyper-
immune set.



5. Computably dominated degrees 137

Exercise 4.5. Show that hyperimmune degrees are upward-closed. In
other words, if X computes a hyperimmune function, then the Turing de-
gree of X contains a hyperimmune function. ⇧

Exercise 4.6. Show by the finite extension method that there exists a set
of hyperimmune degree. ⇧

The existence of non-computable and non-hyperimmune degrees is cur-
rently unclear. We will see in the next section that such degrees do exist,
even if we will understand later that this is not granted, in the sense that
“many” sets are of hyperimmune degree (see Proposition 10-3.35 and The-
orem 19-3.4). In fact, we will have to work to show o↵ one that is not.
We see in particular right now that the construction of a non-computable
and non-hyperimmune degree cannot be done using ;0. In particular con-
structions by finite extensions as seen in Section 4-8, which are all e↵ective
in ;0, will not work.

Proposition 4.7 (Martin and Miller [162]). Every non-computable�0
2 set

is hyperimmune. ?

Proof. Let A be a non-computable �0
2 set, and let A0, A1, . . . be a �0

2 ap-
proximation of A. Recall that the computation function (Definition 4-7.7)
is defined as the function cA : N ! N which to x associates the smallest
integer n > x such that An �x= A �x. In particular, cA 6T A. According
to Theorem 4-7.9, any function dominating cA computes A. As A is not
computable, cA is not dominated by any computable function, in other
words cA is hyperimmune.

We now move on to the existence of non-computable and non-hyperimmune
degrees, which are called computably dominated.

5. Computably dominated degrees

By upward-closure of the hyperimmune degrees, a Turing degree is not
hyperimmune if any function f that it computes is dominated by a com-
putable function g (which depends on f).

Definition 5.1. A setX is computably dominated if for any function f 6T

X there exists a computable function g dominating f . A Turing degree d
is computably dominateda if all X 2 d is computably dominated. }

aThe terminologies “computably dominated” and “hyperimmune-free” coexist.



138 7. Immunity and function growth

Note that being computably dominated is a weakness property and is there-
fore downward-closed in the Turing degrees. In fact the inverse property —
being of hyperimmune degree— is a strength property. The simplest exam-
ple of a computably dominated degree is the Turing degree of computable
sets. The aim of this section is to prove the existence of computably domi-
nated degrees di↵erent from 0. We will in fact see a little later (Theorem 8
-5.1) that the computably dominated degrees are in uncountable quantity:
it is possible to construct an injection f : 2N ! 2N such that for all X,
the set f(X) is of computably dominated degree, and even such that f(X)
and f(Y ) are in di↵erent Turing degrees for X 6= Y (Exercise 8-5.3). The
concept at the heart of the construction which will follow is that of f-tree.

Definition 5.2. An f-tree is a total function T : 2<N
! 2<N such that

for all �, ⌧ 2 2<N, � � ⌧ if and only if T (�) � T (⌧). }

Let T be an f -tree. Note that the image of T (ImT ) is not closed under
prefix in general. Note also that for all � 2 2<N, T (�0) and T (�1) are
two incompatible strings extending T (�). Only the image of an f -tree T is
important. The tree structure of the domain of T canonically induces that
of ImT . The reader may refer to Figure 5.4 for a graphical representation
of an f-tree.

Definition 5.3. Let T be an f-tree. We call nodes the elements of ImT .
A path of T is a sequence P 2 2N of which an infinity of initial segments
belong to ImT . We will denote by [T ] the set of paths of T . }

Figure 5.4 illustrates the fact that an f-tree T induces an injection fT :
2N ! 2N, computable using the f-tree: for X 2 2N, the sequence fT (X) is
computed little by little as being T (X �1) � T (X �2) � . . . . Moreover by
the properties of an f-tree, if X 6= Y then fT (X) 6= fT (Y ).

Definition 5.5. A sub-f-tree of an f-tree T is an f-tree S such that ImS ✓
ImT . }

It follows that if S is a sub-f-tree of T , then [S] ✓ [T ]. We now have the
necessary ingredients to proceed to the proof of the announced theorem.

Theorem 5.6 (Martin and Miller [162])
There is a computably dominated degree d > 0.

Proof. We want to build a set A of computably dominated degree by
satisfying the following requirements (Re)e2N and (Se)e2N:

Re : We 6= A Se : �A

e
total ) �A

e
dominated by a computable function



5. Computably dominated degrees 139

0

0
0
0

0
1
0

0
0
0
0

0
0
0
1
1

0
1
0
1
0

0
1
0
1
1

0
0
0
0
0
1

0
0
0
0
1

0
0
0
1
1
0

0
0
0
1
1
1

0
1
0
1
0
0
1

0
1
0
1
0
1
1

0
1
0
1
1
0

0
1
0
1
1
1
0

. . .
. . .

. . . . . .
. . . . . .

. . .
. . .

0 1

00 01 10 11

000 001
010 011 100 101 110 111

Figure 5.4: Illustration of an f-tree T , whose domain is represented by light
grey strings : T (✏) = 0, T (0) = 000, T (1) = 010, . . .

We are going to build an infinite sequence of computable f-trees T0, T1, T2, . . .
such that for all e 2 N,

(1) Te+1 is a sub-f-tree of Te;

(2) |Te(✏)| > e;

(3) For any path P 2 [T2e+1], the requirement Re is satisfied;

(4) For any path P 2 [T2e+2], the requirement Se is satisfied.

Satisfaction of a requirement Re. Let T be a computable f-tree.
Since �0 = T (0) and �1 = T (1) are incompatible strings, there is some i 2 N
such that �0(i) 6= �1(i). So either �0(i) 6= We(i) or �1(i) 6= We(i). Suppose
we are in the first case, the other being symmetrical. Then, the sub-tree S
of T defined by S(⇢) = T (0⇢) ensures that for all paths P 2 [S], �0 � P ,
therefore P 6= We. Moreover, S is computable in T , therefore computable.

Satisfaction of a requirement Se. Let T be a computable f-tree. We are
going to build a computable sub-tree S such that either �P

e
is partial for

all P 2 [S], or �P

e
is total and dominated by the same computable function

for all P 2 [S]. Note that in addition to satisfying the requirement Se, the
functional �P

e
will be either partial or total whatever the path P . Two

cases arise:



140 7. Immunity and function growth

Case 1: There is a node � 2 ImT and an input x 2 N such that �⌧ (x) "
for any ⌧ 2 ImT such that ⌧ ⌫ �. Let ⇢ 2 2<N be such that T (⇢) = �.
Then, the subtree S of T defined by S(µ) = T (⇢µ) ensures that for all
paths P 2 [S], arbitrarily long initial segments ⌧ of P will satisfy �⌧ (x)".
By the use property, it follows that �P (x)".

Case 2: For any node � 2 ImT and any input x 2 N, there exists ⌧ 2 ImT
such that � � ⌧ and �⌧ (x) #. We will define S, a computable sub-tree

of T such that for all ⇢ 2 2<N, �S(⇢)
e (|⇢|) #. We compute S(✏) as being

the first node of ImT which we find such that �S(✏)
e (0) #. Suppose we

have computed S(⇢). Let µ be such that S(⇢) = T (µ). We compute S(⇢0)
and S(⇢1) as follows: for each i < 2, S(⇢i) is the first node ⌧ 2 ImT
that we find, with ⌧ ⌫ T (µi) and such that �⌧ (|⇢| + 1) #. The algorithm
which searches for the nodes S(⇢0) and S(⇢1) will always succeed, by the
assumption that we are in case 2. By construction, S is indeed an f-tree,
and ImS ✓ ImT . Even more, �P

e
is a total function for all P 2 [S].

Let us show that �P

e
is dominated by a computable function for all P 2 [S].

Let g : N! N be the function defined by g(n) = max{�S(⇢)
e (n) : |⇢| = n}.

Then, for all n 2 N and P 2 [S], �P

e
(n) 6 g(n). The sub-f-tree S of T

satisfies the requirement Se.

Finally, note to satisfy point (2) above that for any computable f-tree T
and any n, there exists a sub-f-tree S such that S(✏) > n. Indeed, it
su�ces to fix a string ⇢ of length n, and to define S(µ) = T (⇢µ). We can
therefore combine the satisfactions of the di↵erent requirements and this
last observation to construct a sequence of f-trees T0, T1, . . . satisfying the
properties (1) (2) (3) and (4) given above.

Remark
Each f-tree Te of the sequence taken independently is computable, but
the sequence T0, T1, . . . is not itself computable.

In order to complete the proof, we need the following lemma.

Lemma 5.7. The intersection
T

e
[Te] contains exactly one element. ?

Proof. Since ImTe+1 ✓ ImTe and since any string of ImTe is an extension
of Te(✏), it is clear that we have T0(✏) � T1(✏) � T2(✏) � . . . .

Moreover as |Te(✏)| > e, the sequence T0(✏) � T1(✏) � T2(✏) � . . . con-
verges to a unique infinite sequence X 2 2N. Since X has an infinity of
prefixes in each Te then X 2 [Te] for all e and therefore X 2

T
e
[Te].

Let A be the element of
T

e
[Te]. For all e 2 N, as A 2 [T2e+2], then the

requirement Re is satisfied for A, hence We 6= A. Moreover, as A 2 [T2e+2],



5. Computably dominated degrees 141

then the requirement Se is satisfied for A, so if �A

e
is total, �A

e
is dominated

by a computable function. It follows that A is computably dominated and
not computable.

Remark

A careful analysis of the previous construction shows that the oracle ;00 is
su�cient to compute the sequence (Te)e2N uniformly. Indeed, the only
non-computable parts are the case analysis, which are ⌃0

2 properties.
Thus, there exists a degree d > 0 both �0

3 and computably dominated.
As we saw with Proposition 4.7, it is not possible to lower this bound
to �0

2.

We will find the structure of f-trees in Chapter 14 to show the existence of
minimal Turing degrees.

Exercise 5.8. (??) Build an f-tree T , by the finite extension method,
such that all X,Y 2 [T ] are in di↵erent Turing degrees. ⇧

Note that we had announced the existence of an uncountable quantity of
computably dominated degrees. This will be done with Theorem 8-5.1. We
now give some equivalences to better understand this notion.

5.1. Truth-table reduction

We suppose in what follows that the functionals considered try to compute
sets of integers and not functions, that is, if �(Y, n)# for a certain oracle Y
and a certain integer n, then �(Y, n)# 2 {0, 1} (if �(Y, n)#/2 {0, 1} we will
consider that the functional diverges).

Consider a functional � and an oracle X such that 8n �(X,n) # 2

{0, 1}. Given another set Y 6= X, there is no reason why we should also
have 8n �(Y, n)#. Totality with one oracle is not necessarily totality with
others, and it should not be very hard for the reader to construct such
examples. But are such partialities necessary? Assuming X >T Y , can we
still compute Y from X via a total functional over all oracles? We will see
that this is not necessarily the case via a restriction of the notion of Turing
reduction.

Definition 5.9. For any set X,Y ✓ N, we say that X is truth-table
reducible to Y , and we write X 6tt Y if there is a functional � such
that �(Y ) = X and such that �(Z) is total for any oracle Z. We
write X ⌘tt Y if X 6tt Y and Y 6tt X. We write X <tt Y if X 6tt Y



142 7. Immunity and function growth

and Y ⇥tt X. We call truth-table degrees the equivalence classes of the
relation ⌘tt. }

Notice the notation �(Y ) = X meaning 8n �(Y, n) = X(n). We will see
several definitions equivalent to the truth-table reduction, starting with the
one justifying its name.

Definition 5.10. A reduction by truth table is given by a computable
sequence of pairs (hC0,n, C1,ni)n2N such that for all n the set C0,n [

C1,n ✓ 2<N contains exactly all the strings of a certain size mn, and such
that C0,n \ C1,n = ;. The set X computes Y via this reduction if for
all n we have Y (n) = i i↵ � 2 Ci,n for a prefix � of X. }

The sets Ci,n are the “truth tables”. Any oracle X has a prefix in C0,n [

C1,n. If the prefix belongs to C0,n then X computes 0 on the input n and
if the prefix belongs to C1,n then X computes 1 on the input n. Let us now
see the di↵erent equivalences to the notion of truth-table reduction.

Theorem 5.11
Let X,Y be sets. The following statements are equivalent:

(1) Y 6tt X

(2) X computes Y via a reduction by truth table.

(3) There exists a functional � and a total computable function b : N!
N such that �(X,n)[b(n)]#= Y (n) for all n.

Proof. Let us show (1)) (2). Suppose �(X) = Y via a total functional �
over all oracles. Given n, we search for the smallest computation time tn
such that for a certain mn 6 tn and for any string � 2 2N of size mn

we have �(�, n)[tn] #. In order to show that such a computing time tn
necessarily exists for all n, we must anticipate a little on Definition 8-1.1
of tree and Lemma 8-1.4 of König to come. Let us assume absurdly that
for a certain n, one cannot find tn. This implies in particular that for
any m, there exists a string � of size m such that 8t �(�, n)[t]". Moreover
if 8t �(�, n)[t]" and ⌧ � � then also 8t �(⌧, n)[t]". We can therefore con-
struct an infinite tree T such that � 2 T implies 8t �(�, n)[t]". According
to König’s lemma T , contains an infinite path Y , which is therefore such
that �(Y, n) " which contradicts the fact that � is total over all its ora-
cles. We can therefore at each step find tn and mn 6 tn, with the set C0,n

of strings of sizes mn on which the computation returns 0 and the set of
strings C1,n of sizes mn on which the computation returns 1.

Let us show (2) ) (3). Given a reduction by truth table given by the
computable sequence (hC0,n, C1,ni)n2N, for any input n we can limit the



5. Computably dominated degrees 143

computation time that the functional takes to halt on n with any oracle:
this is simply the time required to produce the computation of hC0,n, C1,ni.

Let us show (3) ) (1). Let � be a functional and b : N ! N a total
computable function such that �(Y, n)[b(n)] #= X(n) for all n. Then, we
construct the functional  which on all oracles Z and on any input n
launches the computation of �(Z, n) for b(n) steps. If the computation
returns a value in b(n) steps, then  returns that value, otherwise  re-
turns 0. The result of the computation is the same between � and  on
the oracle Y , but  is now total on all oracles.

We now show that the sets X for which X >T Y implies X >tt Y are
exactly the computably dominated sets.

Theorem 5.12 (Jockusch [101], Martin (non publié))
A set X is computably dominated i↵ Y 6T X , Y 6tt X for all Y 2 2N.

Proof. Suppose X is computably dominated. Suppose X >T Y via the
functional �. Let f : N! N be such that �(X,n)[f(n)]#= Y (n) for all n.
Note that f is an X-computable function. There is therefore a computable
function g > f . We therefore have �(X,n)[g(n)] #= Y (n). According to
Theorem 5.11 we have then X >tt Y .

Suppose now that for all Y we have Y 6T X , Y 6tt X. Then, also
for any function f : N ! N, we have f 6T X , f 6tt X, via the
canonical representation of f by a sequence of 2N. Let f 6T X. Let us
show that f is dominated by a computable function g. By hypothesis, f 6tt

X, therefore by Theorem 5.11, there exists a functional � and a total
computable function b : N ! N such that �(X,n)[b(n)] #= f(n) for all n.
We can assume without loss of generality that if �(X,n)[b(n)] #, then the
use of the computation is lower than b(n) (if this is not the case we can
slow down the computation so that it is), therefore �(X �b(n), n)[b(n)] #.
Let g : N! N be the function which for an input n, executes �(�, n)[b(n)]
for any � 2 2<N of length b(n), and returns the maximum of the values
obtained. In particular, g(n) > �(X �b(n), n)[b(n)] = f(n). The function g
dominates f . It follows that X is of computably dominated degree.

We now have three notions of reductions: the many-one reduction, the
truth-table reduction and the Turing reduction. The following proposition
recapitulates some results seen so far, which attest that none coincides with
another.



144 7. Immunity and function growth

Proposition 5.13. For all X,Y we have X 6m Y ) X 6tt Y ) X 6T

Y . No reverse implication is true in the general case. ?

Proof. The implications are clear. Let us show that no reciprocal impli-
cation holds. The set N \ ;

0 is tt-reducible to ;0 but not m-reducible to ;0

because it would then be ⌃0
1 according to Proposition 5-4.3, and there-

fore ;0 would be computable, which is false. The existence of sets X,Y
such that X >T Y but X ⇤tt Y is a consequence of Theorem 5.12 and of
the fact that non-computably dominated degrees exist (for example 00).

6. Martin’s domination theorem

Hyperimmune functions are by definition those functions which are not
dominated by any computable function. It is natural to wonder about the
computational power of the functions which dominate all the computable
functions. Of course, no function f : N! N dominates all the computable
functions, because the constant function f(0) + 1 is not dominated by f .
We can however weaken the property, and wonder about the computational
power of a function f : N ! N such that for any computable function g :
N! N, f eventually dominates g, that is, for all but finitely many inputs.

Notation
We will use the notations 81m and 91m to signify respectively 9n 8m >
n and 8n 9m > n. Thus, 81m means “for all but finitely many m”
and 91m means “for infinitely many m”.

High function

Computable functions

Figure 6.1: Illustration of a dominating function, which for every com-
putable function f , is always above f after some point.

Martin’s domination theorem ((1) , (2) in the following theorem [152])
gives a magnificent characterization of the Turing degrees of these functions.



6. Martin’s domination theorem 145

The equivalence (2) , (3) shown by Jockusch [102] came later and is also
of interest. Recall that a set A is high if A0 >T ;

00 (see Definition 4-10.1).

Theorem 6.2
Let A ✓ N be a set. The following statements are equivalent:

(1) A is high.

(2) A computes a function g : N ! N which eventually dominates all
computable functions. That is to say that for any computable func-
tion f we have 81n f(n) 6 g(n).

(3) A computes a list (Xn)n2N containing (possibly with repetitions)
exactly the computable sets.

Proof. Let us show (1) ) (2). Suppose A is high. We thus have a
�0

2(A) description of ;00, that is to say an A-computable function f : N2
!

N such that lims!1 f(n, s) = ;00(n) for all n. Note that being the code of
a total function is a ⇧0

2 property. We can in particular, by using the fact
that ;00 is ⌃0

2-complete (see Proposition 5-5.3), compute for all e a code ae
such that ;00(ae) = 0 i↵ �e is a total function.

We define g as follows: on the input t, for any functional �e for e 6 t,
we search for the smallest computation time s > t such that f(ae, s) =
1 or such that �e(t)[s] #. Note that one of the two events necessarily
happens: either �e is total and therefore �e(t) #, or �e is partial and
therefore lims!1 f(ae, s) = ;

00(ae) = 1. In the first case, we define vt,e = 0
and in the second vt,e = �e(t). We finally define g(t) =

P
e6t

vt,e.

It is clear that for any total function �e, starting from the smallest t > e
such that f(ae, s) = 0 for s > t, we will have g(s) > �e(s) for all s > t.
So g eventually dominates all computable functions.

Let us show (2) ) (3). Suppose now that A computes a function g which
eventually dominates any computable function. We use the fact that if �e

is total with value in {0, 1}, then the computable function t : N! N which
on n returns the smallest computation time such that �e(n)[t(n)]# for all n,
is eventually dominated by g.

For each functional �e we compute the set Ye as being Ye(n) = �e(n)[g(n)]
if �e(n)[g(n)]# 2 {0, 1} and Ye(n) = 0 otherwise. The list (Ye)e2N there-
fore contains, up to finite modification, exactly the computable sets. To
obtain them all, we finally compute the sequence (Xn)n2N as being all the
possible finite modifications of the sets Ye.

Let us show (3) ) (1). The reader can use Figure 6.4 to understand
this implication. Suppose that A computes a list (Xn)n2N containing



146 7. Immunity and function growth

(possibly with repetitions) exactly the computable sets. Let P = {e :
8x1 9x2 R(e, x1, x2)} be an arbitrary ⇧0

2 set. Let us show that P is ⌃0
2(A).

For that, one defines uniformly for all e a partial computable function fe :
N! {0, 1} such that:

(a) e 2 P implies that fe is a total computable function.

(b) e /2 P implies that fe is a partial function which cannot be completed
into a total computable function.

Let e be fixed. We describe a uniform process in e. At the stage of compu-
tation t, for any value n smaller than t and such that fe does not halt for the
moment on n, we proceed as follows : If �n(n)[t]#6= 0 we define fe(n) = 0.
Otherwise if �n(n)[t]#= 0 we define fe(n) = 1. Otherwise if for all k 6 n
there exists mk 6 t such that R(e, k,mk) then we define fe(n) = 0.

The process is clearly computable. Let us show (a). Suppose e 2 P . Then,
for all n there exists a smallest t such that for all k 6 n there exists mk 6 t
for which R(e, k,mk). When that happens then fe(n) takes a value at
step t if it has not taken one so far. So fe is total. Let us now show
(b). Suppose e /2 P . Let n be the largest integer such that for all k 6 n
there exists mk for which R(e, k,mk). For m > n, fe(m) halts i↵ �m(m)
halts in which case fe(m) 6= �m(m). Suppose absurdly that fe has a
computable completion. Then, by the padding lemma (Lemma 3-5.1) it
has a computable code completion a > n. In this case fe(a) = �a(a) which
contradicts the definition of fe. So we have (b).

It follows that P can be written as a ⌃0
2(A) set as follows.

P = {e : 9n 8m 8t fe(m)[t]" _fe(m)[t]#= Xn(m)}.

Indeed if e 2 P then fe is computable and therefore coincides with a
certain Xn. Conversely if e /2 P then fe has no computable completion
and therefore no completion in (Xn)n2N. Since P is ⌃0

2(A) and P is ⌃0
2 by

definition, the set P is then �0
2(A) and therefore P is A0 computable. It

su�ces to apply this for P = N\;
00 to get that ;00 is�0

2(A) and therefore A0-
computable.

The implication (3) ) (1) of Theorem 6.2 is far from obvious. We hope
the reader will appreciate the argument, the subtle complexity of which
is characteristic of Jockusch’s work. The following exercise gives similar
alternative characterizations, simpler to demonstrate:

Exercise 6.3. (?) Show the following equivalences:

(1) A computes a function which eventually dominates any computable
function.



6. Martin’s domination theorem 147

(2) A computes a sequence (fn)n2N containing all the computable functions
from N to N.

(3) A compute a sequence (Xn)n2N containing only infinite sets, and con-
taining all infinite computable sets.

⇧

fe(0)

fe(1)

"

"

fe(4)

"

fe(6)

"

. . .

fe

X0(0)

X0(1)

X0(2)

X0(3)

X0(4)

X0(5)

X0(6)

X0(7)
. . .

X0

X1(0)

X1(1)

X1(2)

X1(3)

X1(4)

X1(5)

X1(6)

X1(7)
. . .

X1

X2(0)

X2(1)

X2(2)

X2(3)

X2(4)

X2(5)

X2(6)

X2(7)
. . .

X2 . . .

Figure 6.4: Illustration of the direction (3)) (1) of Theorem 6.2 : if e /2 P ,
one constructs a partial computable function fe : N! {0, 1} which has no
total computable completion. In the illustration, the fe function cannot
equal any of the sets X0, X1, . . . on all the values for which it is defined.
Indeed, the list (Xn)n2N contains only computable sets. In the inverse case,
the fe function is total computable, hence equals at least one of the sets Xi,
since the list (Xn)n2N contains all the computable sets.

Let us discuss a little about the characterization (1), (2) of Theorem 6.2,
illustrated by Figure 6.1. Being able to compute a very fast growing func-
tion from N into N is likely to provide a lot of computational power. Thus,
for example, as we have seen, computing a function which dominates the
halting time of computer programs makes it possible to compute ;0.

The previous theorem indicates that there is a first level between the func-
tions able to compute the halting set simply because they grow very fast,
and the functions with computable growth: there exists, according to
Proposition 4-10.2, high sets that do not compute the halting set, and
therefore of functions of “intermediate” growth. We will also see that the
faster a function grows, the more computational power it has. A function
that grows fast enough will be able to compute ;00, one that grows even



148 7. Immunity and function growth

faster will be able to compute ;000, and so on. In spite of everything, we will
see with Theorem 29-5.5 that there is a limit to the computational power
conferred by rapid growth. The class of sets computable by any function
which grows “su�ciently” fast has a precise characterization and remains
countable.

Exercise 6.5. (??) The notion of maximal c.e. set was introduced in
Exercise 3-7.13. A c.e. set X is maximal if N \X is infinite, and if any c.e.
set Y ◆ X is such that Y \X is finite or such that N \ Y is finite. Let X
be a maximal c.e. set. Show that X is high. ⇧

7. High or DNC degrees

We end this chapter with a result that combines high and DNC degrees, in
order to obtain a natural characterization in terms of computational power:
the possibility of computing a function which di↵ers almost everywhere
from any computable function.

Theorem 7.1 (Kjos-Hanssen, Merkle and Stephan [117])
Let X 2 2N. The following statements are equivalent:

(1) X is of high or DNC degree.

(2) X computes a function which is di↵erent almost everywhere from
any computable function.

Proof. Let us show (1) ) (2). Suppose first that X is high. Let g 6T X
be a function which eventually dominates any computable function. So
also, m 7! g(m) + 1 is almost everywhere di↵erent from any computable
function. Now suppose that X is DNC. For each n we compute the code en
such that Wen enumerates all the values �e(n) for e 6 n for which �e(n)#.
According to Theorem 2.6, X computes a function h : N2

! N such that
for all e, n 2 N, if |We| 6 n then h(e, n) /2 We. Let f : N ! N be the X-
computable function defined by f(n) = h(en, n). We then have f(n) /2Wen

for all n. Thus, f(n) is di↵erent from �0(n),�1(n), . . . ,�n(n) for all n, so f
di↵ers almost everywhere from any computable function (and even from any
partial computable function halting on an infinity of values).

Let us show (2) ) (1). If X is high there is nothing to check. So
suppose that X is not high. Let g 6T X be such that total �e im-
plies 81m g(m) 6= �e(m). We claim that we also have 81e g(e) 6= �e(e).
Let us assume the contrary to be absurd. Let f be the X-computable
function which on n returns the smallest computation time t such that



7. High or DNC degrees 149

we have g(m) = �m(m)[t] # for an integer m > n. Since X is not
high there exists a computable function b such that 91n b(n) > f(n).
Note that we can assume without loss of generality b(n) 6 b(n + 1).
We now define the total computable function h by h(n) = �n(n)[b(n)]
if �n(n)[b(n)] # and h(n) = 0 otherwise. Suppose now b(n) > f(n). By
definition of f , there exists a value m > n such that �m(m)[f(n)]#= g(m)
and therefore such that �m(m)[b(n)] #= g(m). As b(m) > b(n) we will
have h(m) = �m(m)[b(m)] #= g(m). As we can restart the argument for
arbitrarily large values of n, we will have h(m) = g(m) for an infinity of m.
This contradicts the fact that g di↵ers almost everywhere from any com-
putable function. So we have 81e g(e) 6= �e(e). It su�ces then to modify
a finite number of values of g to obtain a DNC function.

Let us note, to give all its brilliance to the preceding theorem, that it is
possible to construct DNC degrees which are not high (by combining Corol-
lary 18-4.3 with Corollary 19-3.9 or more simply by considering Corollary 8
-6.6) just like high degrees which are not are not DNC (see Corollary 10
-3.34).





Chapter 8
⇧0
1 classes and PA degrees

We have so far mainly concentrated on the study of sets of natural integers

taken individually, or in an equivalent manner, of functions over the inte-

gers. We will now turn to the study of classes of sets or functions, i.e., sets

of sets of integers. We have already seen many classes of sets, in particular

the class of sets of high degree {X 2 2N : X 0 >T ;
00
}, or that of sets of low

degree {X 2 2N : X 0
⌘T ;

0
}.

Set vs class
In order to distinguish sets of integers from subsets of Cantor space, we
will call them “sets” and “classes” when we are in a context relating to
the study of sets X 2 2N or classes A ✓ 2N, respectively.

The classes that we will consider will be defined by predicates, and the study

of the complexity of these predicates will allow us to deduce information

about the elements that the class contains.

The study of classes will quickly prove to be central in the study of sets of

integers. We start here with the classes of the simplest possible complexity:

the e↵ectively open and closed classes of Cantor space. The study of classes

of higher complexity will be continued in Chapter 17. Despite the apparent

simplicity of open and closed classes, we will quickly see the wide range of

possibilities and the great richness they contain.

– 151 –



152 8. ⇧0
1 classes and PA degrees

✏

0 1

00 01 10 11

000 010 011 101 110 111

0000 0001 1011

00010 10110 10111

. . . . . . . . .

Figure 1.2: Illustration of a tree. The root ✏ is the empty string. Each node
has potentially a left and a right successor. If both, then it is a branching
node, and if none, it is a leaf.

1. Binary trees

We have defined the notion of f-tree in order to show the existence of a non-
computable computably dominated degree (Theorem 7-5.6). We introduce
here a similar notion and in a certain way more primitive, namely, the
notion of tree.

Definition 1.1. A set T ✓ 2<N is a tree if T is closed under prefix, i.e.,
for all � 2 T and ⌧ � �, then ⌧ 2 T . }

The elements � of a T ✓ 2<N are called nodes. A node is branching if
both �0,�1 2 T . In the opposite case it is non branching. Based on the
graphical representation of a tree, we will consider that �0 and �1 are on
the left and on the right of �, respectively. Accordingly, if �0 2 T then �0
is a left successor of �. If �1 2 T then �1 is a right successor of �. A node
with no successor will be called a leaf.

Definition 1.3. Let T ✓ 2<N be a tree. A path through the tree T is a
sequence P 2 2N such that P �n 2 T for all n 2 N. We denote by [T ] the
class of paths of T . }

Intuitively, a path P can be thought of as a sequence of binary instructions,



1. Binary trees 153

literally indicating “a path” to follow through the tree. A bit at 0 in the
path tells us to continue our journey following the left successor and a bit
at 1 tells us to follow the right successor. We only consider infinite paths.

Remark
Contrary to graph theory, a path is not represented as a set of nodes
in the tree. However, there is a computable bijection between a path P
and the set {P �n: n 2 N}. Representing a path as an infinite binary
sequence is therefore mainly a conventional choice which will prove to
be very useful later.

If T is a finite tree, i.e., which has only a finite number of nodes, then [T ] is
necessarily the empty set. What about the converse? This is a central tool
on trees: König’s lemma, which states that any infinite, finitely-branching
tree has an infinite path. Note that trees T ✓ 2<N are necessarily 2-
branching. The restriction of König’s lemma to binary trees is known as
weak König’s lemma.

Lemma 1.4 (Weak König’s lemma). Let T ✓ 2<N be an infinite tree,
that is, such that |T | =1. Then, [T ] is non-empty. ?

Proof. We construct a path X by induction on n. As T is infinite, by the
pigeonhole principle there exists i 2 {0, 1} and an infinity of nodes � 2 T
which extend i (ie with i � �). We define X(0) = i. Suppose that ⌧ =
X(0)X(1) . . . X(n) is defined with ⌧ 2 T and such that there is an infinity
of nodes � 2 T for which ⌧ � �. By the pigeonhole principle, there
exists i 2 {0, 1} and an infinity of nodes � 2 T which extend ⌧ i. We
define X(n+ 1) = i.

By induction on n, we thus define a set X such that X �n 2 T for all n.

König’s lemma may seem trivial at first glance. Readers with a keen intu-
ition and comfortable with the manipulation of infinite objects may have
wondered whether there really was a need to tidy up this statement in a
lemma. We will see that despite appearances, this lemma is not as trivial
as it seems. Although simple, it constitutes a central tool, particularly
interesting for its computational content.

1.1. Computable trees

A tree T ✓ 2<N is computable if T is computable as a set, in other words,
if there is a procedure to decide whether a node belongs to the tree or not.
In this chapter, we will try to answer the following question.

Question 1.5. Given an infinite computable tree, what is the computa-
tional power required to compute an infinite path of T? ?



154 8. ⇧0
1 classes and PA degrees

The proof of König’s lemma provides a clear construction: when we have
computed a prefix ⌧ of our infinite path, we determine the next bit to be 0
if the tree contains an infinity of nodes which extend ⌧0 and as being 1
otherwise. The problem is that it is not possible to know a priori in a
computable way if an infinity of nodes extend ⌧0: it is a question for which
the halting problem seems necessary. This leads us to define the notion of
extendible node.

Definition 1.6. A node � of a tree T ✓ 2<N is extendible in T if the
set {⌧ 2 T : ⌧ ⌫ �} is infinite. }

In other words, a node � is extendible in a tree if the subtree of nodes
compatible with � is infinite. Let us remember the notation [�] which
denotes the class of sets X having � as a prefix. By König’s lemma, a
node � is extendible in T if and only if [�] \ [T ] 6= ;. Note that in any
infinite tree, the root ✏ is an extendible node, and that if � is extendible,
then so is at least one node among �0 and �1. The following exercise shows
that the extendible nodes are su�cient to describe the set of paths of a tree.

Exercise 1.7. Let T ✓ 2<N be a tree, and S the set of extendible nodes
in T . Show that S is a tree, and that [T ] = [S]. ⇧

It follows from the definition of extendible node that leaves are not ex-
tendible. On the other hand, if the set of leaves of a computable tree is
decidable, this is not generally the case for the set of extendible nodes.

Exercise 1.8. Let T ✓ 2<N be an infinite computable tree containing
only extendible nodes. Show that T contains a computable infinite path.
⇧

In general, determining whether a computable set is infinite or not requires
the oracle ;00. In the case of trees, we can exploit the closure under prefix to
reduce the complexity of the oracle to ;0. The notation 2n of the following
proposition denotes the set of strings of size n.

Proposition 1.9. Let T ✓ 2<N be a computable tree. The set of its
extendible nodes is ⇧0

1. ?

Proof. The trees being downward-closed, {⌧ 2 T : ⌧ ⌫ �} is infinite
i↵ 8n > |�| 9⌧ 2 2n such that ⌧ ⌫ � and ⌧ 2 T , which is a ⇧0

1 predicate.
Thus, the set of extendible nodes of T is the following ⇧0

1 set.

{� 2 T : 8n > |�| 9⌧ 2 2n such that ⌧ ⌫ � and ⌧ 2 T}

By complementation, the set of non-extendible nodes of a computable tree
is ⌃0

1, which means that if a node is non-extendible, we will end up realizing



2. Topology on Cantor space 155

it after a finite time. We will see how to use the notion of extendible node
to create infinite computable trees having no computable path. In the
construction of a computable tree, we must be able to decide in a finite
time whether a node belongs to it or not. On the other hand, it is possible
to defer the decision to make a node extendible or not, by default adding
descendants over time to it, until deciding at one point t to stop adding
more to it in order to make it non-extendible. This technique known as
“time trick” allows to show the following result.

Proposition 1.10. Let T ✓ 2<N be a ⇧0
1 tree. There exists a computable

tree S ✓ 2<N such that [T ] = [S]. ?

Proof. Let (Tn)n2N be a ⇧0
1 approximation of T , that is to say a uni-

formly computable sequence of sets decreasing by the inclusion relation
(with Tn+1 ✓ Tn) such that

T
n
Tn = T . Let S = {� 2 2<N : 8⌧ � � ⌧ 2

T|�|}. The set S is computable.

Let us show that S is closed under prefix. Let � 2 S and ⇢ � �. By
definition of S, 8⌧ � � ⌧ 2 T|�|. As |⇢| 6 |�|, T|⇢| ◆ T|�|, so 8⌧ � � ⌧ 2 T|⇢|.
In particular, for all ⌧ � ⇢, also ⌧ � �, so ⌧ 2 T|⇢|. Thus, by definition
of S, ⇢ 2 S.

Let us now show that [S] = [T ]. We have P 2 [S] i↵ 8� � P � 2 S
i↵ 8� � P 8⌧ � � ⌧ 2 T|�| i↵ 8⌧ � P 8n > |⌧ | ⌧ 2 Tn i↵ 8� � P � 2 T
i↵ P 2 [T ].

This chapter mainly concerns the study of the set classes corresponding
to paths through a computable tree. We will see with Proposition 3.5
that there are infinite computable trees that do not contain any infinite
computable path. Then, we will determine the exact computational power
that is needed to compute a path in any infinite computable tree. This
study constitutes one of the basic building blocks of reverse mathematics,
which we will see in Part III.

2. Topology on Cantor space

Topology is a branch of mathematics which abstractly formalizes the no-
tions of limit and continuity, and which by extension studies the properties
of geometric objects invariant by continuous deformation. The reader who
has never studied this branch can be reassured: for the development of the
chapters to come, we only need very basic elements of this theory, which
we present here.



156 8. ⇧0
1 classes and PA degrees

Notation
We will denote by i1 the infinite sequence which repeats the bit i 2
{0, 1}.

2.1. Open and closed classes

As we have already mentioned, Cantor space 2N is similar to the class of

reals of the interval [0, 1]. An element X 2 2N can also be seen as the

binary expansion of the real 0.X(0)X(1)X(2) . . . , with however a subtle

di↵erence: the elements �101 and �011 are two distinct elements of 2N

but correspond to the same real number. This di↵erence aside, we can

see 2N as an interval, and the simplest subsets of 2N will simply be intervals

of the form [�], which we will also call cylinder :

Notation

Given a string � 2 2<N we write [�] for the set {X 2 2N : X ⌫ �}. We
will call cylinder a class of the form [�].

Given a string � 2 2<N, we can see [�] as an interval of infinite binary

sequences: those which are lexicographically between �01 and �11. With

this in mind, the so-called open classes of Cantor are simply any union of

intervals.

Definition 2.1. The open classes of Cantor space are arbitrary unions
of cylinders, i.e., sets of the form

S
�2W

[�] for a set W ✓ 2<N. The closed
classes are the complements of the open classes. }

The reader not familiar to these concepts can demonstrate, to get his hands

on the definitions, that the finite unions of cylinders are both open and

closed.

Notation

Given a set W ✓ 2<N we will write [W ] to denote its corresponding open
set, i.e., the class

S
�2W

[�].

It is clear from the definition that the open classes are closed under arbi-

trary union and therefore, by passage to the complement, that the closed

are closed under any intersection. We introduce an element of vocabulary

that will often come up in the manipulation of open and closed classes:



2. Topology on Cantor space 157

Notation

Given a countable union of classes
S

n
Bn, we will say that the union is

increasing if Bn ✓ Bn+1 for all n. In the same way we will say that an
intersection

T
n
Bn is decreasing if Bn+1 ✓ Bn for all n.

The mental representation of an open class should be fairly clear to the
reader: the unions of simple bricks that are the cylinders. Here is an
illustrative example.

0 1
[01] [101] [1101] ...

Figure 2.2: Illustration of the open class [01] [ [101] [ [1101] [ [11101] [ . . .

We now show that we can consider without loss of generality that the
intersections of open classes are decreasing and the unions of closed classes
increasing (in particular because

T
n
Un =

T
n
(
T

m6n
Um)):

Proposition 2.3. A finite intersection of open classes is an open. By
passing to the complement a finite union of closed classes is closed. ?

Proof. Let U0,U1 ✓ 2N be two open classes. A set X belongs to U0 \ U1

i↵ it belongs to a cylinder [�0] ✓ U0 as well as to a cylinder [�1] ✓ U1.
So U0 \ U1 =

S
[�0]✓U0,[�1]✓U1

[�0] \ [�1].

Closed sets are more di�cult to describe. This is not necessarily surprising.
By way of analogy, let’s say that you can get to know your neighborhood
well, without having a precise idea of the rest of the world. The awareness of
this complexity and the way of apprehending it already figure in the work
of Cantor, for example through the famous Cantor-Bendixson theorem.
However, there is a simple way to represent the closed in 2N as the class of
all infinite paths of a tree.

Proposition 2.4. A class P ✓ 2N is closed i↵ there is a tree T ✓ 2<N such
that P = [T ]. ?

Proof. Let P be a closed class. Let U =
S

�2W
[�] be its complement

with W ✓ 2<N. We define the tree T ✓ 2<N as being the set of strings �
having no prefix inW . By definition T is closed under prefix and is therefore
a tree. Let us show [T ] = P. We have X 2 [T ] i↵ no prefix � � X is in W
i↵ X /2

S
�2W

[�] i↵ X 2 P. So [T ] = P.

Conversely, if T ✓ 2<N is a tree, the class [T ] of its paths is closed, because
it is the complement of the class

S
� 62T

[�].



158 8. ⇧0
1 classes and PA degrees

By way of example, the reader can consult Figure 2.5, representing the tree
corresponding to the complement of the open class described in Figure 2.2.

✏

0 1

00 01 10 11

. . .

100 101 110 111

. . .

. . .
1100 1101

. . .

Figure 2.5: Illustration of the tree representing the complement of the open
class [01] [ [101] [ [1101] [ [11101] [ . . . . The bold nodes correspond to
the cylinders constituting the basic bricks of the open class. The triangles
represent a “full” subtree, starting from the node where they are.

2.2. Compactness

Compactness is a fundamental notion of topology. It is generally defined
via the Borel-Lebesgue property, which in Cantor space is formulated as
follows:

Definition 2.6. A class P ✓ 2N has the Borel-Lebesgue propertya if for
any collection of open classes (On)n2N such that P ✓

S
n
On, there exists

a finite set F ✓ N such that P ✓
S

n2F
On. We will say that a class

possessing the Borel-Lebesgue property is compact. }

aAlso called “Heine-Borel property”.

We show with the following proposition that in Cantor space, the compact
classes are exactly the closed ones, and the reader will be able to note by
reading the proof, that weak König’s lemma can be seen as a reformulation
of the fact that closed classes are compact.

Proposition 2.7. A class of 2N is closed i↵ it has the Borel-Lebesgue prop-
erty. ?

Proof. Let P ✓ 2N be closed and let (On)n2N be a collection of open
classes such that P ✓

S
n
On. Let T ✓ 2<N be a tree such that [T ] = P.

Let S ✓ 2<N be the tree of strings � 2 T such that [�] 6✓
S

n<|�|
On. If



2. Topology on Cantor space 159

the tree S is finite, then there exists a length ` such that for all � 2 T
such that |�| = `, [�] ✓

S
n<`

On. It follows that [T ] ✓
S

�2T,|�|=`
[�] ✓S

n<`
On. If S is infinite, by weak König’s lemma, [S] 6= ;. Let P 2 [S]. Let

us show that P /2
S

n
On to deduce a contradiction, because [S] ✓ [T ] ✓S

n
On. i 2 N. By definition of [S], for all `, P �` 2 S, so by definition of S

we have [P �`] 6✓
S

n<`
On. In particular, for all ` > i, [P �`] 6✓ Oi. Since Oi

is open, it follows that P /2 Oi.

Suppose now that a class B admits the Borel-Lebesgue property. For
any X /2 B, let OX be the open class corresponding to the complement
of the class {X} (it is the union of the cylinders [�i] for any string � and
all i such that X(|�|) 6= i). In particular we have B =

T
X/2B

OX . Note that
each OX is a union of cylinders and that each cylinder is open. So by the
Borel-Lebesgue property we can find for any X a finite set of cylinders FX

such that B ✓
S

�2FX
[�] ✓ OX . In particular B =

T
X/2B

S
�2FX

[�]. Each
union

S
�2FX

[�] is a closed class as a finite union of cylinders. As an arbi-
trary intersection of closed classes is closed, we deduce that B is a closed
class.

In practice, we will use the following consequence of compactness: any
countable and decreasing intersection of non-empty closed classes is non-
empty, which we prove here.

Proposition 2.8. Let P0 ◆ P1 ◆ . . . be a decreasing sequence of non-
empty closed classes. Then,

T
n
Pn is non-empty. ?

Proof. Let Tn be a tree such that [Tn] = Pn. We can assume without
loss of generality Tn+1 ✓ Tn. Let us show that

T
n
[Tn] = [

T
n
Tn]. We

have X 2
T

n
[Tn] i↵ X �m 2 Tn for all m,n i↵ X 2 [

T
n
Tn]. So

T
n
[Tn] =

[
T

n
Tn]. Let T =

T
n
Tn. In particular [T ] =

T
n
Pn.

Suppose absurdly that [T ] =
T

n
Pn is empty. According to König’s lemma

there is therefore an integer a such that no string � of size greater than
or equal to a is in T . As the strings of size a are in finite quantity and
the sequence (Tn)n2N is decreasing by inclusion, there must therefore be
integer m such that none of these strings belong to Tm. So [Tm] is empty,
which contradicts the assumptions.

2.3. Continuity

Let’s tackle another topological notion that we will mention here and there
in the chapters to come. Continuity, another central notion of topology,
unexpectedly hides in computability theory under the following idea.



160 8. ⇧0
1 classes and PA degrees

A Turing functional � can be seen as a partial function from 2N to 2N, whose
input is an oracle X, and the result, which we denote by �X or �(X), is
the set Y such that �X(n) #= Y (n). This function from 2N to 2N is of
course only defined for oracles X such that 8n �X(n) # 2 {0, 1}.

We have seen that when �X(n) #= v, by the use property (see Definition 4
-4.2), only a finite initial segment � of the oracle X is used. More generally,
if �X

⌫ ⌧ (which means 8n < |⌧ | �X(n) #= ⌧(n)), only a finite part � of
the oracle is used to realize this. It follows that for all X 2 [�], �X

⌫ ⌧ ,
and therefore {�X : X 2 [�]} ✓ [⌧ ].

The reader having followed an introductory course in topology will recog-
nize in this idea the notion of continuity: for any open space of the image
space as “small” as one wants — in practice a cylinder [⌧ ] — there is a
“small” enough open class in the domain space —in practice a cylinder [�]
— such that every X 2 [�] is sent to [⌧ ]: concretely the string � is “sent”
to the string ⌧ .

Definition 2.9. A (possibly partial) function f : 2N ! 2N is continuous
in X 2 dom f if for any cylinder [⌧ ] containing f(X), there exists a
cylinder [�] containing X such that f([�]) ✓ [⌧ ]. We will say that a
function is continuous if it is continuous in X for all X 2 dom f . }

In general, we will consider continuous functions over their entire domain
of definition, which then admit an equivalent characterization in terms of
open pre-image:

Proposition 2.10. A (possibly partial) function f : 2N ! 2N is continuous
i↵ for any open class U ✓ 2N, there exists an open class V ✓ 2N such
that f�1(U) = V \ dom f . If the function is total we then have f�1(U)
open for any open class U . ?

Proof. Let f : 2N ! 2N be a continuous function and U ✓ 2N an open
class. As U is open, for all X 2 f�1(U) there exists a cylinder [⌧X ] con-
taining f(X) such that [⌧X ] ✓ U . By continuity of f , for all X, there exists
a cylinder [�X ] containing X such that f([�X ]) ✓ [⌧X ]. Then, dom f \S

X2f�1(U)[�X ] = f�1(U).

Conversely, suppose that for any open class U ✓ 2N, there exists an open
class V such that dom f \ V = f�1(U). Let Y 2 Im f and [⌧ ] be a
cylinder containing Y . Let V be an open class such that dom f \ V =
f�1([⌧ ]). Since V is open, there is W ✓ 2<N such that

S
�2W

[�] = V. Note
that W 6= ; because Y 2 Im f \ [⌧ ], so there exists a string � 2 W . We
have f([�]) = f(dom f \ [�]) ✓ [⌧ ].



2. Topology on Cantor space 161

A computable functional � is therefore always also a continuous function on
its domain of definition, i.e., on the space of X such that �(X,n) # 2 {0, 1}
for all n. On the other hand, a continuous function has a priori no reason
to be computable: it is possible that any finite piece of the output of
the function can be determined by a finite piece of the input, but that
this “determinism” is not computable. As an example let us consider the
function � which on any set X associates X � ;0. Such a function � is
continuous, but not computable. On the other hand, it can be computed
with the help of ;0.

In computability theory, the non-continuous function par excellence is that
which to X associates X 0: indeed to know whether n 2 X 0, one needs to
know if �n(X,n) # and for that potentially to know an infinity of bits of X
(especially if �n(X,n) "). We will see actual versions of some well-known
theorems of analysis, which state that any function that is not continuous,
but not too complex, for example X 7! X 0, is nevertheless continuous over
a “large” set of points, in particular on a co-meager class (see Theorem 10
-3.20) and on a class of arbitrarily large measure (see Theorem 19-3.8).

2.4. Perfect classes

A last topological notion that we will use is that of perfect classes. These
are the classes which are the image of a continuous injection from 2N to 2N,
that is to say exactly the classes of the form [T ] for an f-tree T : 2<N

! 2<N

(see Section 7-5). These classes are therefore always closed and can be
represented by a tree. By extension we will therefore also speak of a perfect
tree.

Definition 2.11. A non-empty tree T ✓ 2<N is perfect if any node in T
has two incompatible extensions in T . }

We have seen with Exercise 1.7 that given a closed class F represented by
a tree T , we can consider without loss of generality — if we do not deal
with the e↵ectiveness — that T contains only extendible nodes. On the
other hand, an extendible node does not necessarily have two incompatible
extensions in the general case. When this happens, it means that there is
exactly one infinite path passing through this node. We call such paths
isolated points. For an arbitrary class A the corresponding definition is as
follows.

Definition 2.12. Let A ✓ 2N. An element X 2 A is a isolated point if
there is a � � X prefix such that [�] \ A = {X}. }

The usual definition of perfect class then follows from that of isolated point:



162 8. ⇧0
1 classes and PA degrees

Definition 2.13. A non-empty class F ✓ 2N is perfect if it is closed and
has no isolated point. Equivalently F = [T ] for a perfect tree T ✓ 2<N.}

Perfect classes are of great importance, in particular because they allow
the construction of cardinality arguments: any perfect class is by definition
in continuous bijection with 2N, and therefore has the same cardinality
as 2N. Moreover if a class A ✓ 2N contains a perfect class, then we have an
injection of 2N into A. Identity injection of A into 2N then gives us |A| =
|2N|. It is in fact roughly speaking the only way to show that a class A ✓ 2N

has the power of continuum. We will talk about it again in Section 9-4 as
well as in Section 30-4. Here is a simple application of the notion of perfect
class to the study of cardinality.

Proposition 2.14. Any non-empty countable closed class F has isolated
points. We can inject 2N in any non-empty closed class with no isolated
point. ?

Proof. Suppose that F does not contain any isolated point. Let F = [T ]
for a tree T having only extendible nodes. Since F does not contain an
isolated point then all nodes of T have two incompatible extensions. We
then have an injection of 2N into F . If a closed class F is countable, we
cannot inject 2N into F and therefore by contraposition, it contains isolated
points.

Corollary 2.15 (Cantor)
The continuum hypothesis is true for closed classes of 2N: they are either
countable, or of cardinality |2N|.

Proof. Let F be closed. Let W ✓ 2<N be the set of strings � such
that F \ [�] is countable. Let F

0 = F \
S

�2W
[�]. Note that F

0
✓ F

is always a closed class. If F 0 is empty, then according to König’s lemma
(or compactness) it is only necessary to remove from F a finite number of
strings �0, . . . ,�n 2W so that F 0 = F \ [�0] [ . . . [ [�n] is empty. As each
class F \ [�i] is countable, we have emptied F by removing a countable
quantity of points. So F is countable. Otherwise F

0 is not empty, and
in addition to that it cannot contain isolated points (because if F 0

\ [�]
contains only one element then F \ [�] is countable). By Proposition 2.14
we have an injection from 2N to F

0.

This result will be extended with Corollary 30-3.3.



3. ⇧0
1 classes 163

3. ⇧0
1 classes

We are now interested in the e↵ective version of the open and closed classes.
We often use the term e↵ective rather than computable for this kind of
objects, because they are not necessarily computable in the sense that
we can precisely know the smallest details, but they still admit a certain
tangible, e↵ective description provided by an algorithm.

Definition 3.1. A class U ✓ 2N is called ⌃0
1 if there exists a c.e. set W ✓

2<N such that U =
S

�2W
[�]. A class P ✓ 2N is said to be ⇧0

1 if its
complement is a ⌃0

1 class. }

The ⌃0
1 and ⇧0

1 are respectively the e↵ectively open and closed classes of
Cantor space. We will call code of a ⌃0

1 class U an integer e such that U =S
�2We

[�]. Likewise, a code of a ⇧0
1 class P is a code of the ⌃0

1 class U =

2N\P. This allows us to speak of uniform computability on the sequence of
⌃0

1 or ⇧
0
1 classes by considering the computability of their sequence of codes.

The ⇧0
1 classes are an important and well-studied notion in computability

theory.

Remark

It is important to distinguish well the ⌃0
1 or ⇧0

1 sets of integers which
are the first levels of the arithmetic hierarchy (see Chapter 5) from the
⌃0

1 and ⇧0
1 classes which are the respective e↵ectively open and closed

classes of Cantor space. However, there are links between these concepts.

Let’s start with the fact that Proposition 2.3 which states that a finite
intersection of open classes is an open one, also works with the ⌃0

1 classes:

Proposition 3.2. ⌃0
1 classes are closed under finite intersection. By pass-

ing to the complement, the ⇧0
1 classes are closed under finite union. ?

Proof. Let U0 =
S

�2W0
[�] and U1 =

S
�2W1

[�] be two ⌃0
1 classes. Then,

the open class U0 \ U1 is described by the c.e. set which lists the longest
string among �0,�1 for any �0 2 W0 and �1 2 W1 such that �0 � �1 or
such that �1 � �0. The string thus enumerated corresponds to [�0] \ [�1].

The first step to better understand the nature of the ⇧0
1 classes is undoubt-

edly to prove the e↵ective version of Proposition 2.4: the ⇧0
1 are exactly

the infinite paths of computable trees.

Proposition 3.3. A class P is ⇧0
1 i↵ there is a computable tree T ✓ 2<N

such that [T ] = P. ?



164 8. ⇧0
1 classes and PA degrees

Proof. Let T ✓ 2<N be a computable tree. The class [T ] = {X : 8n X �n
2 T} is ⇧0

1. Indeed its complement is the ⌃0
1 class described by the union

of cylinders [�] such that � /2 T .

Suppose that P is ⇧0
1. Let U =

S
�2W

[�] be its complement. We compute
the following tree T ✓ 2<N: in the computation step t, for any string � 2
2<N of size t, we decide � 2 T i↵ for any prefix ⌧ � � we have ⌧ /2W [t].

It is clear that T is closed under prefix: if � of size t is in T then no prefix
of � is in W at the computation step t, so for s 6 t, also no prefix of � �s
is in W at the computation step s. Now if X 2 P then no � prefix of X is
in W and therefore each of those prefixes will be in T . Conversely if X /2 P

then a prefix � of X goes into W at a certain stage t. By construction no
strings ⌧ ⌫ � larger than t will be in T . So P = [T ].

A code of a computable tree T ✓ 2<N is an integer e such that �e = T . Note
that the proof of Proposition 3.3 is uniform, and allows to pass computably
from a code of a ⇧0

1 class to a code of the corresponding tree, and vice
versa. We can therefore consider without distinction the code of ⇧0

1 classes
and computable trees in the proofs to come. The following proposition
establishes a link with the ⌃0

1 and ⇧0
1 classes and the arithmetic hierarchy.

Proposition 3.4. Let P ✓ 2N be a class.

(1) P is ⌃0
1 i↵ P = {X 2 2N : 9n R(X �n)} for a computable predicate R ✓

2<N

(2) P is ⇧0
1 i↵ P = {X 2 2N : 8n R(X �n)} for a computable predicate R ✓

2<N ?

Proof. For (2), given a ⇧0
1 class P, it su�ces to consider the computable

tree T such that [T ] = P. The computable predicate is simply T . Con-
versely if P = {X 2 2N : 8n R(X �n)} then the computable tree given
by � 2 T i↵ 8⌧ � � R(⌧) is such that [T ] = P.

We obtain (1) by passing to the complement.

Let us now see some generalities, first of all the proof that König’s lemma
does not belong to computable mathematics: some non-empty ⇧0

1 classes
—and therefore some infinite computable trees— do not contain any com-
putable point. We will see throughout the following chapters many exam-
ples of ⇧0

1 classes not containing any computable point. We anticipate in
particular for the following proposition on the simplest example to define:
the class of DNC2 sets of Proposition 6.4.



3. ⇧0
1 classes 165

Proposition 3.5. There are non-empty ⇧0
1 classes that do not contain any

computable set. ?

Proof. We define the class

P = {X 2 2N : 8e 8t �e(e)[t] " _ �e(e)[t] #6= X(e)}.

The class P contains all the sets X such that X(n) can take any value
if �n(n) ", and which are always di↵erent from �n(n) if �n(n) #. It is
clear that this class is not empty (the halting problem for example easily
computes an element of P). By Proposition 3.4, P is a ⇧0

1 class. Moreover,
the class P does not contain any computable set: if X is computable then
there must be some e such that �e(e) #= X(e).

Let us now continue on another key property of ⇧0
1 classes: the non-

empty ⇧0
1 classes containing no computable points are necessarily uncount-

able. They cannot contain isolated points, that is to say sets X such that
for a certain n, no other set than X and extending X �n does not belong
to ⇧0

1.

Proposition 3.6. Let P be a ⇧0
1 class containing exactly one X element.

Then, X is computable. ?

Proof. Let T ✓ 2<N be the computable tree such that [T ] = P. Consider
the following algorithm: search for the smallest t such that either for any
string � ⌫ 0 of size t we have � /2 T , or for any string � ⌫ 1 of size t
we have � /2 T . Note that exactly one of the two events must necessarily
happen: if both events happen, the class is empty. If neither happens
there is an infinity of strings in T which extend 0 and also an infinity
which extend 1. According to König’s lemma T therefore contains at least
two infinite paths: one which extends 0 and one which extends 1, which
contradicts the hypotheses on P.

Once one of the two events has arrived, we therefore know whetherX begins
with 0 or 1. We can easily see how to continue by induction: once X �n
has been computed, we look for the smallest t such that for any string � ⌫
X �n 0 of size t we have � /2 T , or for any string � ⌫ X �n 1 of size t we
have � /2 T . Once one of the two events has occurred, the value of X(n) is
known.

Corollary 3.7
Isolated points of any ⇧0

1 class are computable.

Proof. Let P be a ⇧0
1 class and X 2 P an isolated point. By definition,

there is a prefix � � X such that [�] \ P = {X}. In particular [�] \



166 8. ⇧0
1 classes and PA degrees

P is a ⇧0
1 class containing exactly one element, this element is therefore

computable.

Corollary 3.8
Any countable ⇧0

1 class contains a computable set.

Proof. By Proposition 2.14 and Corollary 3.7.

4. Basis theorems

Members of a ⇧0
1 class can be of very di↵erent Turing degrees. For example,

Cantor space 2N is a ⇧0
1 class containing sets of each Turing degree. Given

a non-empty ⇧0
1 class, we are mainly interested in the degree of di�culty

of computing one of its members.

Definition 4.1. A basis for ⇧0
1 classes is a class of sets C such that any

non-empty ⇧0
1 class contains an element of C. }

In this section, we will prove a number of theorems which, given a weakness
property P , are of the form “Any non-empty ⇧0

1 class contains a member
satisfying P .” These theorems are called “basis theorems”, because they
state that the members of P form a basis for the ⇧0

1 classes. Conversely,
the “anti-basis theorems” state the existence of a non-empty ⇧0

1 class con-
taining no member satisfying a weakness property. The very first basis
theorem is due to Kreisel [128], and is left as an exercise.

Exercise 4.2. (?) Show that any non-empty ⇧0
1 class contains a ;0-

computable element. ⇧

We can do even better than Exercise 4.2 via the central theorem called “low
basis theorem”, which states that any non-empty ⇧0

1 class contains a low
set. This theorem has a fundamental importance in computability theory
and in reverse mathematics, in particular to provide a number of examples
and counter-examples.

Theorem 4.3 (Jockusch et Soare [108])
Any non-empty ⇧0

1 class contains a low set.

Proof. Let P be a non-empty ⇧0
1 class. We are going to use ;0 to compute

an element Z 2 P, while computing its Turing jump Z 0. For that, let us
define a uniformly ;0-computable decreasing sequence of non-empty ⇧0

1



4. Basis theorems 167

classes P = P0 ◆ P1 ◆ P2 ◆ . . . as follows: Let P0 = P. Suppose Pn

defined and consider the class

Bn = {X 2 2N : 8t �n(X,n)[t] "} \ Pn.

Note that Bn is also a ⇧0
1 class, and that the code of a computable tree Tn

such that Bn = [Tn] is uniformly computable in n.

We ask ;0 the question whether Bn is empty: according to König’s lemma
this is the case i↵ there exists m such that no string � of size m belongs Tn,
which is indeed a ⌃0

1 event. If ;0 responds positively, we let Y (n) = 1 and
we define Pn+1 = Pn. Note that in this case all the elements X 2 Pn+1

are such that �n(X,n) #. In the opposite case we let Y (n) = 0 and we
define Pn+1 = Bn. Note that in this case all the elements of X 2 Pn+1 are
such that �n(X,n) ".

For each n, Pn is a non-empty closed classe and therefore
T

n
Pn is non-

empty. By construction the element Y computed by ;0 corresponds to the
Turing jump of any element of

T
n
Pn (which happens to be a singleton).

We have already seen with Proposition 4-9.1 the existence of low and non-
computable sets. We now have an alternative proof by combining Theo-
rem 4.3 and Proposition 3.5.

We now tackle the second main basis theorem for ⇧0
1 classes: computably

dominated sets. For this, we need a lemma which also has its own interest.

Lemma 4.4. Let P be a non-empty ⇧0
1 class. Suppose that a functional �

is total on all the members of P. Then, we can define uniformly in a code
of P a computable function g which dominates n 7! �(X,n) for all X 2 P.?

Proof. Let T ✓ 2<N be a computable tree such that [T ] = P. Let us show
that for any n, there exists t such that �(�, n)[|�|] # for any string � 2 T of
size t. Indeed,x in the opposite case, there exists n such that the set {� 2
T : �(�, n)[|�|] "} contains for all t a string of size t and is therefore an
infinite subtree of T , which therefore contains by König’s lemma an infinite
path X. We thus have 8t �(X,n)[t] " which contradicts the totality of �
on all the oracles of [T ].

We can therefore compute the function g which for n searches for the small-
est t such that �(�, n)[t] #= v� for any string � 2 T of size t. Once t is
found we define g(n) =

P
|�|=t

v� + 1. It is clear that g dominates all

functions computable via � by an oracle of [T ].

The following theorem is known as “computably dominated basis theorem”.
With the existence of a non-empty ⇧0

1 class having no computable member,
this theorem gives us an alternative proof of the existence of computably
dominated sets that are non-computable.



168 8. ⇧0
1 classes and PA degrees

Theorem 4.5 (Jockusch et Soare [108])
Any non-empty ⇧0

1 class contains a computably dominated set.

Proof. Let P be a non-empty ⇧0
1 class. We will define an infinite de-

creasing sequence of non-empty ⇧0
1 classes P = P0 ◆ P1 ◆ P2 ◆ . . . such

that
T

n
Pn contains only computably dominated sets. Let P0 = P. Sup-

pose Pn defined. Let Bn,m = {X : �n(X,m) "}. Note that each class Bn,m

is ⇧0
1. Suppose that there exists m such that Pn \ Bn,m 6= ;. Then, we

define Pn+1 = Pn \ Bn,m. Note that for all X 2 Pn+1 we have �n(X,m) ".
Suppose now that for all m we have Pn \ Bn,m = ;. This implies that
the functional �n is total for all X 2 Pn. We then define Pn+1 = Pn.
According to Lemma 4.4, there exists a computable function g : N ! N
which dominates m 7! �n(X,m) for all X 2 Pn+1.

As a decreasing intersection of non-empty closed classes, the class
T

n
Pn

is non-empty. Let X 2
T

n
Pn. By construction, for all n, if �n is total on

the oracle X then m 7! �n(X,m) is bounded by a computable function.
So X is computably dominated.

We now see a last basis theorem called “cone avoidance”: given a set X,
we call upper cone of X the class CX = {Y 2 2N : Y >T X}. Jockusch and
Soare [108] proved that for each non-computable set X, the class 2N \ CX

is a basis for the ⇧0
1 classes. In other words, if X is a non-computable set,

any non-empty ⇧0
1 class has an element which does not compute X. The

more natural contraposition states that if a set is computable by all the
members of a non-empty ⇧0

1 class, it is necessarily computable. Note that
if a ⇧0

1 class has a computable member the result is obvious, and it becomes
interesting only for non-empty ⇧0

1 classes which do not have any. As with
the computably dominated basis theorem, we need a lemma to solve the
case of a fixed functional.

Lemma 4.6. Let X be a set, P a non-empty ⇧0
1 class and � a functional.

If �Y = X for all Y 2 P, then X is computable. ?

Proof. Let T ✓ 2<N be a computable tree such that [T ] = P. Suppose
that for all Y 2 [T ], �Y = X. Let us show that for any n, there exists
a t 2 N such that �(�, n)[|�|] #= X(n) for every string � 2 T of size t.
Indeed, otherwise, the set S = {� 2 T : �(�, n)[|�|] 6= X(n)} is a subtree
of T which contains elements of each length, so by König’s lemma, there
exists a path Y 2 [S] ✓ [T ] such that �Y (n) 6= X(n), contradicting our
hypothesis.

Let g : N! N be the computable function which on input n looks for t, vn 2
N such that �(�, n)[|�|] #= vn for every string � 2 T of size t, and re-
turns vn. We have shown that this function is total. We also necessarily



5. Basis for perfect ⇧0
1 classes 169

have vn = X(n) for all n because otherwise each element of P computes
something other than X on the bit n. So X is computed by g and is
therefore computable.

Theorem 4.7 (Jockusch et Soare [108])
Let X be a non-computable set and P a non-empty ⇧0

1 class. Then,
there exists an element of P which does not compute X.

Proof. Let X be a non-computable set and P a non-empty ⇧0
1 class.

We will define an infinite decreasing sequence of non-empty ⇧0
1 classes P =

P0 ◆ P1 ◆ P2 ◆ . . . so that no element of
T

n
Pn computesX. Let P0 = P.

Suppose Pn defined. Let Bn,m = {Y : �n(Y,m) " _ �n(Y,m) 6= X(m)}.
Note that each class Bn,m is ⇧0

1 (not uniformly of course because we do
not know X). Let us show that there exists m such that Pn \ Bn,m 6= ;.
If this was not the case, then we would have �Y

n
= X for all Y 2 Pn,

contradicting Lemma 4.6. So there exists m such that Pn \ Bn,m 6= ;.
We then define Pn+1 = Pn \ Bn,m for such an integer m which gives
us �n(X,m) " or �n(X,m) #6= X(m) for all X 2 Pn+1.

As a decreasing intersection of non-empty closed classes, the class
T

n
Pn

is non-empty. Let Y 2
T

n
Pn. By construction for all n, �Y

n
6= X be-

cause Y 2 Pn. So X 66T Y .

Hirschfeldt [91] gave an elegant alternative proof of the cone avoidance basis
theorem, as a simple consequence of the low basis theorem (Theorem 4.3)
and of the computably dominated basis theorem (Theorem 4.5).

Alternative proof of Theorem 4.7. Two cases arise:

• Case 1:X is�0
2. In particular, by Proposition 7-4.7,X is hyperimmune.

By the computably dominated basis theorem (Theorem 4.5), P contains
a computably dominated set P . In particular, P does not compute X.

• Case 2: X is not �0
2. By the low basis theorem (Theorem 4.3), P

contains a low set, so �0
2. In particular, P does not compute X. In

each case, P contains an element which does not compute X.

We will see in the chapters to come many other theorems concerning the
⇧0

1 classes.

5. Basis for perfect ⇧0
1 classes

We have seen that the non-empty ⇧0
1 classes with no computable element

are necessarily perfect. These classes admit reinforced basis theorems, and



170 8. ⇧0
1 classes and PA degrees

one can in particular construct perfect subclasses all of whose elements
have a weakness property fixed in advance. Here, we see an example with
computably dominated sets.

The idea is to start again the proof of the computably dominated basis
theorem, but by duplicating the construction step by step.

Theorem 5.1
Let P be a non-empty ⇧0

1 class containing no computable element. There
exists a perfect class B ✓ P which contains only computably dominated
sets.

Proof. Let P✏ = P. Suppose that for n and each � 2 2<N of size n, we
have defined pairwise disjoint non-empty ⇧0

1 classes P� ✓ P. We repeat the
construction of Theorem 4.5 to define for each � a non-empty ⇧0

1 classQ� ✓

P� such that either there is an m such that �n(X,m) " for all X 2 Q�, or
there is a computable function g : N ! N such that �n(X,m) < g(m) for
all m and for all X 2 Q�. As P does not contain any computable point
then for all �, neither does Q� ✓ P. So according to Corollary 3.7 there
must be ⌧0, ⌧1 incomparable such that Q� \ [⌧0] and Q� \ [⌧1] are both
non-empty. We define P�0 = Q� \ [⌧0] and P�1 = Q� \ [⌧1].

For each X 2 2N, the class
T

n
PX�n ✓ P contains exactly one element GX ,

this element is computably dominated, and by construction X 6= Y im-
plies GX 6= GY . The class of GX for X 2 2N in fact forms a perfect
tree, whose nodes are determined by the choice of incomparable exten-
sions ⌧0, ⌧1.

The duplication technique of the previous theorem can also be applied to
the cone avoidance basis theorem, but of course it cannot be used with the
low basis theorem, because the class of low sets is countable. The reader
can try to apply it anyway, in order to see what goes wrong.

Finally, note that it is of course not necessary to go through ⇧0
1 classes to

build a perfect class of computably dominated sets, and we can apply the
same idea of construction duplication to the proof of f-trees:

Exercise 5.2. (?) Construct a perfect class of computably dominated sets
via f-trees. ⇧

Exercise 5.3. (?) Let P be a non-empty ⇧0
1 class with no computable

point. Mix the above construction with the proof of Lemma 4.6 to build
a perfect subclass of P whose elements are computably dominated, and
whose Turing degrees are pairwise incomparable. ⇧



6. PA degrees 171

Exercise 5.4. (??) Let P be a perfect class. Construct a perfect subclass
of P whose elements are pairwise incomparable in terms of Turing degrees.
⇧

Exercise 5.5. (?) Let P be a non-empty ⇧0
1 class without isolated point.

Show that ;0 computes a non-computable element of P. ⇧

Note that the last exercise necessarily uses the fact that P does not contain
any isolated point. We will see with Proposition 30-3.5 a simple technique,
but very powerful, allowing to build ⇧0

1 classes — with isolated points —
whose elements are either finite sets, or sets of “very high” computational
complexity.

6. PA degrees

We take here a little advance on Chapter 9, in which we expose the notions
of first-order logical theory, of the formal system of Peano arithmetic, as
well as of the first incompleteness theorem of Gödel: the notion of PA degree
was born in direct link with these notions. We will however quickly abstract
from this historical aspect to give with Theorem 6.2 a characterization of
PA degree involving only computability-theoretic notions already seen.

The study of PA degrees — acronym of “Peano Arithmetic”— goes back
to the work of Gödel and his famous incompleteness theorem: there is
no computable, complete and consistent extension of the axioms of Peano
arithmetic1. The study of Turing degrees developing, the question of the
power necessary to compute such an extension arose quite naturally. We
are going to see that the developments around this question have lead to
one of the richest concepts of computability theory, which probably found
its climax through the study of reverse mathematics.

In order to speak about the computational power of a theory, we first need
to cast the related notions to the setting of computability theory, and in
particular to represent theories as sets of integers. In what follows, let us fix
a computable enumeration  0, 1, 2, . . . of all the formulas of arithmetic.
Suppose also that there exists a computable function neg : N ! N such
that  neg(n) = ¬ n. For the following theorem (Theorem 6.2), we will call
theory a set T ✓ N such that for all m, if { n : n 2 T} `  m, then m 2 T .
In other words, a theory is a set of arithmetic formulas closed under logical
consequence. A theory T is consistent if the code of the formula “0 = 1”
does not belong to T . A theory T is complete if for all n, either n 2 T

1This version of the theorem is in fact a reinforcement of that of Gödel, which was
proved by Rosser.



172 8. ⇧0
1 classes and PA degrees

or neg(n) 2 T . The reader who approaches these notions for the first time
will find more details in Chapter 9.

Definition 6.1. A completion of Peano arithmetic is a complete the-
ory T containing {n 2 N : PA `  n}. A Turing degree is PA if it contains
a consistent completion of Peano arithmetic. }

The PA degrees being upward-closed, it is equivalent for a degree to be PA
and to contain a set which computes a consistent completion of Peano arith-
metic. We now show an equivalence which will serve as a characterization
for the PA degrees.

Theorem 6.2 (Jockusch et Soare [100], Solovay (non publié))
Let X be a set. The following statements are equivalent:

(1) X is of degree PA.

(2) X is of DNC2 degree, i.e., the set X computes a function f : N !
{0, 1} such that f(n) 6= �n(n) for all n.

Before going to the proof, we refer the reader to Definition 7-2.7 who
introduced the notion of degree DNCf for a function f : N ! N such
that 2 6 f(n) 6 f(n + 1). The notion of degree DNC2 is the strongest
possible of this order: the computed function f has only two possibilities
(0 or 1) to di↵er from each �n(n). We will see with the corollaries 18-4.3
and 19-1.8 that many sets of DNC degree are not DNC2.

Proof. The equivalence shown by Jockusch and Soare uses Scott’s basis
theorem [202] for PA degrees, which states that any PA degree computes
an infinite path in any non-empty ⇧0

1 class. Here we show the equivalence
directly.

The implication (1) ! (2) is essentially the Gödel-Rosser theorem, which
extends Gödel’s first incompleteness theorem, and which will be formally
proved with Theorem 9-3.10 and Corollary 9-3.11.

Let us show (2) ! (1). Let f 6T X be a {0, 1}-valued function such
that f(n) 6= �n(n) for all n. We are going to define a uniformly f -
computable increasing sequence of consistent theories PA = T0 ✓ T1 ✓ . . .
such that T =

S
n
Tn is complete. Let T0 = PA. Suppose Tn is consistent.

We consider the arithmetic formula  n of code n and we define the ma-
chine code en such that �en(en) = 1 si T +  n ` 0 = 1 and �en(en) = 0
si T+¬ n ` 0 = 1. If �en(en) #= 0 then T+¬ n is inconsistent and there-
fore T +  n is consistent. If �en(en) #= 1 then T +  n is inconsistent and
therefore T +¬ n is consistent. If �en(en) " then T + n and T +¬ n are
both consistent. Now as f(en) 6= �en(en), we can define Tn+1 = Tn +  n



6. PA degrees 173

if f(en) = 1 and Tn+1 = Tn + ¬ n if f(en) = 0. In all cases we will have a
consistent theory.

The theory T =
S

n
Tn is therefore consistent and by construction it is also

complete.

Remark

Note that the direction (2)! (1) of Theorem 6.2 works for any consistent
theory T0 whose axioms are computable. Thus, any DNC2 function is
able to compute a completion of any consistent theory whose axioms are
computable. Direction (1) ! (2) is more specific to Peano arithmetic,
as it requires a su�ciently expressive theory to encode computations by
formulas.

Note that ;0 can compute a DNC2 function and is therefore of PA de-
gree. The following proposition implies that it is not at all necessary to be
Turing complete to compute a complete and consistent extension of Peano
arithmetic.

Definition 6.3. The degree spectrum of a class P ✓ 2N is the set

degP = {deg
T
X : X 2 [P ]} }

Proposition 6.4. There is a ⇧0
1 class whose degree spectrum corresponds

to the PA degrees. ?

Proof. This is a simple observation, which was already used for the proof
of Proposition 3.5. The class of DNC2 sets is described as follows.

P = {X 2 2N : 8e 8t �e(e)[t] " _ �e(e)[t] #6= X(e)}

Corollary 6.5
There are low PA degrees.

Proof. According to Proposition 6.4 and Theorem 4.3.

Corollary 6.6
There are computably dominated PA degrees.

Proof. According to Proposition 6.4 and Theorem 4.5.



174 8. ⇧0
1 classes and PA degrees

Corollary 6.7
Let A be a non-computable set. Then, there exists a PA degree which
does not compute A.

Proof. According to Proposition 6.4 and Theorem 4.7.

Let us now see another important characterization of the PA degrees, which
states that they capture the necessary and su�cient computational power
for weak König’s lemma.

Theorem 6.8
Let X ✓ N. The following statements are equivalent:

(1) X is of PA degree.

(2) X computes a set in each non-empty ⇧0
1 class.

Moreover for (2) the computation is uniform in a code of the ⇧0
1 class.

Proof. For (2) ! (1) it su�ces to notice that there exists a non-empty
⇧0

1 class containing only sets of PA degrees (see Proposition 6.4). Let us
now show (1) ! (2). Let f 6T X be a {0, 1}-valued DNC function, that
is, such that f(n) 6= �n(n) for all n. Let P be a non-empty ⇧0

1 class and T
a computable tree such that [T ] = P.

Let �0 = ✏. Given �n defined such that [�n] \ [T ] is not empty, we com-
pute �n+1 = �ni for i 2 {0, 1} as follows: we first compute the code en
of a program which on any input m searches for the smallest t such that
for i = 0 or i = 1 no string � of size t with � ⌫ �ni does not belong
to T . If found, the program halts and outputs i. According to König’s
lemma this condition is equivalent to the fact that [�ni] \ [T ] is empty. We
simply define �n+1 = �nf(n). As f(en) 6= �en(en) we have the guarantee
that [�n+1] \ [T ] is non-empty.

Classe universelle

Note that according to Proposition 6.4, there exists a non-empty ⇧0
1 class

whose members are of PA degree, and that according to Theorem 6.8,
any PA degree computes a member of each non-empty ⇧0

1 class. Such
a class is therefore “maximal” in terms of computational complexity, in
the sense that if we know how to compute a member of this class, then
we know how to compute a member of any non-empty ⇧0

1 class. We call
universal ⇧0

1 class a non-empty ⇧0
1 class all of whose members are of PA

degree.



6. PA degrees 175

In the same vein as Theorem 7-7.1, we end with a characterization which
now combines the fact of being of high or PA degree. Note the di↵er-
ence with (1) $ (3) of Theorem 7-6.2 within which we consider a se-
quence (Xn)n2N containing exactly the computable sets, whereas here we
only consider that it contains the computable sets.

Theorem 6.9 (Jockusch [102])
Let X ✓ N. The following statements are equivalent:

(1) X is of high or PA degree.

(2) X computes a sequence (Xn)n2N containing all the computable sets.

Proof. Let us first show (1) implies (2). If X is high then the implica-
tion is clear from Theorem 7-6.2. Suppose now that X is of PA degree.
Let g 6T X be such that g(n) 6= �n(n) for all n. Note that X also
computes the function f(x) = 1�g(x). In particular, �n(n) # 2 {0, 1} im-
plies f(n) = �n(n). Given a computable function �e and an integer n, we
can compute the code an such that �an(an) = �e(n). By using this process
and the fact that �an(an) # 2 {0, 1} implies f(an) = �an(an) = �e(n)
we easily compute a set Xe such that if n 7! �e(n) is total and has value
in {0, 1} then Xe(n) = �e(n) for all n. We can therefore compute our
sequence (Xe)e2N containing all the computable sets.

Let us now show (2) implies (1). Let (Xn)n2N be anX-computable sequence
containing all the computable sets. The idea is to proceed initially as in
the proof of (3) ! (1) of Theorem 7-6.2. Given a ⇧0

2 predicate of the form

P = {e : 8x1 9x2 R(e, x1, x2)},

the idea was to define uniformly in e a partial computable function fe such
that:

(a) e 2 P implies that fe is a total computable function.

(b) e /2 P implies that fe is a partial function which has no computable
completion.

It su�ces to notice that in Theorem 7-6.2, the definition of fe which is given
is such that in case (b), not only no completion of fe is computable, but
in addition such a completion is necessarily of PA degree. The definition
was as follows: Let e fixed. At the stage of computation t, for any value n
smaller than t and such that fe does not halt for the moment on n, we
proceed as follows : if �n(n)[t] #6= 0 we define fe(n) = 0. If �n(n)[t] #6= 1
we define fe(n) = 1. Otherwise, if for all k 6 n there exists mk 6 t such
that R(e, k,mk) then we define fe(n) = 0.



176 8. ⇧0
1 classes and PA degrees

As in the proof of Theorem 7-6.2, if e 2 P then fe is a total function.
Otherwise we notice that for almost all the values of n such that �n(n) #
we have fe(n) 6= �n(n). Any completion of fe is therefore a DNC2 function,
modulo a finite number of values, and is therefore of PA degree.

There are now two possibilities: either (Xn)n2N contains a set of PA degree,
in which case we have (1). Either this is not the case, in which case we
can give a ⌃0

2(X) definition of P as in the proof of Theorem 7-6.2, which
implies, applied to P = N \ ;

00 that ;00 is �0
2(X) and therefore X is high.

We end this section with an exercise which constitutes an alternative and
well-known characterization of the PA degrees.

Exercise 6.10. (?) Show thatX is PA i↵ for all c.e. sets A,B with A\B =
;, there exists an X-computable set C such that A ✓ C and C \ B = ;.
⇧

7. Finitely-branching trees

We introduce here the Baire space: the class NN of all the infinite valued
sequences in N, or in other words the class of all the functions from N to N.
Just as Cantor space has its set of strings 2<N, Baire space has its set of
strings N<N: finite sequences with values in N. The di↵erent operations
that we have seen on binary strings (prefix, concatenation, length, . . . )
extend without problem to strings in Baire space. In particular, given a
string � 2 N<N, we denote by [�] the class of sequences P 2 NN such
that � � P . The notion of tree also extends to subsets of N<N as follows:

Definition 7.1. A set T ✓ N<N is a tree if T is closed under prefix, that
is to say for all � 2 T and ⌧ � �, then ⌧ 2 T . }

Unlike binary trees, nodes can have an infinite number of successors. A
node � 2 T is branching if it has at least two successors. A path of T is
a sequence P 2 NN whose initial segments are all in T . We denote by [T ]
the class of paths of T . König’s lemma no longer works on trees in Baire
space, as the following counterexample shows.

Example 7.2. Let T = {� 2 N<N : 8n < |�| �(n) > |�|}. The tree T
contains nodes of arbitrary length and is infinite, but [T ] = ;.

The computational power of the paths of an arbitrary computable tree
of Baire space will be studied in Part IV on higher computability theory.
In this section, we will restrict ourselves to a sub-category of trees falling



7. Finitely-branching trees 177

into the realm of König’s lemma: the trees T ✓ N<N which are finitely-
branching, i.e., within which each node has a finite number of successors.

Lemma 7.3 (König’s lemma). Let T ✓ N<N be a finitely-branching
tree such that |T | =1. Then, [T ] is non-empty. ?

Proof. We construct a path X by induction on n. As T is infinite, but the
root ✏ has only a finite number of successors, by the pigeonhole principle,
there exists i 2 N and an infinity of nodes � 2 T which extend i (ie
with i � �). We define X(0) = i. Suppose that ⌧ = X(0)X(1) . . . X(n) is
defined with ⌧ 2 T and such that there is an infinity of nodes � 2 T for
which ⌧ � �. The node � having only a finite number of successors, by
the pigeonhole principle, there exists i 2 N and an infinity of nodes � 2 T
which extend ⌧ i. We define X(n+ 1) = i.

By induction on n, we thus define in this way a set X such that X �n 2 T
for all n.

Baire space
As for Cantor space, the open classes of Baire space are the classes O ✓
NN of the form O =

S
�2W

[�] for a set W ✓ N<N, and the closed
class P ✓ NN are of the form [T ] for a tree T ✓ N<N. On the other hand,
unlike Cantor space, the closed classes of Baire space are not compact in
general. The compacts of Baire space are precisely the closed classes P
of the form [T ] for a finitely-branching tree T ✓ N<N.

The proof of König’s lemma is almost the same as that of its weak version,
and one might expect at first glance that the computational power neces-
sary to compute a path from a computable finitely-branching tree is that
of PA degrees. This is not the case, however, as shown by Proposition 7.4.

Proposition 7.4. Let T ✓ 2<N be a �0
2 binary tree. There exists a

finitely-branching computable tree S such that deg([T ]) = deg([S]). ?

Proof. Let (Tn)n2N be a �0
2 approximation of T . We can assume without

loss of generality that for any n, Tn is closed under prefix and Tn ✓ 26n

(the set of strings of size less than or equal to n). We easily show that any
union of trees is a tree, which implies that

S
n
Tn is a tree.

Let us show that [
S

n
Tn] = [T ]. Clearly, T ✓

S
n
Tn, so [T ] ✓ [

S
n
Tn].

Let P 2 [
S

n
Tn]. Let s 2 N and show that P �s 2 T . (Tn)n2N being a

�0
2 approximation of T , P �s 2 T i↵ 8t 9n > t P �s 2 Tn. Let t > s.

As P �t 2
S

n
Tn and as by hypothesis

S
n<t

Tn ✓ 2<t, then P �t 2 Tn

for n > t. By downward-closure of Tn we have P �s 2 Tn. So 8t 9n >
t P �s 2 Tn. So P �s 2 T .



178 8. ⇧0
1 classes and PA degrees

Let �, ⌧ 2 N<N have the same length. We denote by h�, ⌧i the string ⇢
of length |�| such that for all n < |⇢|, ⇢(n) = h�(n), ⌧(n)i. The operation
naturally extends to infinite sequences P,Q for which we will write hP,Qi.
We are going to build a computable finitely-branching tree S ✓ N<N whose
paths will be of the form hP,Qi with P 2 [

S
n
Tn] = [T ] and Q a “witness”

of P 2 [
S

n
Tn], in the sense where for all s, P �s 2 TQ(s).

Define a partial computable function f :
S

n
Tn ! N<N which sends strings

to strings of the same length inductively as follows: f(✏) = ✏. If �i 2
S

n
Tn

then f(�i) = f(�)_s where s is the smallest integer such that �i 2 Ts. By
continuity, the function f extends to infinite sequences of [

S
n
Tn] = [T ].

Let S = {h�, f(�)i : � 2
S

n
Tn}. Note that

S
n
Tn is not computable

in general, but that S is because for any ⇢ = h�, µi, it is easy to verify
that f(�) = µ. The set S is closed under prefix, because

S
n
Tn is also

closed and f(�i) �|�|= f(�) for all � 2
S

n
Tn. Thus, S is a computable

tree. Note also that S is 2-branching, therefore finitely-branching.

Let us show that deg([T ]) = deg([S]). Let P 2 [T ]. Then, hP, f(P )i 2 [S]
and P ⌘T hP, f(P )i. Let R 2 [S]. Then, R = P�f(P ) for a P 2 [

S
n
Tn] =

[T ]. Likewise, R ⌘T P . This concludes the proof of Proposition 7.4.

Corollary 7.5
There exists a finitely-branching computable tree T ✓ N<N and a PA
degree P which does not compute a path through T .

Proof. Let S = {;
0 �n: n 2 N} be the �0

2 binary tree having ;0 for
unique infinite path. By Proposition 7.4, there exists a computable finitely-
branching tree T ✓ N<N such that deg([T ]) = deg([S]). In particular, any
path of T computes ;0. By Corollary 6.5, there is a degree both PA and
low. In particular, this degree does not compute a path through T .

We can relativize the notion of being DNC2 relative to an oracle X: we ask
for the computation of a function f : N! {0, 1} such that f(n) 6= �n(X,n)
for all n. Theorem 6.8 is relativized well in the sense that the DNC2 degrees
relative to X, which one will also call PA degrees relative to X or PA
(X), coincide with those allowing to compute a path in any non-empty
⇧0

1(X) class.

Exercise 7.6. Let Y be a PA(X) set. Show that Y >T X. ⇧

We deduce that a PA degree relative to ;0 is necessary to compute a path
in any infinite computable finitely-branching tree. Note that the situation
of Exercise 7.6 is di↵erent when we consider DNC degrees instead of DNC2



7. Finitely-branching trees 179

degrees. More precisely, if X is a non-computable set, there exists a set Y
of DNC degree relative to X which does not compute X (see Corollary 18
-4.4 ). This result brings into play notions of algorithmic randomness that
we will discuss in chapter Chapter 18.

Binary tree vs 2-branching tree

The tree T ✓ N<N built in the proof of Proposition 7.4 is 2-branching,
in the sense that each node has at most two successors. From a purely
structural point of view, it is therefore isomorphic to a binary tree S ✓
2<N. However, there are PA degrees that do not compute a path in
this tree. The di↵erence between the computational power of this tree
and that of a binary tree does not therefore come from a combinatorial
di↵erence, but simply stems from a lack of information on the successors
of a node: given a computable finitely-branching tree, one cannot limit
in a computable and uniform way the maximum value of the successor
of a node.

The preceding remark leads us to the following definition.

Definition 7.7. A tree T ✓ N<N is computably bounded if there exists
a computable function g : N ! N such that for all � 2 T and n <
|�|, �(n) < f(n). }

It is clear that any computably bounded tree is finitely-branching. The
following proposition makes it possible to reconcile the idea according to
which combinatorially similar objects should have the same computational
power, by showing that as soon as the finitely-branching tree is accom-
panied by a computable bound on its branching, then the computational
power necessary for compute a path is exactly that of PA degrees. Given a
function f : N! N, we will denote by f<N the set of strings � 2 N<N such
that for all n < |�|, �(n) < f(n).

Proposition 7.8. For any computable, computably bounded tree T ✓
N<N, there exists a binary tree S ✓ 2<N such that deg([T ]) = deg([S]). ?

Proof. The idea of the proof is quite simply to define a binary encoding
of the strings, using the computational bound to know how many bits to
allocate at each level. To remove any ambiguity, we will denote by 2=n the
set of binary strings of length n, instead of 2n, which will denote the n-th
power of 2. Let g : N ! N be a computable function such that T ✓ g<N.
Without loss of generality, we can assume that g(n) = 2h(n) for all n,
with h : N! N a computable function.

For all n, let en : 2n ! 2=n be the canonical bijection. For exam-
ple, e2 : 4! {00, 01, 10, 11} is defined by e2(0) = 00, e2(1) = 01, e2(2) = 10



180 8. ⇧0
1 classes and PA degrees

and e3(3) = 11. This coding extends into a computable bijection e : g<N
!

2<N defined by

e(�) = eh(0)(�(0))
_eh(1)(�(1))

_ . . ._eh(|�|�1)(�(|�|� 1)),

where one denotes here for more clarity the concatenation by _. For
example, if h(n) = n + 1, then g(n) = 2h(n) = 2n+1, and e(032) =
e1(0)_e2(3)_e3(2) = 0_11_010 = 011010.

Note that the set Ŝ = {e(�) : � 2 T} is not a tree, because it is closed
under prefix only for the initial segments of length exactly Img. We must
therefore define the tree S as the prefix closure of Ŝ, in other words S =
{e(�) �n: � 2 T ^ n 2 N}. The coding function e being monotonic on
the lengths, and the set T being closed under prefix, ⇢ 2 S if and only
if there exists a string � 2 g<N of length at most |⇢| such that ⇢ � e(�).
Thus, S is an infinite computable binary tree, whose paths are exactly
infinite sequences of the form eh(0)(P (0))_eh(1)(P (1))_ . . . for P 2 [T ].
Thus, deg([T ]) = deg([S]).

Corollary 7.9
Let T ✓ N<N be a computable, computably bounded infinite tree. Any
PA degree computes a path of T .

Proof. By Proposition 7.8, there exists a binary tree S ✓ 2<N such
that deg([T ]) = deg([S]). By Theorem 6.8, any PA degree computes a
path of S, so any PA degree computes a path of T .

We now see the converse of Proposition 7.4, which shows that the PA de-
grees relative to ;0 are exactly those able to compute a path in a computable
finitely-branching tree.

Proposition 7.10. Let T ✓ N<N be an infinite computable finitely-branching
tree. There is a �0

2 binary tree S ✓ 2<N such that deg([T ]) = deg([S]). ?

Proof. Note first that any infinite computable finitely-branching tree T ✓
N<N is ;0-computably bounded, that is to say that there exists a ;0-computable
function g : N ! N such that T ✓ g<N. The proof of Proposition 7.8 is
relativized to ;0, and allows to define a �0

2 binary tree S ✓ 2<N such
that deg([T ]) = deg([S]).

Let’s finish this section with a few exercises. The prefix closure of a set S ✓
N<N is the set

Ŝ = {⌧ 2 N<N : 9� 2 S ⌧ � �}.



7. Finitely-branching trees 181

Exercise 7.11. Show that for any infinite set S ✓ 2<N, its prefix closure
admits a path. ⇧

Exercise 7.12. Show that there exists a computable infinite set S ✓ 2<N

such that [Ŝ] = {;
0
}. ⇧

Exercise 7.13. (??) Show that for any infinite ;0-computable tree T ✓
2<N, there exists an infinite set S ✓ 2<N containing exactly one string of
each length, such that [T ] = [Ŝ]. ⇧



182 8. ⇧0
1 classes and PA degrees

Summary Diagram

Here is a figure which summarizes the various concepts approached so far.

00

Cone above 00

Incomplete �0
2

High
Hyperimmune
and non High

Computably
dominated

non DNC DNC and non PA

no pattern

PA

1 2 3

4 5 6

7

8

9

10

11

12

13

14

15

Figure 7.14: Summary on the Turing degrees seen so far. Points (1) to
(6) refer to examples of sets of each type. Points (7) to (15) refer to
the existence of a perfect class of sets of each type (hence according to
Exercise 5.4) to the existence of a perfect class of Turing degrees of each
type.)



7. Finitely-branching trees 183

The points from (1) to (15) which follow use for some of the concepts which
will be seen only in the following chapters.

(1) There exists a �0
2 Turing degree not DNC and high: It su�ces to mix

the proof of Exercise 4-10.6 with that of Exercise 7-2.9 to obtain a high
set which in addition to be incomplete, is not DNC.

(2) There exists a �0
2 Turing degree which is DNC, non PA and high: We

start from a DNC, non PA and low set X (by Theorem 18-4.1 and
Corollary 18-2.3 on can take for example a low random in the sense of
Martin-Löf). We can then embroider on the construction of Exercise 4
-10.6 and on that of Exercise 7-2.9 to build a set Y �0

2 high such
that X � Y is not PA (using in particular the fact that X 0 6T ;

0).

(3) There exists an incomplete �0
2 Turing degree which is PA and high: We

start from a PA and low set X (see Corollary 6.5). We then embroider
on the construction of Exercise 4-10.6 to build a �0

2 high set Y such
that X � Y is incomplete.

(4) There exists a �0
2 Turing degree not DNC, hyperimmune and not high:

It su�ces to build a non DNC and low set, by mixing Proposition 4
-9.1 and Exercise 7-2.9.

(5) There exists a �0
2 Turing degree which is DNC, non PA, hyperim-

mune and not high: It su�ces to consider a random set in the sense of
Martin-Löf and low. According to Theorem 18-4.1 such a set is DNC.
According to Theorem 19-1.7 it is not PA. According to Proposition 7
-4.7 it is hyperimmune. Finally, since it is low, it cannot be high.

(6) There exists a �0
2 PA, hyperimmune and not high Turing degree: Ac-

cording to Proposition 7-4.7 it su�ces to consider a low PA degree
given by Corollary 6.5.

(7) There is a perfect class of high and non-DNC sets. Just use Theorem 10
-3.21 and embroider on Posner/Robinson (see Corollary 10-3.34) to
build a perfect class of 1-generic and high sets.

(8) There is a perfect class of hyperimmune, non-high and non-DNC sets.
According to Theorem 10-3.2, Proposition 10-3.38 and Corollary 10
-3.34 any su�ciently generic set will be in this case there.

(9) There exists a perfect class of computably dominated and non-DNC
sets. We have to take again the construction of computably dominated
sets via f-trees, and modify it to produce non-DNC sets as it is done in
Exercise 7-2.9.



184 8. ⇧0
1 classes and PA degrees

(10) There is a perfect class of high, DNC and non PA sets. We can apply
Theorem 18-3.4 of Kučera/Gács relativized to ;0 on the 2-random tree
to build high and 2-random sets. By Theorem 18-4.1 such sets are
DNC. By Theorem 19-1.7 they are not PA.

(11) There is a perfect class of hyperimmune, non-high, DNC and non-PA
sets. According to Theorem 18-4.1, Corollary 19-3.9 and Corollary 19
-1.8 this is the case for any su�ciently random set.

(12) There exists a perfect class of computably dominated, DNC and not PA
sets. This is Theorem 5.1 applied to a ⇧0

1 class containing only random
numbers within the meaning of Martin-Löf. According to Theorem 19
-1.7 MLR and computably dominated sets cannot be PA.

(13) There exists a perfect class of incomplete sets, high and PA. We fix a
high and incomplete set X. We then develop on Theorem 4.7 the cone
avoidance basis relativized to X, to build a perfect class of sets PA Y
such that X � Y is incomplete.

(14) There is a perfect class of hyperimmune, non-high and PA sets. Let X
be a non-high hyperimmune set. We use the relativization to X of
Theorem 5.1, applied to the ⇧0

1 class of DNC2 sets, to construct a
perfect class of sets Y such that any function computed by X � Y is
dominated by a function computed by X.

(15) There exists a perfect class of computably dominated PA sets. This is
Theorem 5.1 applied to the ⇧0

1 class of DNC2 sets.



Chapter 9
Formal interlude

1. A little history: the crisis of foundations

Mathematics have developed naturally over the centuries as a tool at the
service of an abstract representation of reality. This state of a↵airs is, for
example, flagrant in physical sciences for which mathematics accurately
accounts for a variety of phenomena. Over time, the concepts studied have
become more and more complex, more and more abstract, and the connec-
tions between mathematics and the real world have become more and more
uncertain. For a long time, however, the discipline has been able to rely
on the innate logical sense of the human mind to talk about things that we
do not “see anymore” while keeping a rigorous framework. Complex num-
bers constitute a striking example: the negative square numbers, which
only exist a priori in the imagination of the mathematician, are baptized in
1545 by Cardan “sophisticated quantities”. Sophistication was undoubt-
edly needed to accept this UFO as a serious object of study. However these
“sophisticated quantities” find their utility in the resolution of very con-
crete problems. Raphaël Bombelli gives a first formalization in 1572, and
shows how to use these numbers to solve certain third degree equations.
Over the centuries, they will find many uses in mathematics, as well as in
physics, where they are used successfully in equations representing the real
world.

It took a certain conceptual leap to accept the development of a rigorous
and consistent mathematical framework around complex numbers. Despite
everything, let’s say that this concept, however surprising it may be, still
remains “relatively simple”. The real problems arise with Cantor’s work

– 185 –



186 9. Formal interlude

on cardinality and transfinite numbers. Cantor opens the door wide to
a bottomless abyss, that takes us far beyond what the human mind can
confidently apprehend: the study of the infinite. Of course, infinity has
been present in mathematics since antiquity in the first place, through
the consideration that there is no greater whole number. But Cantor’s
epistemological revolution consists in considering the infinite as an object
of study in its own right. This consideration will lead to the beginnings of
what will become a century later set theory with a capital “S”.

With Cantor’s work, the question of knowing what is mathematical ac-
tivity has become more and more pressing: can we really reason about
everything, and even about the infinite, a concept beyond us? But if we
accept, as is the case today, that we can reason about infinity, we certainly
cannot do it just any old way. Basically what is doing mathematics? Es-
pecially when we start to manipulate objects about which we no longer
have so much intuition, how can we be sure that what we are talking about
really has a meaning? These considerations found their apogee during the
famous “crisis of foundations” which goes from the end of the 19th century
to the beginning of the 20th. It is then a question of defining rules to frame
the mathematical activity. It is in fact a question of precisely defining the
mathematical study, not of objects such as integers, reals or even func-
tions, but of defining the mathematical study of mathematics itself. It is
remarkable a posteriori to note the success of this enterprise: mathematics
is a su�ciently powerful tool to be able to define and study itself, with the
rigor inherent in the discipline! It was obviously not an easy path. In this
enterprise, the three musketeers —who as we know are four— are called
Frege, Russel, Zermelo and Hilbert.

Frege

German philosopher and mathematician from the end of the 19th century,
Gottlob Frege was moved by one certainty: logic precedes mathematics.
But the logic of the time is still very poor, and is essentially confined to the
work of George Boole, on what is called today propositional calculus: the
manipulation of propositions, true or false, that one can connect between
them via “and” and “or” logic, well known to computer scientists. This sys-
tem is too small for Frege’s ambition to put mathematics on a logical foun-
dation. In particular, nothing in propositional calculus allows us to speak
of specific objects through the relations they maintain with one another.
He then formalized in his work “Begri↵sschrift” a new language in order to
overcome the shortcomings of the logic of the time, a language which will
evolve to become what we call today predicate calculus, ubiquitous in math-
ematics.



1. A little history: the crisis of foundations 187

Gottlob Frege, 1848–1925

Frege is considered today as the fa-
ther of modern logic, notably through
his concept of quantified variables 8x . . . , 9x . . . .
He uses his formalism to tackle in his
following works “Foundations of arith-
metic” (1884) and “Fundamental laws
of arithmetic I and II” (1893 and 1903)
the foundation of arithmetic on logic.
For this, he proposed a definition of
natural integers which can be seen to-
day as based on the concept of set and
that of comprehension scheme: if  (x)
is a mathematical formula which can be
true or false according to x, then the
set of elements which satisfy this for-
mula: {x :  (x)}, is well defined.

Russell

Bertrand Russell, 1872–1970

In 1902, Russell in a letter to Frege ex-
pressed doubts about his work. Let y
be the set of sets which do not belong
to each other: y = {x : x /2 x}. Do we
then have y 2 y or y /2 y? We can easily
understand the paradoxical situation we
have reached. This example will be fa-
mous as Russell’s paradox. At 53, Frege
realizes that Russell’s paradox implies
the collapse of the system he took years
to build. A hard blow from which he
will have great di�culty recovering.

Despite this paradox, Russell welcomes
Frege’s work with great enthusiasm, and
goes a long way in promoting its value.
Like Frege, Russell feels the need to
put mathematics on a solid foundation.
Much like Frege, Russell has this intuition that logic precedes mathematics.
He will tackle ten years during, with his former professor Alfred White-
head, this search for logical foundations, which will lead to their famous
work “Principia Mathematica”: a titanic work which extends over more
than 2,000 pages, whose ambition is to describe a set of logical axioms and
inference rules from which any mathematical truth could be demonstrated.



188 9. Formal interlude

These works lay the foundations of what we call today type theory, a sys-
tem still studied today, presenting very strong links with programming lan-
guages. In parallel, the set theory developed, the axiomatization of which
was initiated by Zermelo, and completed later by Fraenkel and Skolem inde-
pendently, to give the axiomatic system ZF, named after Zermelo-Fraenkel.

Zermelo

Ernst Zermelo, 1871–1953

An absolutely remarkable fact is that
the ZF system, to which it is some-
times necessary to add the axiom of
choice, gives a framework within which
can be formalized the totality of mod-
ern mathematics, if we exclude recent
developments in set theory, the objec-
tive of which is precisely to get out of
this system. Zermelo finds a way to
avoid Russell’s famous paradox — like
Russell himself with his theory of types
— by limiting the axiom of comprehen-
sion. The set {x :  (x)} is no longer
valid, one needs to start from an exist-
ing set y, in which case we can now de-
fine the set of elements of y which sat-
isfy  : {x 2 y :  (x)}. However, this
theory does not immediately reach consensus. Poincaré, if he never ac-
tively took part in the crisis of foundations, followed its developments with
interest. Like all protagonists of the time, he is keenly aware of the danger
behind Russell’s paradox. He even theorizes the problem as impredicativ-
ity1: An impredicative definition is in substance a circular definition in
which the object that is defined is itself likely to be used in the definition.
This is what happens when we define y = {x : x /2 x}: the set y defined to
the left of the equality is also concerned to the right of the equal sign, since
we potentially consider all the sets. If Zermelo’s axiomatic avoids Russell’s
paradox, it nevertheless remains indirectly impredicative, as Poincaré will
notice, who will write [184]:

“By assuming in advance its set M [Poincaré then speaks of the bound
used by Zermelo in the axiom of comprehension, which makes it possible
to define for an existing set M {x 2 M :  (x)}], he [Mr. Zermelo] has
erected a wall which stops any disturbers who might come from outside. But
he does not ask himself if there may be hindrances from within that he has

1Previously used by Russell in a slightly di↵erent sense.



1. A little history: the crisis of foundations 189

locked up with him in his wall. If the set M has an infinity of elements, this
does not mean that these elements can be conceived as existing in advance
all at the same time, but that new ones can constantly be born; they will be
born inside the wall, instead of being born outside, that’s all.”

Zermelo’s system considers that if a setA exists, then the set of its parts P(A)
also exists. This axiom combined with the axiom of restricted comprehen-
sion allows circular definitions to be made. Thus, in the definition A = {n 2
N : 8S 2 P(N) n /2 S}, the quantifier 8S will take for value all the subsets
of N, and in particular the set A itself. The set A is therefore defined as a
function of itself. Poincaré then adds at the end of his argument:

“But if he [Mr. Zermelo] has closed his sheepfold well, I’m not sure the
wolf hasn’t locked up there. I would only be reassured if he had shown that
he is immune to contradiction.”

We can hardly prove Poincaré wrong: how can we be sure that a Russell’s
paradox will not appear out of nowhere, at the bend of a hidden circu-
lar definition? Zermelo himself is aware of the problem, and will seek to
demonstrate without success that his axiomatic system is consistent, that
is to say free from paradox. This search for proof of the consistency of
mathematics reached its peak around 1920, under the leadership of David
Hilbert.

Hilbert

Hilbert is certainly — just like Poincaré— one of the last mathematicians
to have an in-depth knowledge of all the mathematics of his time. His
work is considerable, and he profoundly influenced the developments of the
discipline during the 20th century. He takes an active part in the crisis of
the foundations by opposing to Russell a formalist vision of mathematics,
rather than a logicist vision. For Hilbert, mathematics must be able to be
reduced to a set of rules, which we must be applicable in a purely mechanical
way and disconnected from any psychology of the mathematician. He thus
imagines proof systems, within which he di↵erentiates axioms, which are
the

David Hilbert, 1862–1943

mathematical sentences assumed to be
true, for example the Zermelo-Fraenkel
axioms, and deduction rules, which al-
low the axioms to be combined together
to deduce theorems. It is Hilbert’s vi-
sion that will eventually prevail, even if
it does not happen without a stir. The
ultimate objective for Hilbert is to show
via deduction systems considered to be



190 9. Formal interlude

reliable — in particular via finite rea-
soning on finite objects — that the set
of mathematics, which they call on in-
finite objects whose relevance is subject
to caution, forms a consistent system,
that is to say free from paradox: this is
what we will call Hilbert’s program, of
which the Entscheindungsproblem men-
tioned in Section 6-1 constitutes one of
the aspects. This program will come to a sudden stop with the work of
Gödel, who demonstrates ten years later his famous incompleteness the-
orem: arithmetic itself is powerless to demonstrate that it is free from
paradox.

The Fifth Musketeer

Gödel’s work brings a conclusion as masterful as it is unexpected to the
crisis of foundations. Gödel shows two things: even the simplest and best
understood systems, like arithmetic, which speaks only of finite objects,
contain unprovable truths. In particular, and supposing it to be true that
the axioms of arithmetic form a system free from paradoxes, then the
consistency of arithmetic is itself one of those unprovable truths. Gödel
finally shows — with the help of Rosser — that the addition of axioms
changes nothing: any consistent system of axioms, containing arithmetic,
and “whose axioms can be known” cannot demonstrate its own consis-
tency. Gödel developed for this the first versions of what would later be
computability theory: “whose axioms can be known” means computable,
in a similar sense to the modern one.

The repercussions in the mathematical world are colossal. Hilbert’s pro-
gram is down, and mathematics will never have a fully satisfactory foun-
dation.

Kurt Gödel, 1906–1978

Even today, we do not know whether
the ZF system, which axiomatizes all
mathematics, is consistent: and for
good reason, if, as we hope, it is indeed
free from paradox, we will never be able
to demonstrate it mathematically, or by
anyway as long as one confines oneself
to the axioms of ZF. The epistemolog-
ical impact is considerable. Mathemat-
ics, mother of the exact sciences, is not
only dependent on a belief, but is also
able to demonstrate that it will always
be so!



2. First-order logic 191

2. First-order logic

From Frege and Russell, we will re-

tain the modern logical language used

in mathematics, from Hilbert we will re-

tain a proof system based on axioms and deduction rules applicable to

mathematical statements, and from Zermelo, we will retain the axiomatic

system ZF or ZFC, su�cient to formalize all of traditional mathematics.

We now present without going into too much detail the basic principles

of first-order logic, our objective being to present in a more precise way

Gödel’s theorem and its consequences. For this reason, the common thread

of our presentation will be the specific example of Peano arithmetic.

2.1. Arithmetic language

The first step to formalize our mathematical demonstrations is to fix the

language. We will therefore define the language of Peano arithmetic.

Definition 2.1. The language LPA of Peano arithmetic includes symbols
specific to predicate calculus:

(1) Variable symbols x, y, z, . . . : they represent natural numbers.

(2) Parentheses () and symbols of logical connectors : ^,_,!,¬.

(3) Quantifier symbols: 8, 9.

And those specific to Peano arithmetic:

(1) The following symbols of binary functions: +, ⇥.

(2) The following symbols of binary relations: =, <.

(3) Constant symbols 0̇, 1̇. }

A language is nothing but a list of symbols. However, these symbols are

intended to be used with a specific meaning. Regarding predicate calculus,

this is the usual meaning: for example “^” is the logical and, while “9”

is the existential quantification. Regarding the symbols specific to Peano

arithmetic, there are first the functions + and ⇥ which respectively rep-

resent addition and multiplication, the symbols of equality and inequality.

which have their usual meanings on integers, and finally the constants 0̇, 1̇

which each represents the corresponding respective integer.



192 9. Formal interlude

First-order languages
It is easy to see how to generalize the previous definition to obtain other
languages. The symbols specific to predicate calculus are the same for all
first-order languages, to which we add an arbitrary number of function
symbols (n-ary for arbitrary integers n), an arbitrary number of symbols
of relations (also n-ary for arbitrary integers n) and an arbitrary number
of constant symbols.

The function symbols are subject to arrangement rules to form what are
called the terms of the language:

Definition 2.2. The terms of predicate calculus for arithmetic are in-
ductively defined as follows.

(1) A variable or a constant symbol is a term.

(2) If t1, t2 are terms, then (t1 + t2) and (t1 ⇥ t2) are terms. }

Example 2.3. The following expressions are terms: x, ((((x+ 1̇)+ 1̇)+
1̇) + 1̇ + 1̇), (1̇ + 0̇), (x+ (y ⇥ z))

As we can see, the language of arithmetic is quite minimalist, and the valid
expressions are very structured to remove any ambiguity. In practice, a
number of notation shortcuts will be used to improve readability, as long
as the translation in valid terms is unambiguous. For example, t0 + t1 + t2
is a shorthand for ((t0 + t1) + t2). Likewise, x+ 3̇ is a shorthand for (x+
((1̇ + 1̇) + 1̇)).

Definition 2.4. A term is closed if it does not contain any variable and
therefore only constants and the operations + and ⇥. }

Intuitively, a closed term in arithmetic is a way of representing a natural
number. For example, (1̇ + 1̇)⇥ 0̇ is a name for the integer 0. The integers
each have an infinite number of names.

Example 2.5. The term x+ 1̇ is not closed, unlike (1̇ + 1̇)⇥ 0̇.

If the function symbols are used to create the terms of the language, the
relation symbols are used to create the formulas of the language:

Definition 2.6. The arithmetic formulas are defined as follows:

(1) For all terms t1, t2, then t1 = t2 and t1 < t2 are formulas. These
formulas are called atomic formulas. The atomic formulas and their



2. First-order logic 193

negations, here, ¬t1 = t2 and ¬t1 < t2, are called literals.

(2) For all formulas F1, F2, then (F1 ^F2), (F1 _F2), (F1 ! F2) and ¬F1

are formulas.

(3) For any formula F , then 8xF and 9xF are formulas. }

There again, we will resort to syntactic sugar by writing t1 6 t2 for the
formula (t1 < t2)_(t1 = t2) and F1 $ F2 for the formula (F1 ! F2)^(F2 !

F1).

First-order formulas
Here as well, we can easily generalize the formation of formulas and
terms in any language: the function symbols of the language are used to
create the terms, which then serve with the help of the relation symbols
to create atomic formulas, which can then be composed between them
with the help of the symbols of predicate calculus as in (2) and (3) of
the previous definition.

With the quantifiers appear the notions of bounded and free variables: the
bounded variables are unsurprisingly those which are bound to a quantifier,
and the free variables are those which are not. The formal definition is
quite heavy, but a few examples are enough to create an intuition.

Example 2.7. In the following formula: “8x 9y y = x + 1̇” the vari-
ables x and y are bounded while in the following formula: “9y y = x+1”
only the variable y is bounded, unlike the variable x which is free.

Definition 2.8. A closed formula or a statement is a formula in which
no variable is free. }

Notation
Given a formula F having for free variables x1, . . . , xn, we will
write F (x1, . . . , xn) to signify that the free variables of F are x1, . . . , xn.

Intuitively, a closed formula is an a�rmation which will have a truth value
(true or false) when evaluated on integers. Formulas with free variables
define predicates on integers.

2.2. Hilbert-style deduction systems

In order to mathematically formalize the notion of proof, Hilbert imagined
a very precise system of rules, which su�ce to show “everything that is
demonstrable”. How do we know? This idea will be made precise with



194 9. Formal interlude

Gödel’s completeness theorem to come. Subsequently, many other demon-
stration systems were developed, all equivalent and more or less suited to
certain objectives.

2.2.1. Axioms and rules

In a Hilbert-style system, a proof is a finite list of mathematical sen-
tences F0, F1, F2, . . . , Fn —formulas in the considered language— satisfying
the following rules: for any i 6 n, either Fi is a axiom, or Fi is produced
from inference rules applied to formulas Fj1 , . . . , Fjm for j1, . . . , jm < i.
Each sentence Fi in this list will then be demonstrated, the objective being
normally to obtain Fn, the last of them. Let us now see a specific exam-
ple of a system à la Hilbert powerful enough to demonstrate all that is
demonstrable.

Axioms: The axioms that we can always use are the tautologies of first-
order logic. Thus, for example A _ ¬A could be used as an axiom. There
are three types:

1. The tautologies of propositional logic. For example (F ! G)! (¬G!
¬F ) is a tautology of propositional logic: it will be true for any for-
mula F or G regardless of their truth value.

2. The tautologies of predicate calculus. In practice, only four axiom
schemes are necessary:

(a) 8x(F ! G) ! (F ! 8xG) for any formula F not containing the
variable x, and any formula G.

(b) 9x(F ! G)! (9xF ! G) for any formula F , and any formula G
not containing the variable x.

(c) 8xF ! Ft/x for any term t and any formula F containing no
variable of t.

(d) Ft/x ! 9xF for any term t and any formula F containing no
variable of t.

Above Ft/x denotes the formula F for which each occurrence of x is
replaced by the term t.

3. The axioms of equality:

(e) t = t for any term t.

(f) t1 = q1 ^ · · ·^ tn = qn ! f(t1, . . . , tn) = f(q1, . . . , qn) for all n, all
terms (ti)16i6n, (qi)16i6n and any n-ary function symbol f .

(g) t = q ! (F (t/z) ! F (q/z)) for any terms t, q and any for-
mula F (z) not involving variables of t or q.



2. First-order logic 195

Above, F (t/z) and F (q/z) denote the formula F in which each occur-
rence of z is replaced by t and q, respectively.

Note that these axiom schemes depend on the language considered, each
language using symbols of functions and relations which are specific to
them, to construct the atomic terms and formulas respectively.

Equality symbol
We consider here that the symbol of equality is necessarily part of the
language that we use, and will always have its usual meaning, which
justifies the axioms of equality mentioned above.

Inference rules. Inference rules allow us to combine sentences already
demonstrated in our list, to obtain new ones. The following two rules are
su�cient.

1. Rule 1: Modus Ponens - the basis of all deductive reasoning. If A! B
is proved and if A is proved, then we can deduce B.

2. Rule 2: Generalization. If F (x) is proved for a variable x free in F ,
then can deduce 8xF (x). This rule is widely used in mathematics: if
we want to prove for example that for all rationals x < y, there exists a
rational z such that x < z < y, we start by fixing rational variables x, y
on which we assume nothing other than x < y. If we manage to deduce
the existence of a rational z such that x < z < y, without using any
specific property of x, y, we deduce by the generalization rule that for
all rational x < y, there exists a rational z such that x < z < y.

This concludes the description of our system à la Hilbert. Let’s see an
example of a demonstration right away.

Example 2.9. Let us show 8xF (x)! 9xF (x). For more readability we
will note A ⌘ 8xF (x), B ⌘ F (y) and C ⌘ 9xF (x).

(1) A! B (axiom (c)).

(2) B ! C (axiom (d)).

(3) (A! B)! ((B ! C)! ((A! B) ^ (B ! C))) (tautology).

(4) (B ! C)! ((A! B) ^ (B ! C)) (Modus Ponens on (1) and (3)).

(5) (A! B) ^ (B ! C) (Modus Ponens on (2) and (4)).

(6) ((A! B) ^ (B ! C))! (A! C) (tautology).



196 9. Formal interlude

(7) A! C (Modus Ponens on (5) and (6)).

Quid of empty universes?

The reader may be surprised by the sentence 8xF (x) ! 9xF (x)—
that we have demonstrated. What happens if we place ourselves in an
empty universe? At this time, 8xF (x) is correct, but not 9xF (x). The
axiom (d) above e↵ectively implies that the demonstrated formulas will
only be valid if there is at least one element in our universe. The notion
of universe will be made precise in Section 2.4 to come. It is in fact
necessary to have such a restriction if one wants to demonstrate that any
formula is equivalent to a formula in prenex form (see Definition 2.12).

2.2.2. First tools

We claim that the Hilbert-style system described above allows us to show
everything that is demonstrable, and we will see this formally with the
completeness theorem to come. The system is intentionally minimalist,
and di�cult to handle as it is. The reader can for example try to demon-
strate ¬8xF (x)! 9x ¬F (x) to realize the di�culty of using the system as
it is. The mathematician who wants to do this kind of proof will proceed
naturally as for any proof: assuming that ¬8xF (x) is true, and trying to
deduce 9x ¬F (x). The problem is that if we want to respect the formal-
ism of a Hilbert system, ¬8xF (x) is not necessarily an axiom that we can
assume to be true in order to derive a conclusion. We then see our first
fundamental tool, which will allow us to proceed as we are used to.

Lemma 2.10 (Deduction lemma). Let F be a closed formula. If we
can prove G using F as an axiom, then there exists a proof of F ! G
(which does not use F as an axiom). ?

Proof. Let G1, . . . , Gn be a proof of Gn using F as an axiom. Let us
show by induction on the size of a proof that we can do some insertions in
the sequence F ! G1, . . . , F ! Gn in order to make a valid proof of it not
using F as an axiom. If Gi is the statement F , then F ! F is an axiom of
propositional logic. If Gi is an axiom of propositional logic, then it is also
the case for F ! Gi. If Gi is one of the axioms (a), (b), (c), (d) of predicate
calculus, then Gi!(F!Gi) is an axiom of propositional logic. By using
the Modus Ponens on Gi and Gi ! (F ! Gi), we get F ! Gi. If Gi =
8x Gj for j < i is obtained by the generalization rule, then 8x (F ! Gj)
is obtained from F ! Gj (which we have by induction hypothesis) by the
generalization rule. We obtain F ! 8xGj by Modus Ponens and by axiom
(a)

8x(F ! Gj)! (F ! 8x Gj).

Finally, if Gi = Gb is obtained by Modus Ponens on Ga, then Ga ! Gb



2. First-order logic 197

for a, b < i. Then, we have F ! Ga and F ! (Ga ! Gb), by induction

hypothesis. The formula
�
F ! (Ga ! Gb)

�
!

�
(F ! Ga)! (F ! Gb)

�

is a tautology of predicate calculus. By Modus Ponens, we deduce (F !

Ga) ! (F ! Gb) and, by a second application of Modus Ponens, we

deduce F ! Gb.

Let us see immediately an example of application of the deduction lemma

to prove ¬8xF (x)! 9x ¬F (x).

Example 2.11. Let us show ¬9xF (x) ! 8x ¬F (x). From the deduc-
tion lemma, we can assume ¬9xF (x) as an axiom.

(1) ¬9xF (x) (axiom).

(2) F (x)! 9xF (x) (axiom (d)).

(3) (F (x)! 9xF (x))! (¬9xF (x)! ¬F (x)) (tautology).

(4) ¬9xF (x)! ¬F (x) (Modus Ponens on (2) and (3)).

(5) ¬F (x) (Modus Ponens on (1) and (4)).

(6) 8x ¬F (x) (generalization on (5)).

Let us now show 8x ¬¬F (x)! 8x F (x).

(1) 8x ¬¬F (x) (axiom).

(2) 8x ¬¬F (x)! ¬¬F (x) (axiom (c)).

(3) ¬¬F (x) (Modus Ponens on (1) and (2)).

(4) ¬¬F (x)! F (x) (tautology).

(5) F (x) (Modus Ponens on (3) and (4)).

(6) 8xF (x) (generalization on (5)).

We leave it to the reader to use the contrapositive to deduce

¬8xF (x)! 9x¬F (x).

2.2.3. Prenex form

This proof system allows us to show that any formula — in any language

— is provably equivalent to a formula in prenex form.



198 9. Formal interlude

Definition 2.12. A formula is in prenex form if it is of the form

Q1x1 . . . Qnxn F (x1, . . . , xn, y1, . . . ym)

where each Qi is a 8 or 9 quantifier and F (x1, . . . , xn, y1, . . . ym) is a
quantifier-free formula. }

We leave it to the reader to show the following equivalences:

• 8xF ^ G ⌘ 8x(F ^G);

• 8xF _ G ⌘ 8x(F _G);

• 9xF ^ G ⌘ 9x(F ^G);

• 9xF _ G ⌘ 9x(F _G).

These equivalences, coupled with Example 2.11 allow to transform any for-
mula into a provably equivalent prenex formula in our system of deduction,
by gradually shifting the quantifiers to the left.

Note that the equivalences above only hold if one places oneself in a universe
having at least one element. Then, for example, we will have (8x x =
x) ^ (9y y 6= y) false in the empty universe, but 8x (x = x ^ (9y y 6= y))
always true.

2.3. Logical and arithmetic theories of Peano

Once a language fixed — in our case, that of arithmetic — and the proof
system specified, we can then consider a mathematical theory in this lan-
guage, and use it to prove theorems concerning the structure described by
this theory.

Definition 2.13. A theory T in a language L is a collection of closed
formulas of that language. We also often use the term axiomatic system
or more simply system to denote a theory. }

The theory is then seen as a list of axioms, which we can use in our proofs, in
addition to the axioms present in the proof system. Let us see immediately
the axioms of arithmetic which were developed by Peano towards the end
of the 19th century.

2.3.1. Axioms of Peano arithmetic

Peano axioms allow us to specify the behavior of natural numbers. The
first series of axioms defines the behavior of integers with respect to the
successor.

(1) 8x ¬(x+ 1̇ = 0̇): 0 has no predecessor.



2. First-order logic 199

(2) 8x (x = 0̇_9y (x = y+1̇)): Any integer other than 0 has a predecessor.

(3) 8x 8y (x+ 1̇ = y + 1̇ ! x = y): The successor function for integers is
injective.

The following axioms give rules for computing addition and multiplication:

(4) 8x (x+ 0̇ = x);

(5) 8x8y (x+ (y + 1̇) = (x+ y) + 1̇);

(6) 8x (x⇥ 0̇ = 0̇);

(7) 8x8y (x⇥ (y + 1̇) = (x⇥ y) + x).

Finally, we define the behavior of integers with respect to order:

(8) 8x8y (x < y $ (9z (z 6= 0̇ ^ x+ z = y)))

Notation

We denote by Q the theory composed of axioms (1) - (8), which form
what we call Robinson arithmetic.

To obtain Peano arithmetic, we add the following axiom, for any arithmetic
formula F (x):

(9)
⇣
F (0) ^

⇣
8x
�
F (x)! F (x+ 1̇)

�⌘⌘
! 8xF (x)

Note that axiom (9) is not a unique axiom. As for axioms (a), (b), (c), (d)
of our proof system, it is an axiom scheme, that is to say of an infinity of
axioms parameterized by a formula, here F (x).

Statement (9) is the well-known axiom of induction on integers: if a for-
mula F is true for the integer 0, and if the fact that it is true for n implies
that it is true for n+ 1, then it is true for all integer n.

Notation

We denote by PA the theory composed of Q and the axiom scheme (9)
for any formula of arithmetic. It is known as Peano arithmetic.

We will see in Chapter 23 how to use the axioms of PA to show some
elementary facts about natural numbers. We will see in particular that the
induction scheme is equivalent to the following scheme: for any formula F
true for at least one integer, there exists a smaller integer x such that F (x) is
true. This may of course seem perfectly obvious, because we have in mind
the structure of the natural numbers N that we know well, but a proof
does not use this structure: it uses only the axioms, and in the case of the



200 9. Formal interlude

arithmetic, these are precisely made so that any mathematical structure
verifying them behaves like the natural numbers. This will bring us to the
notion of model, in the next section.

2.3.2. Proofs in a theory

Once we have fixed a theory, we can use its axioms within a Hilbert system
to prove mathematical statements.

Notation
We will note T ` F to signify that there is a proof of the formula F
from the axioms of T via the Hilbert system exposed in Section 2.2. If
there is no such proof, then we write T 0 F .

Among the tautologies of propositional logic, we find for all formulas F,G
the formula (F ^¬F )! G, called “ex falso quodlibet”, meaning that from
a contradiction (F ^¬F ) we can deduce anything. It follows that if a theory
proves a formula and its opposite, any statement is provable in this theory,
which removes all interest from it. We will therefore expect above all from
a theory that it be consistent.

Definition 2.14. A theory T is consistent if there is no formula F such
that T ` F ^ ¬F . }

Notation
We will write T `? to mean T ` F ^ ¬F for a certain formula F .
The notation T 0? then logically signifying that for any formula F we
have T 0 F ^ ¬F . As the equality symbol is part of our language, we
can consider without loss of generality ? as being ¬x = x. Since x = x
is an axiom, if T ` ¬x = x then T ` x = x ^ ¬x = x.

We saw in the introduction to our interlude that the inconsistency Russell
found in Frege’s work was a cornerstone in the crisis of foundations. So
mathematicians would like as much as possible to be certain that they are
working only with consistent theories. But how can we verify the consis-
tency of a theory? Without even talking about theory, what about the
consistency of the Hilbert system itself and its axioms of logic, presented
in Section 2.2? The notion of model answers these questions.

2.4. Structures, models and consistency theorem

The notion of structure can be defined very generally for any fixed language.
Let us start with the example which interests us more specifically, namely
the language of arithmetic.



2. First-order logic 201

Definition 2.15. A structure M = (M,+M,⇥M, <M,=M, 0M, 1M)
in LPA is given by:

• A non-empty set M

• +M,⇥M : M ⇥M ! M functions corresponding to +,⇥ function
symbols.

• A relation <M
✓M ⇥M corresponding to the relation symbol <.

• A relation =M
✓M⇥M corresponding to the relation symbol =, and

which corresponds to “true equality”, i.e., such that (x, y) 2 =M
$

x = y.

• Elements 0M, 1M 2 M corresponding to the constant symbols 0̇
and 1̇. }

A structure is therefore a set, as well as functions, relations and constants
on this set, constituting an interpretation of the symbols of language.

By abuse of notation, we will sometimes identify M with its underlying
set M (we write for example x 2M). To simplify the notations, we will
sometimes remove the exponents M when it is clear that we are talking
about the functions and relations of the structure and not of symbols of
the language.

First-order structure
It is easy to see how to generalize the previous definition to obtain
structures for any first-order language. We always have a non-empty
set M . Each n-ary function symbol f corresponds to a function of fM :
Mn
!M , each n-ary relation symbol R corresponds to a relation RM

✓

Mn and each constant symbol c corresponds to a constant cM 2M . The
equality relation will always be present and will always correspond to
“the true equality”.

A formula, like for example F (x) = 9y y⇥ (1̇+ 1̇) = x is only a sequence of
symbols. Once a structure M has been fixed, each symbol is intended to
be interpreted by the object which corresponds to it in M; moreover, the
free variables can also be replaced by various parameters —that is to say
various elements— of the structure.

Definition 2.16 (Parametric formulas). Let L be a language and M

a structure for L. Given a formula F (x1, . . . , xn) of L having x1, . . . , xn

as free variables, and given a1, . . . , an 2M, the expression F (a1, . . . , an)
denotes a formula parameterized by a1, . . . , an: this is the formula F



202 9. Formal interlude

in which each free occurrence of xi is replaced by ai for 1 6 i 6 n.
A parametric formula without free variable will be a closed parametric
formula. }

A closed parametric formula is no longer a simple sequence of symbols, but
a statement which will be true or false in the considered structure.

Remark
Note that the notion of parametric formula induces that of paramet-
ric term. Thus, in the usual structure of integers for the language of
arithmetic, (5+4)⇥ 2 will be a term parameterized by the elements 5, 4
and 2 of our structure. This should not be confused with the closed
term (5̇ + 4̇)⇥ 2̇ with no parameter.

We now define satisfaction in a structure, for closed formulas or else pa-
rameterized in this structure.

Definition 2.17. Let L be a language and M = (M, . . . ) a structure
for L. We say that a formula F (x1, . . . , xn) of L is true in M for param-
eters a1, . . . , an 2M, and we write M |= F (a1, . . . , an), if F (a1, . . . , an)
is actually satisfied in the structure. The definition is formally done
by induction on the formulas (in what follows x and a are shortcuts
for x1, . . . , xn and a1, . . . , an):

• Base case: M |= R(t1(a), . . . , tm(a)) where R is an m-ary relation
symbol of the language corresponding to the relation RM

✓Mm and
each ti(x) is a term, i↵ (tM1 (a), . . . , tM

n
(a)) 2 RM where each tM

i
(a)

is the element of M obtained by applying the functions corresponding
to each function symbol used in t1(a).

• Universal quantification: M |= 8y G(y, a) i↵ M |= G(b, a) for all b 2
M .

• Existential quantification: M |= 9y G(y, a) i↵ there is b 2 M such
that M |= G(b, a).

• Negation: M |= ¬G(a) i↵ M 6|= G(a).

• Conjunction: M |= G1(a) ^G2(a) i↵ M |= G1(a) and M |= G2(a).

• Disjunction: M |= G1(a) _G2(a) i↵ M |= G1(a) or M |= G2(a).

The satisfaction of implication is deduced from that of negation and dis-
junction. }

Once a theory is fixed, we can consider models of this theory, that is,
structures within which each axiom of the theory will be true.



2. First-order logic 203

Definition 2.18. Let T be a theory in a language L. A structure M

in L is a model of T if every axiom of T is true in M. }

Example 2.19. .

• The set Z equipped with the usual operations is not a model of Peano
arithmetic because it does not satisfy axiom (1): 0 has no predecessor.

• The set 2N of even integers where 0̇ is interpreted by 0 and 1̇ is
interpreted by 2 is also not a model of the arithmetic of Peano because
it does not verify axiom (7): 2⇥ (2 + 2) 6= (2⇥ 2) + 2.

• The model par excellence of Peano arithmetic is of course that of
natural numbers N, equipped with the usual operations and relations.

.

While theories form the syntactic aspect of mathematics, the models form
the semantic aspect. There are many advantages to thinking about models
of a theory.

In the first place, models are what mathematicians have naturally worked
with since the beginning. Today mathematics is so advanced in abstrac-
tion that it is an aspect of things that we sometimes lose sight of, but this
science is not initially that far from physics, in the sense that it is first
of all an observation work of the reality of certain phenomena in order to
extract the logical laws which govern them. Every mathematician knows
from experience that he does not decide the truth, which sometimes resides
well hidden in the abstract structures studied, in other words in the mod-
els. This methodology of observation and research based on logic gives its
universal and transcendent character to mathematical truth, constituting
in a way the glue which binds the community of mathematicians. If syntax
is of course important, because it constitutes the language allowing math-
ematics to be communicated, semantics precedes syntax 2: it is from there
that intuitions start and about it that the theorems bear.

Finally, there is a more prosaic advantage to the study of models: in essence,
if a closed formula F is true in a model, then its negation ¬F cannot be true
there. A model is always a consistent and complete structure: each closed
formula is either true or false, and no formula can be true at the same time
as its negation. We can use this to show the consistency theorem.

2Aphorism dear to Professor René Cori, who taught the authors of this book the
principles of present chapter.



204 9. Formal interlude

Theorem 2.20 (Soundness theorem)
Let T be a theory and F (x1, . . . , xn) a formula in the language of that
theory. If T ` F (x1, . . . , xn) then any model of T is also a model
of 8x1 . . . 8xn F (x1, . . . , xn).

Proof. The proof is easily done by induction on the size of a proof. Sup-
pose this is the case for any proof G1, . . . , Gn in T . Let G1, . . . , Gn+1 be a
proof in T . By induction hypothesis any model of T is a model of each for-
mula 8xGi for i < n+1 where the notation 8xGi means that we universally
quantify on each free variable of Gi ( when there is). Let M be a model
of T . If Gn+1 is an axiom of T , then it is a closed formula and 8xGn+1 is
obviously true in M. If Gn+1 is an axiom of equality (of type (e) (f) or
(g) above), then 8xGn+1 is true in M by the fact that the equality of M
is always true equality.

If Gn+1 is a tautology of propositional logic or an axiom of type (a) (b)
(c) or (d) of predicate calculus, then 8xGn+1 is true by definition of the
satisfaction in a model (the details are left to the reader, note that for (d)
we use the fact that the model is not empty).

If Gn+1 is obtained by generalization on Gi for i < n + 1 — in partic-
ular Gn+1 is of the form 8yGi — then M satisfying 8xGi, it also satis-
fies 8xGn+1 (which is in fact the same formula). Finally if Gn+1 is ob-
tained by Modus Ponens via Gi ! Gn+1 and Gi for i < n + 1 then M

satisfies 8xGi and 8x(Gi ! Gn+1). By definition of satisfaction, M thus
satisfies 8xGn+1.

The previous theorem can be summarized as follows: “one can only prove
true things”. This is good news, from which we can deduce our consistency
theorem:

Corollary 2.21 (Consistency theorem)
If an axiomatic system admits a model, then it is consistent.

Proof. This is shown by contraposition. If T ` F ^ ¬F for a closed
formula F , then any model of T is a model of F ^ ¬F . Since there is no
model for F ^ ¬F then T has no model.

We easily verify the existence of a model of the axioms of logic: the set {1}
with the relation of equality 1 = 1. This shows that the axioms of logic are
consistent and cannot prove ?.

We also easily verify the existence of a model for Peano arithmetic, namely N
equipped with the usual functions of addition and multiplication, as well



2. First-order logic 205

as the usual relations < and = on integers. This is the second good news,
the axioms of Peano arithmetic are also consistent. We will examine the
meaning of this statement a little further on, notably in the light of Gödel’s
second incompleteness theorem and its implications.

2.5. Models and completeness theorem

If the system of deduction à la Hilbert that we have given, with its axioms of
logic and its rules of deduction is indeed sound, how on the other hand know
that it is su�ciently powerful? After all, the two inference rules seem to
form a very poor working tool. Can we really demonstrate everything with
this system? We will see that this is the case, via a theorem demonstrated
by Gödel in his doctoral thesis which can be seen as the converse of the
consistency theorem: everything that is universally true is demonstrable.

Theorem 2.22 (Théorème de complétude de Gödel)
Let T be a theory in a countable language. If T is consistent, then T
has a model.

Note that the completeness theorem for uncountable languages can also be
demonstrated using the axiom of choice. We only show a countable version
which will be more than enough for us. Gödel’s completeness theorem
is more di�cult to prove than the consistency theorem which is a simple
routine check. It is a question here of building a model of a theory T , from
the simple fact that T 0?. The idea of the proof passes by the creation of
a complete theory.

Definition 2.23. A theory T is called complete if T ` F or T ` ¬F for
any closed formula F in the language of T . }

Proposition 2.24. Let L be a countable language. Any consistent theory
of L can be extended into a complete and consistent theory. ?

The proof of the above proposition uses Lemma 2.10 which we reformulate
here with the notation ` introduced since:

Lemma (2.10). Let T [ {F} be a theory and G a formula. Suppose T [
{F} ` G. Then, T ` F ! G. ?

Preuve de Proposition 2.24. Given a consistent theory T in a count-
able language, we inductively construct a complete and consistent exten-
sion T 0. Let T0 = T . At step n, suppose that a consistent theory Tn is
defined. Let Fn be the n-th closed formula of our language. If Tn ` Fn we
define Tn+1 = Tn [ {Fn}. If Tn ` ¬Fn we define Tn+1 = Tn [ {¬Fn}. In



206 9. Formal interlude

these first two cases, the consistency of Tn+1 follows from the consistency
of Tn and from the deduction lemma.

If ever Tn proves neither Fn nor ¬Fn, then we define Tn+1 = Tn [ {Fn}.
Let us assume by the absurdity Tn [ {Fn} `?. Then, according to the
deduction lemma Tn ` Fn !? and therefore Tn ` ¬Fn by contraposition
and Modus Ponens, which contradicts the fact that T does not prove ¬Fn.
Note that we could just as well define Tn+1 = Tn [ {¬Fn}.

Finally, we let T 0 =
S

n
Tn. The consistency of T 0 then comes from the fact

that a proof in a theory uses only a finite number of its axioms: if T 0
`?

then there necessarily exists n such that Tn `?, Since each theory Tn is
consistent, then T 0 must be consistent.

Proof of the completeness theorem. The proof that we give, is due
to Leon Henkin [89], and rests on the creation of a complete, consistent
theory, and having what one calls Henkin witnesses. We will first show the
following statement.

“Let T be a theory in a language L and c a constant symbol which does
not appear in L. Suppose T [ {9xF (x)! F (c)} `?. Then, T `?.”

As T [ {9xF (x)! F (c)} `? then by the deduction lemma, contraposition
and Modus Ponens we have T ` 9xF (x)^¬F (c). In particular T ` ¬F (c).
Let now be a variable z which does not intervene in the proof of ¬F (c). As
the constant c does not appear in the theory T it can only be introduced
into the proof by an axiom of logic. Each of these axioms remains valid by
replacing c by z. We leave it to the reader to check that if we replace c
by z for each step of the proof, we obtain a valid proof of ¬F (z). By
the generalization rule we finally get T ` 8x ¬F (x). As also T ` 9xF (x)
then T `?.

Let us now proceed to the proof of the completeness theorem. Let T be a
theory in a countable language L. Let’s show how to build a model. We
define T0 = T and L0 = L. At step n 2 N, suppose that we have defined
a consistent theory T2n in a language L2n. Let L2n+1 be the language L2n

to which we add a new constant symbol cG for any formula G of T2n of
the form 9xF (x). Let T2n+1 be the theory T2n to which we add the state-
ments 9xF (x) ! F (cG) for any statement G of T2n of the form 9xF (x).
Note that by the above statement, as T2n is consistent, each time an ax-
iom of the form 9xF (x)! F (cG) is added, the theory remains consistent.
So T2n+1 is consistent. Finally let L2n+2 = L2n+1 and using Proposi-
tion 2.24, let T2n+2 be the completion of T2n+1 for the language L2n+2.
Let T! =

S
n
Tn and L! =

S
n
Ln. Note that T! is a complete and con-

sistent theory in the language L!, which also contains a statement of the
form 9xF (x)! F (c) for each of the statements of the form 9xF (x) of T!,



2. First-order logic 207

where c is a constant symbol of L!. The famous Henkin’s witnesses are
the new constant symbols thus introduced.

The underlying set M of our model M is the set of closed terms of L!,
quotiented by the equality relation. Formally let (tn)n2N be the list of
closed terms of L!. Then, M = {tn : 8i < n (¬ti = tn) 2 T!}.

Note that the function symbols of L have a clear interpretation in M .
For example if f is a unary function symbol of L then its corresponding
function fM : M ! M is defined by fM(t) = q for q the element of M
which is equal to closed term f(t) 2 L!, that is to say such that (f(t) =
q) 2 T!.

The theory T! being complete and consistent, for any symbol of m-ary
relation R of L and any element t1, . . . , tm 2 M , exactly one of the state-
ments among R(t1, . . . , tm) or ¬R(t1, . . . , tm) is in T!. This induces an
interpretation RM of the relation symbol R of L in M.

It remains to show by induction on the formulas that all the statements
of T! are satisfied in M (and therefore also those of T ). Without loss of
generality, only the formulas in prenex form are treated, and we can assume
that the negation symbol only appears in front of the atomic formulas. By
definition of relations in M this is indeed the case for atomic formulas
and their negations. If F1 ^ F2 2 T! then as T! is complete F1, F2 2 T!.
By induction hypothesis M |= F1 and M |= F2 therefore M |= F1 ^ F2.
If F1 _ F2 2 T! then as T is complete F1 2 T! or F2 2 T! (otherwise
by completeness ¬F1,¬F2 2 T! which contradicts F1 _ F2). By induction
hypothesis M |= F1 _ F2. If 8xF (x) 2 T! then as T! is complete F (t)
is in T! for any closed term t of L! and therefore any element of M . By
induction hypothesis M |= F (t) for all t 2M and therefore M |= 8x F (x).
If 9xF (x) 2 T! then 9xF (x)! F (c) 2 T! for a symbol with constant c 2
L!. In particular F (c) 2 T! by Modus Ponens. Let t 2M be a closed term
of L! such that (t = c) 2 T!. By the axioms of equality we have F (t). By
induction hypothesis M |= F (t). So M |= 9xF (x).

The completeness theorem is often used in the form of the following corol-
lary, which can be seen as a reverse of Theorem 2.20:

Corollary 2.26
If every model of a theory T is a model of a formula F , then T ` F .

Proof. If we have T [ {¬F} `? then T ` ¬F !? by the deduction
lemma and therefore T ` F .

Suppose now T 0 F , then by the line above T [ {¬F} 0?. According to
the completeness theorem there exists a model of T [ {¬F}, that is to say
a model of T which is not a model of F .



208 9. Formal interlude

The completeness theorem implies in particular that one cannot do better
than the Hilbert system that we have presented: suppose that in this system
the axioms of logic alone are not su�cient to prove a formula F , in other
words 0 F (from an empty theory). Suppose that a more powerful and
consistent proof system exists such that `⇤ F , where `⇤ is the notion of
proof in this system. So also, `⇤ ¬F !? and therefore ¬F `⇤?. Now
as 0 F , according to the completeness theorem there is a model of ¬F and
according to the consistency theorem for `⇤ our model is therefore a model
of ? which is impossible.

3. Incompleteness theorems of Gödel

We now get to the heart of the matter, via Gödel’s incompleteness the-
orems, which are based, among other things, on a coding of computably
enumerable sets by arithmetic formulas.

3.1. Peano arithmetic formulas

We have defined in Chapter 5 a complexity hierarchy on sets, called arith-
metic hierarchy. We are now going to give all its meaning to this name by
defining a syntactic hierarchy of arithmetic formulas, which coincides with
the arithmetic hierarchy, in the sense that a set A is ⌃0

n
i↵ it is definable

by a ⌃n formula of Peano arithmetic.

Definition 3.1. A formula of Peano arithmetic is �0 if the quantifica-
tions it comprises are all bounded, that is to say of the form 9x < t
and 8x < t, with t a term where the variable x does not appear freely.
Note that the formulas 9x < t F (x) and 8x < t F (x) translate respec-
tively to 9x(x < t ^ F (x)) and 8x(x < t! F (x)). }

Given a �0 formula of Peano arithmetic F (x1, . . . , xn), the restriction on
quantifications makes the set {(x1, . . . , xn) 2 N : F (x1, . . . , xn)} com-
putable. This follows for example directly from the closure of primitive
recursive predicates by conjunction, disjunction and bounded quantifica-
tion (see Example 6-3.16 and Exercise 6-3.19). We define a complexity
hierarchy on the formulas of Peano arithmetic analogous to the arithmetic
hierarchy of Definition 5-1.1.

Definition 3.2. .



3. Incompleteness theorems of Gödel 209

1. A formula F (x1, . . . , xm) of Peano arithmetic is ⌃n if

F (x1, . . . , xm) =

n quantifiersz }| {
9y18y2 . . . Qyn G(x1, . . . , xm, y1, . . . , yn)

for a �0 formula G(x1, . . . , xm, y1, . . . , yn), where Q is 9 if n is odd,
and 8 if n is even.

2. A formula F (x1, . . . , xm) of Peano arithmetic is ⇧n if

F (x1, . . . , xm) =

n quantifiersz }| {
8y19y2 . . . Qyn G(x1, . . . , xm, y1, . . . , yn)

for a �0 formula G(x1, . . . , xm, y1, . . . , yn), where Q is 8 if n is odd,
and 9 if n is even. }

We will see that the sets definable by a ⌃n (resp. ⇧n) formula of Peano
arithmetic coincide with the ⌃0

n
(resp. ⇧0

n
) sets of Definition 5-1.1. We

start for that by showing some closure properties similar to those of propo-
sitions 5-1.6 to 5-1.9.

Proposition 3.3. Let F (a, x), F1(a, x), F2(a, x) be ⌃n (resp ⇧n) formu-
las. Then, each of the following formulas is provably equivalent (using the
axioms of arithmetic) to a ⌃n (resp. ⇧n) formula:

• F1(a, x) ^ F2(a, x), F1(a, x) _ F2(a, x)

• 9x < b F (a, x), 8x < b F (a, x),

• 9x F (a, x) (resp. 8x F (a, x)) ?

Proof. Let F (a, x) ⌘ 9yG(a, x, y), F1(a, x) ⌘ 9yG1(a, x, y) and F2(a, x) ⌘
9yG2(a, x, y). Then, we have the following equivalences:

F1(a, x) ^ F2(a, x) $ 9y 9y1, y2 < y (G1(a, x, y1) ^G2(a, x, y2))
F1(a, x) _ F2(a, x) $ 9y (G1(a, x, y) _G2(a, x, y))
9x < b F (a, x) $ 9y 9x < b G(a, x, y)
8x < b F (a, x) $ 9z 8x < b 9y < z G(a, x, y)
9x F (a, x) $ 9z 9x < z 9y < z G(a, x, y).

Now, if F, F1, F2 are ⌃1 with G,G1, G2 �0, the above equivalences show the
proposition for the ⌃1 case. By passing to the negation, the equivalences
also hold for the ⇧1 case. Suppose the proposition is true for the ⌃n and ⇧n

cases. Then, the above equivalences for F, F1, F2 of the ⌃n+1 formulas
with G,G1, G2 ⇧n imply —using the induction hypotheses on G,G1, G2—
the proposition for the ⌃n+1 case. By passing to negation, the proposition
is true for the ⇧n+1 case.



210 9. Formal interlude

Note that the fourth equivalence in the above proof (the equivalence 8x <
b F (a, x)$ 9z 8x < b 9y < z G(a, x, y)) is the least trivial of all: the other
four simply use the fact that two integers always have an upper bound,
while this one requires the use of induction. This is something we will
study in detail in Section 23-3.

Let’s now move on to the announced equivalence. Given a ⌃1 formula of
Peano arithmetic 9y F (x1, . . . , xn, y) where F is �0, the set {(x1, . . . , xn) 2
N : 9y F (x1, . . . , xn, y)} is computably enumerable: we test the formula F
little by little on all (n + 1)-tuples x1, . . . , xn, y and when we find one
for which F is true, we enumerate (x1, . . . , xn). Gödel showed that any
computably enumerable set could in fact be represented in this form.

Theorem 3.4 (Gödel)
A set of integers A ✓ N is c.e. i↵ there exists a ⌃1 formula F (n) of LPA

such that n 2 A i↵ N ✏ F (n).

We will show Theorem 3.4 based on the model of general recursive functions
which coincide, as we saw in Chapter 6, with computable functions. We will
show that any general recursive partial function f : Nk

! N is represented
by a ⌃1 formula of arithmetic F (n1, . . . , nk), that is, to say

{(n, r) 2 Nk+1 : f(n) #= r} = {(n, r) 2 Nk+1 : N ✏ F (n, r)}.

As any c.e. set is the domain of a partial function, this proves the theo-
rem. The main di�culty lies in the management of the primitive recursion
scheme, for which we need to encode lists of integers by arithmetic formu-
las. Gödel resorts to a clever use of a result of modular arithmetic: the
Chinese Remainder Theorem.

Lemma 3.5 (Chinese Remainder Theorem). Let (a0, . . . , an) be an
arbitrary sequence of integers. Let (p0, . . . , pn) be a sequence of pairwise
prime integers with pi > ai for i 6 n. Then, there exists an integer b such
that ai is the remainder of the Euclidean division of b by pi for all i. ?

The Chinese Remainder Theorem will allow Gödel to code lists of integers
of arbitrary size. Note that this is not the only way to establish a system
for coding/decoding lists by arithmetic formulas, and we will see another
one in Section 23-4.

Lemma 3.6 (Gödel’s � function). There exists a function � : N3
!

N represented by a �0 formula, such that for all n and any sequence of
integers (a0, . . . , an), there exist integers a, b 2 N for which �(a, b, i) = ai
for all i 6 n. ?

Proof. The formula B(a, b, i, r) which represents � is as follows: “r is the
remainder of the Euclidean division of b by a(i + 1) + 1”. The formula is



3. Incompleteness theorems of Gödel 211

indeed �0: r < a ⇥ (i + 1) + 1 ^ 9c < b c ⇥ (a ⇥ (i + 1) + 1) + r = b.
Let (a0, . . . , an) be a sequence of integers. Let us show the existence of
integers a, b such that this formula defines the function (a, b, i) 7! ai.

Let m be such that m > max{ai : i 6 n} and m > n. Let a = m!. We will
use the Chinese Remainder Theorem with pi = a(i+1)+1. Let us show that
these numbers are pairwise prime. Suppose absurdly that a prime number p
divides pi and pj with i < j. So p also divides pj � pi = a(j � i). Since p
is prime then p divides a or p divides j � i. As a = m! with m > n > j > i
then j�i divides a and therefore in all cases p divides a. So p divides a(i+1).
Since p also divides a(i+ 1) + 1, then p divides a(i+ 1) + 1� a(i+ 1) = 1
which is a contradiction. So the numbers pi are mutually prime.

We have pi = a(i+1)+1 > m > ai for all i. According to the Chinese Re-
mainder Theorem, there exists an integer b such that for all i, the integer ai
is the remainder of the Euclidean division of b by a(i+ 1) + 1.

Proof of Theorem 3.4. We show that any general recursive partial func-
tion is represented by a ⌃1 formula of arithmetic. We leave it to the reader
to show that this is indeed the case for the basic functions (projections,
constant functions and successor function). We use Proposition 3.3 with-
out mentioning it for each of the three schemes to come, in order to obtain
a ⌃1 formula which represents our function.

Composition scheme. Let

f(x) = g(h1(x), . . . , hk(x))

for functions g, h1, . . . , hk represented by formulas G,H1, . . . , Hk. Then, f
is represented by the formula

F (x, r) ⌘ 9y1, . . . , yk H1(x, y1) ^ · · · ^Hk(x, yk) ^G(y1, . . . , yk, r).

Minimization scheme. Let

f(x) = min{a 2 N : 8i 6 a g(x, i) # ^ g(x, a) = 0}

for g represented by a formula G. Then, f is represented by the formula:

F (x, a) ⌘ G(x, a, 0) ^ 8i < a 9r 6= 0 G(x, i, r).

Primitive recursion scheme. This is where we will need Gödel’s � function,
represented by the formula B. Let

f(x, 0) = g(x)
f(x, n+ 1) = h(x, n, f(x, n))

for functions g, h represented by formulas G,H. Then, f is represented by



212 9. Formal interlude

the following formula F (x, n, r):

9a, b B(a, b, n, r) ^ 9a0 (B(a, b, 0, a0) ^G(x, a0)) ^ 8i < n
9ai, ai+1 (B(a, b, i, ai) ^B(a, b, i+ 1, ai+1) ^H(x, i, ai, ai+1)).

In order to see that f is well represented by F , it should be noted that B,
as defined in the previous lemma, is always a functional formula: what-
ever the values of a, b, i, there are always at most one element r such
that B(a, b, i, r) is true. Thus, if the formula F (x, n, r) holds, there does
exist a sequence a0, . . . , an such that g(x) = a0 and h(x, i, ai) = ai+1,
with an = r, the result of f(x, n). According to the previous lemma, there
are indeed, for all n integers a, b which code via the function �, the sequence
of values (f(x, 0), f(x, 1), . . . , f(x, n)). The formula F therefore represents
the function f .

We easily show from Theorem 3.4 that a set of integers is ⌃0
n
(resp. ⇧0

n
) i↵

it is described by a ⌃n (resp. ⇧n) formula of arithmetic.

Coding of finite sequences
There are many ways to encode finite sequences of integers using natu-
ral numbers. Most of these techniques use primitive recursive functions,
which requires showing beforehand that they are representable by simple
arithmetic formulas. The Chinese Remainder Theorem allows a simple
encoding of finite sequences based on Euclidean division, which is ex-
pressed by an immediate �0 predicate (see Lemma 3.6).

3.2. Proofs and computation

A proof in our system of deduction à la Hilbert relies on a very precise
system of rules, and it is easy to create a computer program which takes
as parameter a proof — via an appropriate coding — and which verifies
in a finite time whether the demonstration is valid or not. Indeed, the
inference rules are clear, as for the axioms of logic, we have the tautologies
of propositional calculus, four schemes of axioms for predicate calculus, and
three schemes of axioms for equality. It is easy to check whether a sentence
of propositional calculus — for example of the form (F ! G) $ (¬G !
¬F )— is a tautology, by ensuring that the sentence is always true for any
truth value for F and G. It is also easy to check whether a sentence matches
one of the equality axiom schemes or predicate calculus. We deduce the
following theorem:

Theorem 3.7 (Gödel)
Given a computably enumerable theory T in the language LPA, the set



3. Incompleteness theorems of Gödel 213

of formulas F such that T ` F is computably enumerable.

It su�ces to do a search on all the possible proofs from the axioms of T
and to list all the formulas they prove. Hilbert’s goal was to show that
any arithmetical truth was provable, Peano arithmetic supposedly being
a su�cient system to do so. If this were the case, then we could create
an algorithm allowing to decide whether a mathematical statement F is
provable or refutable: it would su�ce to list all the statements proved by
Peano arithmetic until we find F or ¬F .

Gödel showed that this was not possible, neither for Peano arithmetic, nor
for any computably enumerable and consistent theory containing Peano
arithmetic (however Rosser’s help was needed for this last step). We start
by proving a lemma which will help us in the following:

Lemma 3.8. If N ✏ F where F is a closed ⌃1 formula, then PA ` F . ?

Proof. The formula F is of the form 9x1 . . . 9xn G(x1, . . . , xn) for a �0

formula G. If F is true in N then there are integers a1, . . . , an 2 N such
that G(a1, . . . , an) is true in N. It is easily shown by induction that if
a �0 formula and parameterized in N is true in N, then it is provable
in PA. Informally, for a bounded existential quantification, it su�ces to
take a witness integer for this quantification and to show the formula with
this witness, and for a universal quantification bounded by an integer a, it
su�ces to show that the formula is true for each integer less than a.

We now have the necessary ingredients to prove the first incompleteness
theorem.

Theorem 3.9 (Gödel’s first incompleteness theorem)
Let T ◆ PA be a consistent c.e. theory, such that if T proves a ⌃1

formula, then N is a model of this formula. Then, there exists a ⌃1

formula F such that T 0 F and T 0 ¬F .

Proof. Let (�e)e2N be an enumeration of all computable functions. Ac-
cording to Theorem 3.4 there exists a ⌃1 formula F (e) of LPA such that

{e 2 N : N ✏ F (e)} = {e 2 N : 9t �e(e)[t] #}.

Suppose that for all e, we have T ` F (e) or T ` ¬F (e). Note that
if 9t �e(e)[t] # then N ✏ F (e) and therefore PA ` F (e) according to
Lemma 3.8. As PA ✓ T we also have T ` F (e).

Now, if 8t �e(e)[t] " we have N ✏ ¬F (e). According to our hypothesis
we cannot have T ` F (e) because we would then have N ✏ F (e) which
contradicts N ✏ ¬F (e). Since T is complete, we therefore have T ` ¬F (e).



214 9. Formal interlude

It follows that the c.e. set {e 2 N : T ` ¬F (e)} coincides with the set {e 2
N : 8t �e(e)[t] "} which makes the complement of the halting problem a
c.e. set. Contradiction.

We notice several things. In the first place we had to restrict ourselves
to 1-consistent theories T , that is to say theories which do not prove ⌃1

formulas false in N. We will soon see that there are many other possible
models than N for PA, and as many non 1-consistent theories as we want.
So this is a very annoying restriction.

Then the proof shows in substance that a complete and 1-consistent theory
allows to compute ;0. We have already seen that any PA degree allows to
compute a complete and consistent extension of PA, and since there are
PA degrees which do not compute ;0, there is in fact no hope of showing
Gödel’s theorem by reducing the halting problem to any complete and
consistent theory that extends PA. The trick to get out of this situation
was found by Rosser, the idea being in essence to use the fact that if a
theory proves 9t �e(e)[t] #= 0 (whether this is true in N or not), then it
cannot show at the same time 9t �e(e)[t] #= 1, assuming of course that
the ⌃1 formulas allowing to talk about computable functions, integrate well
the fact that a function has at most one value on its input, which is the
case in practice.

Theorem 3.10 (Gödel-Rosser’s incompleteness theorem)
Let T ◆ PA be a consistent c.e. theory. Then, there exists a ⌃1 formula F
such that T 0 F and T 0 ¬F .

Proof. Let (�e)e2N be an enumeration of all computable functions. Let
us assume absurdly that we have T ` F or T ` ¬F for any ⌃1 formula F .
We will then compute a total function f : N! {0, 1} which is DNC2, i.e.,
such that for any integer e we have �e(e) # implies f(e) 6= �e(e). Note
that this is then a contradiction: if f is computable then there exists a
code e such that �e(n) #= f(n) for all n and therefore in particular such
that �e(e) #= f(e).

The sets {9t �e(e)[t] #= 0} and {9t �e(e)[t] #= 1} are c.e. and therefore
according to Theorem 3.4, there exist ⌃1 formulas F0(e) and F1(e) such
that

{e 2 N : N ✏ F0(e)} = {e 2 N : 9t �e(e)[t] #= 0}
{e 2 N : N ✏ F1(e)} = {e 2 N : 9t �e(e)[t] #= 1}.

Note that PA also proves F0(e) ! ¬F1(e) and F1(e) ! ¬F0(e): in other
words e 7! �e(e) is a partial function which cannot have both 0 and 1 as a
value for the same element.



3. Incompleteness theorems of Gödel 215

To compute the value of f(e), we then enumerate using Theorem 3.7 all the
formulas demonstrated by T , until we find F0(e) or ¬F0(e). By hypothesis,
one of these two eventualities necessarily occurs. If T ` F0(e) then we
define f(e) = 1. Otherwise we define f(e) = 0. Let us show that our
function has the expected property. If 9t �e(e)[t] #= 0 then N ✏ F0(e) and
therefore, according to Lemma 3.8, T ` F0(e). So f(e) = 1 6= �e(e). If
now 9t �e(e)[t] #= 1 then N ✏ F1(e) and therefore, according to Lemma 3.8,
T ` F1(e). We then have T 0 F0(e) and therefore T ` ¬F0(e). So f(e) =
0 6= �e(e). Finally if 8t �e(e)[t] " the value of f does not matter.

Corollary 3.11
Let T ◆ PA be a complete and consistent theory. Then, T computes a
DNC2 set.

Proof. From the proof of the previous theorem.

Let us dwell for a moment on what the Gödel-Rosser theorem tells us:
there exists a ⌃1 formula F which is neither provable nor refutable in PA.
According to Lemma 3.8 if a ⌃1 formula is true in N it is provable in PA.
We deduce N 2 F and therefore N ✏ ¬F : that makes ¬F a true formula,
in the sense that it is true in N, but that we cannot prove using axioms of
PA.

Finally, the theorem tells us that adding axioms is hopeless: as long as
we keep the theory computably enumerable, it will remain incomplete.
Note that we have shown with Proposition 2.24 that T could quite be
extended into a complete and consistent theory, but this will be at the cost
of no longer knowing its axioms, and we would then struggle using it to
demonstrate anything . . .

Let us now move on to Gödel’s second theorem, even more surprising than
the first, and which put an abrupt halt to Hilbert’s program.

Notation

For a computably enumerable theory T in LPA, let Coh(T ) the closed ⇧1

formula corresponding to “T is a consistent theory”, that is -to say “for
any proof p in T , p is not a proof of ?”.

The existence of such a formula follows from the correspondence between
⌃0

n
/⇧0

n
sets and ⌃n/⇧n formulas.



216 9. Formal interlude

Theorem 3.12 (Gödel’s second incompleteness theorem)
Let T be a c.e. consistent theory containing PA. Then, T 0 Coh(T ).

Proof. The first step is to see that the proof of Theorem 3.10 can be
formalized, via an appropriate coding, in Peano arithmetic: there exists
a ⌃1 formula F such that

PA ` Coh(T )! (pT 0 Fq ^ pT 0 ¬Fq).
Notations p q indicate the transformation of  into a statement of arith-
metic.

Let us assume by the absurdity that T ` Coh(T ). Then, by the Modus
Ponens rule, we have T ` pT 0 Fq^pT 0 ¬Fq and therefore T ` pT 0 ¬Fq
as well as T ` pT 0 Fq.
It should then be noted that the proof of Lemma 3.8 can also be done
in Peano arithmetic, that is to say that Peano arithmetic shows that if a
fixed ⌃1 formula is true, then it is demonstrable in Peano arithmetic - and
therefore in T . This therefore gives formally with the formula F

T ` F ! pT ` Fq.
We then have by contraposition (using the equivalence between the nega-
tion and the encoding of the negation):

T ` pT 0 Fq! ¬F.

As T ` pT 0 Fq then by Modus Ponens we get

T ` ¬F.

Finally, it su�ces to see that if T proves any formula, then PA — and
therefore T — shows that T proves this formula. This is once again an
application of the formalization of the proof of Lemma 3.8 in T , the sen-
tence T ` F being ⌃1. So we finally have

T ` pT ` ¬Fq
which contradicts T ` pT 0 ¬Fq.

3.3. Consequence of the incompleteness theorems

Let us remember Gödel’s completeness theorem: T ` F i↵ any model of T
is a model of F . According to the second incompleteness theorem, no
consistent and computably enumerable theory T containing arithmetic can
demonstrate its own consistency: T 0 Coh(T ). We therefore deduce for



3. Incompleteness theorems of Gödel 217

example that there are models of Peano arithmetic within which the sen-
tence Coh(PA) is false: in these models, there exists in particular a proof
of 0 = 1. We have however shown that PA had models and therefore ac-
cording to the consistency theorem, that PA could not prove 0 = 1. The
situation which seems paradoxical is resolved with the following considera-
tion: the proof of 0 = 1 in a model of PA [ {¬Coh(PA)} is not a real proof.
The sentence ¬Coh(PA) when expressed in the language of arithmetic is
of the form: “there is an integer which codes for a valid proof of 0 = 1 in
PA”. Such a model will therefore contain such an integer, but this integer
will not be a true integer - otherwise by unwinding the proof encoded by
this integer we would have a true proof of 0 = 1.

Such a PA model is called non-standard. Any PA model contains 0 and 1.
By the axioms governing addition, we easily show that any PA model con-
tains of course the standard integers: 0, 1, 2, 3, 4, . . . . A non-standard model
of PA will contain integers larger than all standard integers, and from the
point of view of the model, there is nothing to distinguish these integers
from others. These integers also called non-standard.

Let us take a non-standard integer a of such a model. Using the axioms of
Peano arithmetic we see that the integers a+1, a+2, a+3, . . . also exist in
the model. By the axiom which states that any integer di↵erent from 0 has
a predecessor we also see that the integers a� 1, a� 2, a� 3, . . . are in the
model. As a > n for all n 2 N then also a+ a > a+ n for all n 2 N. There
is therefore also a non-standard integer greater than all a+ n. By playing
with the axioms of PA in this way, we arrive at the following theorem:

Theorem 3.13
For any countable non-standard models of arithmetic, the order < con-
sists of a copy of N, followed by Q copies of Z.

We therefore know what the order of the elements looks like in a non-
standard model. Unfortunately, however, we do not know what the addition
or the multiplication looks like:

Theorem 3.14 (Tennenbaum)
Let M be a countable non-standard model of PA. Let +,⇥ : N⇥N! N
be functions which represent the addition and multiplication functions
of M, once established a bijection between M and N. Then, neither +
nor ⇥ is computable.

We will talk a little more about non-standard models of arithmetic in the
part on reverse mathematics, and in particular in Section 23-3.



218 9. Formal interlude

4. ZFC system

We have given a proof of the consistency of Peano arithmetic, using the
consistency theorem (see Corollary 2.21) and providing a model for this
theory. According to Gödel’s second incompleteness theorem, we necessar-
ily used a theory more powerful than PA to create this model. What theory
is it? We can give several answers to this question. The most natural the-
ory to show the consistency of first-order arithmetic is undoubtedly the
theory of second-order arithmetic, which will be discussed in more detail
in Chapter 22.

4.1. Motivation

In second-order arithmetic, we allow ourselves not only to work with in-
tegers, but also with sets of integers. The existence of arbitrary sets of
integers is questionable, at least more than the existence of the integers
themselves: they are infinite objects, which are in uncountable quantity,
and if there is a “legitimate” aspect of accepting the existence of com-
putable sets of integers (after all we can write algorithms that produce
them, their theoretical existence is therefore doubled by a certain form of
practical existence), we can more easily question that of other sets. Some
of them are still accessible, in the sense that they have a clear definition,
for example the Turing jump. What makes ;0 more legitimate than another
arbitrary non-computable set is the fact that it is definable, and what is
more by a fairly simple formula - ⌃1 in particular: {e 2 N : �e(e) #}. In
second-order arithmetic, we allow ourselves the existence of all sets defin-
able by an arbitrary arithmetic formula, in particular the ⌃0

n
formulas for a

certain n: this is called the axiom of comprehension. Once we have admit-
ted the existence of a set X, it would be absurd not to accept the existence
of computable sets with X as an oracle, and if we accept the axiom of
comprehension, it would be just as absurd not to accept the existence of
sets definable by a formula of arbitrary arithmetic, which could use X as
oracle.

Second-order arithmetic therefore consists of Peano arithmetic, to which
we add the axiom of comprehension which makes it possible to validate
the existence of definable sets via a formula of arithmetic, possibly using a
oracle — an already existing set—. A very large part of mathematics can
already be formalized in this way, but not all of mathematics. In particular,
nothing in second-order arithmetic allows us to speak of the set of all the
subsets of integers, or even of arbitrary subsets of the latter. For that, we
need another axiom: given a set X, the power set P(X) of X — that is
to say the set of all the subsets of X — is legitimate, it exists and we can
use it. The power set of X is not of the same nature as X. One is a set



4. ZFC system 219

of integers and the other is a set of sets of integers. Set theory makes it
possible to treat these two elements in a homogeneous way: every element
will be a set, including the integers. Informally the integer 0 will be the
empty set, the integer 1 will be the set which contains 0, the integer 2 will
be the set which contains 0 and 1, and inductively the set n+1 will be the
set which contains m for all m 6 n. We can of course imagine other ways
of representing integers by sets, and with practice these do not matter,
but we must choose one. This representation is the one that has become
standard, under the mpulse of the mathematician John von Neumann. We
will discuss this again with the study of ordinals in Chapter 27.

4.2. Zermelo system

Now that we only work with sets, we are no longer in the language of
arithmetic. Our only relation symbols will be that of ownership 2 and of
course the symbol of equality =. We need some basic axioms in order to
govern the elementary manipulations of sets:

(1) Axiom of empty set : the empty set exists.

(2) Axiom of pairing : if a and b are sets, then {a, b} is a set.

(3) Axiom of union: the idea is that if (ai)i2I is a collection of sets indexed
by a set I, then the set

S
i2I

ai exists. The notion of “indexed set” is
not formally defined in set theory, we will say instead that if b is a set
whose elements are ai, then the union of all these ai exists. To be quite
formal, the axiom is: 8b 9c 8x (x 2 c$ 9a 2 b x 2 a).

We also need an axiom which governs the equality between two sets.

(4) Axiom of extensionality : two sets are equal i↵ they have the same
elements.

Finally, there is our troublemaking axiom, which pushed us into this set
theory allowing, for example, to deal with the power set of N.

(5) Axiom of power set : for any set a, the power set of a, denoted P (a)
exists. Formally: 8a 9b 8c (c 2 b$ c ✓ a) where c ✓ a can be written
as 8x(x 2 c! x 2 a).

We can finally add our axiom of comprehension, allowing to build sets from
first-order formulas, possibly using other sets as parameters. As there is an
infinity of first-order formulas, it is not a question of a single axiom, but of
an axiom scheme: one axiom per formula.



220 9. Formal interlude

(6) Comprehension scheme: for a formula F (y, x1, . . . , xn) fixed in the lan-
guage of set theory, for all n-tuples of sets b1, . . . , bn and for any set a,
the set {y 2 a : F (y, b1, . . . , bn)} exists.

We can easily verify that the preceding axioms imply the existence of all
hereditarily finite sets, that is to say finite sets, the elements of which
are themselves finite sets, etc., until arriving, by scrolling down the tree
describing the membership relations of a set with its elements, to the empty
set for any leaf of this tree. Nothing allows us for the moment to speak of
the set of all integers. In fact, we need an axiom for this.

(7) Axiom of infinity : there exists an infinite set. Formally

9x (; 2 x ^ 8y 2 x y [ {y} 2 x).

The axiom of infinity morally asserts the existence of N as a set. Via the
encoding that we have given of integers, we can check that the set encoding
the integer n + 1 is equal to the set n [ {n}, where n is the set encoding
the integer n. The axiom of infinity therefore tells us that there exists a set
containing all integers. It could possibly contain other elements, but using
the other axioms, we define N as the smallest set x —smallest for inclusion
— such that ; 2 x ^ 8y 2 x y [ {y} 2 x.

4.3. Replacement axiom and Borel games

The axioms from (1) to (7) form Zermelo’s theory Z. They are su�cient to
develop a large part of mathematics. Fraenkel and Skolem will introduce
a new axiom, both intuitive and formally necessary to develop the theories
of ordinals and hierarchies of infinities. It is more precisely a scheme of
axioms, which essentially says that the image of any functional formula
exists. A formula F (y, r) is functional if for all y, the formula F (y, ry) is
satisfied for exactly one set ry. Formally:

(8) Replacement scheme: for a functional formula F (y, x1, . . . xn, z) fixed
in the language of set theory, for any n-tuple of sets b1, . . . , bn, for any
set a, the set

{z : 9y 2 a F (y, b1, . . . , bn, z)}

exist.

Set theory becomes strictly more powerful with the replacement scheme,
which allows in particular to show the existence of the set N [ P (N) [
P (P (N)) . . . which it is impossible to build without this axiom.

It is remarkable to note that a joint use of the axiom of power set and of the
replacement scheme, is essential to construct certain sets of integers - which



4. ZFC system 221

will be necessarily extreme complexity in terms of Turing degree. The
emblematic example is Martin’s determination theorem for Borel games.
Let’s see what it is: consider a class B ✓ 2N for the moment arbitrary, and
consider the following two-player game: Player 1 chooses a bit x0 2 {0, 1},
then Player 2 in turn chooses a bit x1 2 {0, 1}, and so on, in step 2n,
Player 1 chooses bit x2n and in step 2n+ 1 Player 2 chooses bit x2n+1. At
the “end” of the game, we get a setX = x0x1x2 . . . . Player 1 wins the game
if X 2 B, otherwise Player 2 wins. The question then is: does one of the
two players have a winning strategy? A strategy for Player 1 is a function f
which takes as parameter a string � of even size, corresponding to what has
been played so far, the last move being the last bit of � played by Player
2, and who returns the next move f(�). Such a strategy is winning if the
set obtained by playing the moves given by the function f is always in B,
whatever the moves made by Player 2.

We will see in Chapter 17 that a large variety of classes B ✓ 2N do not
require the axiom of power set to be handled: we already have an example
with the ⇧0

1 or ⌃0
1 classes. We will carry out iterated constructions of

increasingly complex classes, which can be encoded by a countable object,
in a manner analogous to the encoding of ⇧0

1 classes by trees: these will
be the so-called Borel classes. The mathematician Donald A. Martin, of
whom we will speak again in Chapter 12, showed the following remarkable
theorem:

Theorem 4.1 (Martin [153])
Let B be a Borel class. Then, for the game described above with the
class B, one of the two players has a winning strategy.

The strategy of a Borel game is a function f : 2<N
! {0, 1} and can there-

fore be represented by a set of integers. Friedman [70] showed that for
some Borel classes, of relatively simple complexity, such a strategy could
not be constructed without the use of the axiom of power set, and even
without arbitrary iteration of the application of this axiom. Thus, to show
the existence of certain reals, we must appeal to the axiom of power set
used jointly with the replacement scheme. More precisely, it is used to con-
struct N [ P (N) [ P (P (N)) . . . , essential for the definition of our function
- the winning strategy for a certain Borel class.

4.4. Axiom of foundation and coding

Another axiom was added by Fraenkel and Skolem, as well as by von Neu-
mann. Unlike the other axioms, the latter is almost useless for the con-
struction of the mathematical universe, but we add it simply because it
corresponds to our conception of things: the axiom says in essence that



222 9. Formal interlude

given a set x, if we consider an element x1 2 x, then an element x2 2 x1,
thus continuing inductively with an element xn+1 2 xn, we will necessarily
eventually obtain the empty set for some n 2 N. In other words, there
are no sets other than those that we can build inductively via the other
axioms starting from the empty set. In particular, there is no set x such
that x 2 x. This may or may not seem obvious to everyone, but in any case
reflects the conception generally adopted in the community on the nature
of sets.

In order to support our point, let us recall that one of the interests of set
theory is the ability to formalize the totality of mathematics in it. This
formalization involves the coding of the usual mathematical structures by
sets, and this coding is done anyway only with sets which respect the
axiom of foundation - whether the latter is adopted or not. So if it is not
contradictory to think that there exist other sets which do not respect this
axiom, in practice we do not need them, and such objects do not correspond
a priori to anything tangible.

Let us end by insisting on the fact that if we can code the rest of mathe-
matics by sets, this is on the other hand not a reason for doing so, and we
are obviously much more comfortable working with integers, reals or other.
What is interesting is the existence of such an encoding, and the fact that
if a statement is undecidable in set theory, it then becomes undecidable.

4.5. Axiom of choice and cardinality

Zermelo’s theory Z plus the replacement axiom and the foundation axiom
gives ZF theory, from Zermelo/Fraenkel.

A final axiom, arguably the most famous, is the axiom of choice, which
was originally part of Zermelo’s theory. The need for this axiom should be
easy to understand via the analogy that can be made of it in computabil-
ity theory. We have for example seen that any non-empty and countable
⇧0

1 class contains a computable set. On the other hand it is not possible,
given the code of a non-empty ⇧0

1 class, to find uniformly an algorithm
allowing to compute an element of it. In particular, given a countable se-
quence (Fn)n2N of non-empty ⇧0

1 classes, there does not necessarily exist a
computable function allowing to choose an element in each of these classes.
The key question here is that of uniformity. Obviously, we can create this
choice function using ;0, but what happens if we consider more complex
classes? Can we still build a choice function? The answer is no, without
the help of a new axiom.

(9) Axiom of choice: given a collection (Ai)i2I of non-empty sets, there
exists a function f : I !

S
i2I

Ai such that f(i) 2 Ai for all i.



4. ZFC system 223

The axiom of choice appears necessary to develop a complete theory of
the cardinality of sets. In particular with the axiom of choice, we can
show that for any set A,B, we have |A| 6 |B| or |B| 6 |A| (we will come
back to this with the detailed study of ordinals in Chapter 27). This is
no longer true without the axiom of choice, the example par excellence in
computability theory being certainly that of Turing degrees. It is easy to
construct an injection of 2N in the Turing degrees, it is however impossible
to construct an injection of Turing degrees in 2N without the axiom of choice
(in particular it is impossible to show the existence of a function f : 2N ! 2N

such that X ⌘T Y $ f(X) = f(Y )).

A first reaction is to simplify your life and use the axiom of choice if nec-
essary. However, this approach is not in the spirit of computability theory,
from which set theory is less distant than one might think: axioms other
than the axiom of choice allow us to construct more and more complex
objects starting from existing objects, a bit like the way one constructs
more and more complex Turing degrees by iterating the jump. The axiom
of choice is fundamentally non-constructive, and from this point of view
is not as legitimate as the others. It also leads to theorems which seem
paradoxical, the best known example being the Banach/Tarski paradox, a
construction, which using the axiom of choice, shows how to cut a ball of
the space R3 into a finite number of pieces, and how to reassemble these
pieces to obtain two balls strictly identical to the first.

By not accepting the axiom of choice, we are of course leaving this ideal
world where the cardinality of any set is comparable, but it is in fact an
“artificial” situation of which we have do not really need.

4.6. Independence results

The theory obtained with axioms (1) - (8) is the ZF theory, if we add the
axiom of choice to it, we then have the so-called ZFC theory.

4.6.1. Axiom of choice

The question of knowing whether the axiom of choice is provable from the
other axioms, or even that of knowing whether it does not risk introduc-
ing contradiction, has long remained open. Gödel’s completeness theorem
allows the following technique: if we assume that ZF is consistent, and
therefore has a model, and that using this model we can build a model of
ZFC, we will have showed that the consistency of ZF implies that of ZFC,
and in particular that ZF cannot prove that the axiom of choice is false
(unless of course ZF is inconsistent). This is exactly what Gödel did a few
years later [77], via his model called constructible universe. It was only
later in 1962 with his famous forcing technique, some aspects of which we



224 9. Formal interlude

will see in Chapter 11, that Cohen [40] succeeded in the feat of building a
model of ZF in which the axiom of choice is false: the axiom of choice can
therefore neither be proved nor refuted in ZF.

4.6.2. Continuum hypothesis

The question that obsessed Cantor throughout his life (and many math-
ematicians for almost a century) is also independent of the other axioms
of set theory (with or without the axiom of choice). Gödel’s constructible
universe also constitutes a ZFC model in which the continuum hypothesis
is verified, i.e., there is no set A for which |N| < |A| < |2N|. Still with his
forcing technique, Cohen built models of ZFC in which we have an arbitrary
number of infinities strictly between |N| and |2N|.

Note here that we can give several versions of the continuum hypothesis.
The one originally formulated by Cantor concerned sets of reals: does there
exist a set A ✓ R such that |N| < |A| < |R|? Later the question will be
extended to any set, and in particular to ordinals, which we will see formally
in Chapter 26. Regardless of the version of the continuum hypothesis, this
is a question independent of the other axioms of set theory.



Chapter 10
Cohen forcing

Paul Joseph Cohen, 1934–2007

Forcing is a technique invented by the
mathematician Paul Cohen in the early
1960s, to show the independence of the
continuum hypothesis and the axiom
of choice from Zermelo/Fraenkel’s the-
ory. This technique has revolutionized
set theory, and also plays a preponder-
ant role in computability theory, where
it has established itself as one of the
two main techniques of set construc-
tion, alongside the priority method (see
Chapter 13).

Historically, this technique was de-
signed to extend a model M of ZF the-
ory by adding a new object G to form
a new model M[G], while allowing the
elements of the model M to control the
properties of the extended model M[G].
More generally, the forcing technique makes it possible to create mathemat-
ical objects using increasingly precise approximations, while being able to
control certain properties of the final object before the construction is fin-
ished. A forcing notion is above all the definition of a partial order of
approximations (P,6), where the relation d 6 c means that the approxi-
mation d is more precise than c. When a property (or requirement) R on
the final object is already determined by an approximation c 2 P, in other

– 225 –



226 10. Cohen forcing

words when whatever the sequence of the construction, the final object will
satisfy R, we then say that c forces R. The heart of the technique of forc-
ing lies in the ability to force complex properties on the final object from
simple approximations.

Forcing is often considered a di�cult technique to grasp at first glance.
Its application to computability theory, which is simpler, makes it possible
on the one hand to approach it smoothly, and on the other hand to more
easily understand the details of its underlying mechanisms. This simplicity
is mainly due to two aspects:

• Like the finite extension method, we will mainly use forcing to create
sets of integers, while controlling their computational powers. We will
therefore be interested in forcing simple formulas, of the type “�G(n)#”
or “�G(n)"”, where G denotes the final set. It is therefore a question
of forcing ⌃0

1 or ⇧0
1 formulas. We will see that several constructions, in

particular those with the finite extension method, are simplified uses of
forcing. We will also see how to extend the forcing to arbitrarily com-
plexity formulas, which presents a first level of additional complexity.

• Contrary to set theory, we will only force properties whose quantifiers
relate to integers. The creation of a set of integers by forcing does
not modify the nature of the integers, and therefore the scope of the
quantifiers. In set theory on the other hand, quantifiers relate to sets,
and creating a new set adds a large amount of sets to the model, and
therefore changes the scope of quantifiers. It is then necessary to use
names, to talk about the objects of our extended model inside our base
model. We will not need to use names in computability theory, which
makes the presentation more accessible.

1. Formulas of second-order arithmetic

The statements that one “forces” in computability theory are always for-
mulas of first-order arithmetic with free set variables. These formulas are
a special case of second-order arithmetic, which we will talk about in more
detail in Chapter 22. A formula of second-order arithmetic has two types
of variables: first-order variables, representing integers and which will be
noted in lowercase, and second-order variables, representing sets of integers
and which will be denoted in upper case. The language is enrich with the
membership symbol 2 , and the atomic formula “x 2 A”. In second-order
arithmetic, quantifications can be on integers, and on sets of integers. For
example, the statement “8A 8n 9m (m > n ^m 2 A)” states that any set
of integers is infinite.



1. Formulas of second-order arithmetic 227

First-order arithmetic with free set variables is a restriction of second-order
arithmetic, where only the quantifications on the integers are allowed1.
During the evaluation of a second-order arithmetic formula in a given
model, its free set variables are replaced by parameters, i.e., elements of the
model considered. Thus the statement F (G) = 8n 9m (m > n ^m 2 G)
is a formula of first-order arithmetic with G as free set variable, and any
infinite set X ✓ N is a parameter for which F (X) is true.

We have seen in Section 9-3 the�0
0 formulas of arithmetic: those containing

only bounded quantifications, that is to say quantifications of the form 8x 6
y and 9x 6 y. We can define a hierarchy on arithmetic formulas with free
set variables, similar to the hierarchy of Definition 9-3.2.

Definition 1.1. .

1. A formula F (Y1, . . . , Yk, x1, . . . , xm) of second-order arithmetic is ⌃0
n

if

F (Y1, . . . , Yk, x1, . . . , xm) =

n quantifiersz }| {
9y18y2 . . . Qyn
G(Y1, . . . , Yk, x1, . . . , xm, y1, . . . , yn)

for a �0
0 formula G(Y1, . . . , Yk, x1, . . . , xm, y1, . . . , yn), where Q is 9

if n is odd, and 8 if n is even.

2. A formula F (Y1, . . . , Yk, x1, . . . , xm) of second-order arithmetic is ⇧0
n

if

F (Y1, . . . , Yk, x1, . . . , xm) =

n quantifiersz }| {
8y19y2 . . . Qyn
G(Y1, . . . , Yk, x1, . . . , xm, y1, . . . , yn)

for a �0
0 formula G(Y1, . . . , Yk, x1, . . . , xm, y1, . . . , yn), where Q is 8

if n is odd, and 9 if n is even. }

We have so far implicitly used the formulas of second-order arithmetic, via
the use of functionals. Theorem 9-3.4 comes in the following equivalence.

Theorem 1.2
Let A,Z 2 2N. The following statements are equivalent:

(1) A ✓ N is Z-c.e.

(2) There exists a ⌃0
1 formula of second-order arithmetic F (X,n) such

1We will see only very late in this work, in Part IV the great computational complexity
hidden behind second-order quantifications.



228 10. Cohen forcing

that A = {n 2 N : N |= F (Z, n)}.

(3) There exists a Turing functional �(Z, n) such that A = {n 2 N :
�(Z, n)#}.

2. ⌃0
1/⇧

0
1 forcing

We will now begin our immersion in the world of forcing by studying a
specific forcing notion, namely Cohen forcing. As explained in the intro-
duction, a forcing notion is specified by its partial order of approximations.
In our case, it will be the partial order of the strings, equipped with the
prefix relation. It is one of the simplest concepts of forcing conceptually,
but which already contains the fundamental concepts of forcing.

There are several ways to approach forcing, with di↵erent levels of ab-
straction. It is possible to see it as an elaboration of the finite extension
method, seeking to systematize the satisfaction of requirements, and to
extract a general construction from it. We will present this approach in
Section 2.1.

It is also possible to formulate forcing in a topological framework. Topology
makes it possible to define a notion of “negligible” or meager class of sets.
The construction of a set by forcing then consists in choosing an element
“typical”, that is to say avoiding a negligible set of undesirable properties.
We will see this approach in Section 2.2.

2.1. The finite extension approach

Let us reconsider the finite extension method developed in Section 4-8. The
goal is to build a set G 2 2N satisfying an infinity of requirements (Re)e2N.
Each requirement is treated independently, and must therefore be satisfied
while leaving enough degrees of freedom in the construction to satisfy the
other requirements.

Check-in on requirements
The requirements —which we have seen so far informally— can be seen
as formulas in the language of first-order arithmetic with set variables,
and in particular with a free second-order variable representing the set G
which must fulfill the requirement. The finite extension method consists
of buildingG 2 2N by specifying increasingly long initial segments, repre-
sented as strings � 2 2<N. The ⌃0

1 requirements are those corresponding
to ⌃0

1 formulas, or in an equivalent way those which one can always put
in the form “�e(G, 0) #” for a functional �e. The ⇧0

1 requirements are
those corresponding to ⇧0

1 formulas or in an equivalent way those which



2. ⌃0
1/⇧

0
1 forcing 229

one can always put in the form “�e(G, 0)"” for a functional �e.

Satisfying a requirement. The general procedure for satisfying a re-
quirement Re is as follows: given a string � 2 2<N representing an ini-
tial segment of G already specified to satisfy previous requirements, we
must find a string ⌧ ⌫ � such that the requirement Re is satisfied. The
final set G then not being known, the requirement must be satisfied what-
ever the rest of the construction, in other words it must be satisfied for
all G 2 [⌧ ] = {X 2 2N : ⌧ � X}.

Partial order of strings. Let’s take some height, and consider the finite
extension method from a more abstract point of view. We have a partial
order (2<N,�), which corresponds to the set 2<N of finite strings, equipped
with the prefix relation. We also have an interpretation function [·] : 2<N

!

P(2N) defined by [�] = {X 2 2N : � � X}. Intuitively, the elements
of 2<N represent approximations of the set G under construction. Given an
approximation �, [�] is the class of sets that we could potentially obtain at
the end of the construction. The further we advance in the construction,
the more the approximation is refined and the class of candidate sets is
restricted. Thus, we have the following property: if � � ⌧ , then [⌧ ] ✓ [�].
Let us see a first definition of the forcing relation.

Definition 2.1. Let R be a ⌃0
1 or ⇧0

1 requirement. A string � forces R,
denoted by � �⇤

R, if the requirement is satisfied for all G 2 [�]. }

Density. We can abstract ourselves from the notion of requirement by
representing a requirementRe as the set Pe ✓ 2<N of the strings which force
it. Note that if � forces Re, then every ⌧ ⌫ � also forces Re because [⌧ ] ✓
[�]. The set Pe is therefore closed under su�x. The procedure for satisfying
the requirement Re consists in showing that for any string � 2 2<N, there
exists an extension ⌧ ⌫ � such that ⌧ 2 Pe. If this is the case, we will say
that the set Pe is dense:

Definition 2.2. A set W ✓ 2<N is dense if for all � 2 2<N, there exists
an extension ⌧ ⌫ � such that ⌧ 2W . }

Intuitively, a set W ✓ 2<N is dense if whatever the current construc-
tion �0 � �1 � · · · � �n using the finite extension method, it is never
too late to find an extension �n+1 ⌫ �n in W . It follows that if we have a
countable set of requirements represented by dense sets (Pn)n2N, since these
sets are dense, there exists an infinite sequence �0 � �1 � �2 � . . . such
that for all n, there exists an integer m for which �m 2 Pn. In particular,
let {G} =

T
n
[�n], then G will have initial segments in each set Pe.



230 10. Cohen forcing

Remark

If the sets (Pn)n2N are uniformly c.e, then the construction of the infinite
sequence �0 � �1 � �2 � . . . can be done in a computable way, and the
resulting set G is also computable.

Genericity. We can formalize the construction of the finite extension
method into a trivial theorem in view of the previous intuitions.

Definition 2.3. We say that a set G 2 2N meets a set W ✓ 2<N if G �n
2W for a some n 2 N. Let ~D = (Dn)n2N be a sequence of sets of strings.

A set G 2 2N is ~D-generic if it meets every Dn. }

Theorem 2.4
Let ~D = (Dn)n2N be a countable sequence of dense sets of strings and

let � 2 2<N. There is a ~D-generic set which extends �.

Proof. Let �0 � �1 � �2 � . . . be the strictly increasing infinite se-
quence of strings defined inductively as follows. Initially, �0 = �. If �n is
defined, �n+1 is a strict extension of �n in Dn. Such an extension exists by

density of Dn. Let {G} =
T

n
[�n]. Then, G is ~D-generic and extends �.

We will see the topological counterpart of the previous theorem with Lemma 2.14.
Theorem 2.4 says, among other things, that if (Dn)n2N is a sequence of

dense sets corresponding to the requirements (Rn)n2N, then there exist ~D-
generic sets, which therefore all satisfy the requirements simultaneously.

There is an uncountable amount of dense sets of strings, and a set G 2 2N

cannot be generic for all of these sets simultaneously, simply because the
set {� 2 2<N : � ⌃ G} is a dense set that G does not meet. The notion of

genericity is therefore dependent on a countable collection ~D of dense sets
of strings.

Su�ciently generic
It is common to state results of the form “any su�ciently generic set sat-
isfies such and such property”. This means that there exists a countable
sequence ~D = (Dn)n2N of dense sets of strings such that any ~D-generic
set satisfies the property. Note that given any other countable sequence
of dense sets of strings ~E = (En)n2N, the sequence { ~D, ~E} is again

countable, and we can therefore construct a { ~D, ~E}-generic set. This is
what justifies the name of su�ciently generic.



2. ⌃0
1/⇧

0
1 forcing 231

We will reformulate the proof of Proposition 4-8.2 in terms of density and
genericity. For that, we need to extend the forcing relation to ⌃0

2 require-
ments, which does not present any di�culty: a string � forces such a
requirement if the latter is satisfied for all G 2 [�]. We will see in Section 4
that this idea no longer works for ⇧0

2 requirements.

Proposition (4-8.2). For any non-computable set A, there exists a set B
such that B 66T A and A 66T B. ?

Proof. Let A be a non-computable set. We want to build a set B satis-
fying the requirements (Re)e2N and (Se)e2N:

Re : 9x�A

e
(x)" _ 9x�A

e
(x)#6= B(x) Se : 9x�B

e
(x)" _ 9x�B

e
(x)#6= A(x).

Let Re ✓ 2<N and Se ✓ 2<N be the set of strings forcing respectively Re

and Se.

Density of the set Re. Let � 2 2<N and let x = |�|. Two cases arise:

• Case 1: �A

e
(x)#= i for an i 2 {0, 1}. It is then su�cient to define ⌧ as

the unique string of length |�|+ 1 extending � such that ⌧(x) = 1� i.
For all X 2 [⌧ ], X(x) = 1� i 6= �A

e
(x), so ⌧ 2 Re.

• Case 2: �A

e
(x)". In this case, Re = 2<N and � 2 Re.

Density of the set Se. Let � 2 2<N. Three cases arise:

• Case 1: there exists an input x and a set X ⌫ � such that �X

e
(x) #6=

A(x). In this case, by the use property, there exists a finite string ⌧ ⌫ �
such that �X

e
(x)#6= A(x) for all X 2 [⌧ ]. The string ⌧ therefore forces

the requirement Se, hence ⌧ 2 Se.

• Case 2: there exists an input x such that for all the setsX ⌫ �, �X

e
(x)".

In this case, the string � already forces the requirement Se ensuring
that �B

e
(x)". So � 2 Se.

• Case 3: neither of the two previous cases appears. We then showed in
the initial proof of Proposition 4-8.2 that this case could not happen,
because the set A would be computable, contrary to our hypothesis.

Let B be a (Re, Se)e2N-generic set. Such a set exists by Theorem 2.4.
In particular, B satisfies all the requirements Re and Se simultaneously,
so B 66T A and A 66T B. This concludes the proof of Proposition 4-8.2.

2.2. The topological approach



232 10. Cohen forcing

René Baire, 1874–1932

The genesis of the finite extension
method, of genericity, and more gen-
erally of forcing, can be found in the
work of René Baire, at the beginning
of the 20th century. One of Baire’s
motives at the time was to understand
a little better certain “bizarre” func-
tions, but which arise naturally in anal-
ysis. If we go back a bit, in the first
half of the 19th century, the awareness
emerges, notably through the work of
Cauchy and Bolzano, that a sequence of
continuous functions (fn : R ! R)n2N

which pointwise converges does not nec-
essarily have a continuous function as
its limit, and for good reason: once the
notions of computability have been cor-
rectly extended to work in R, the limits of e↵ectively continuous func-
tions — that is, computable— are exactly the �0

2 functions, i.e., those for
which f(r) is uniformly computable in r0, the jump of r. This is a simple
application of Schoenfield’s lemma.

A few decades later, Baire looks at this phenomenon, and tries to better
understand these functions which are the limits of continuous functions, and
whose irregularities make them di�cult to manipulate and even to grasp
with clarity. He will present his results in the Peccot course “Lessons on
discontinuous functions” where he develops his famous mathematical tools
of Baire categories to show in particular that a limit function of continuous
functions, if it is no more necessarily continuous, will be continuous despite
everything on a “large set of points”. According to modern terminology,
the points of discontinuity of such a function will be a class meager or even
of category 1. Theorem 3.20 to come can be seen as an actual version of
this result.

We have defined in Section 8-2 the notion of open class of Cantor space, as
being a class of the form

S
�2U

[�] for any set U ✓ 2<N. The density of a
set of strings results in a notion of density of the corresponding open class
in Cantor space.

Definition 2.7. A class B ✓ 2N is said to be dense if it intersects any
cylinder [�], ie [�] \ B 6= ; for all � 2 2<N. }

The following exercise links the notion of density on the open classes of
Cantor space, and on the partial order of binary strings.



2. ⌃0
1/⇧

0
1 forcing 233

Exercise 2.8. Given U ✓ 2<N we denote by U� the su�x closure of U ,
that is U� = {⌧ 2 2<N : 9� 2 U ⌧ ⌫ �}.

Let U ✓ 2<N. Show that U� is dense in 2<N i↵ the open class
S

�2U
[�] is

dense in Cantor space. ⇧

Our goal is to define a notion of “negligible” or meager class, to give a
topological definition of forcing. We start from the intuition that a cylin-
der [�] is not thin. The notion of negligible class should be closed under
subclass. Thus, if a class contains a non-empty open class of Cantor space,
it is not negligible. To formalize this, we introduce the notion of interior.

Definition 2.9. The interior int(F) of a class F ✓ 2N is the largest open
class included in F , that is, the union of all cylinders [�] such that [�] ✓
F . }

A negligible class must therefore in particular have an empty interior.

Example 2.10. The closed class {X 2 2N : 8n X(2n) = 0} has an
empty interior: it is indeed clear that it does not contain any cylinder [�]
because there are always X 2 [�] such that X(2n) = 1 for n su�ciently
large. Its complement {X 2 2N : 9n X(2n) 6= 0} is therefore a dense
open class, described by the union of the cylinders [�1] for any string �
of even size.

We now have the elements in hand to define the notion of meager class.

Definition 2.11. A class B ✓ 2N is said to be meager if B is included in
a countable union of closed classes with empty interior. The complement
of a meager class is called co-meager. }

Note that by passing to the complement, a class is co-meager if it contains a
countable intersection of dense open classes. We leave to the reader the care
to show in the two following exercises that for a sequence ~W = (Wn)n2N of

dense sets of strings, the class of ~W -generic sets is a co-meager class.

Exercise 2.12. Let ~W = (Wn)n2N be a sequence of sets of strings such
that each W�

n
is dense (using the notation of Exercise 2.8).

Show that the class
T

n
[Wn] is co-meager, where [Wn] =

S
�2Wn

[�]. ⇧

Exercise 2.13. Let ~W = (Wn)n2N be a sequence of dense sets of strings.

Show that the class
T

n
[Wn] contains exactly the ~W -generic sets. ⇧

The two previous exercises therefore establish a link between the approach
of forcing by the finite extension method and the topological approach:



234 10. Cohen forcing

if (Rn)n2N is a sequence of requirements such that the corresponding sets

of strings (Wn)n2N are dense, then the class of ~W -generic — sets which
satisfy all requirements simultaneously— is co-meager.

Historically Baire calls classes of category 1 the meager classes, and
classes of category 2 those that are not. This will give the name of
“Baire category theory” to the study of these notions. Note that a class
is not necessarily meager or co-meager. In particular, category 2 classes
are not necessarily co-meager. As far as we are concerned, it is really
the notions of meager and co-meager that interest us, and it is therefore
this vocabulary that we will use.

Digression

Fact
From Definition 2.11, it is clear that a countable union of meager classes
is meager, and that a countable intersection of co-meager classes is co-
meager.

One intuition that we will support in future developments is that meager
classes are “small” and co-meager classes are “large”. The attribution of
these adjectives should not be taken as absolute. There are other ways
of judging class size, which do not coincide with the fact that the meager
classes are small and the co-meager ones are large. One can for example
find meager classes of measure 1 and co-meager classes of measure 0 (see
Part II).

What should be understood rather, is that the co-meager classes are large
enough to always be stable under countable intersection, and at the same
time always dense, and even in a strong sense: if B is a co-meager class
then B \ [�] is uncountable for any cylinder [�]. This is in fact a rein-
forcement of Theorem 2.4. To see it, let us remember the following fact
demonstrated with Proposition 8-2.3 and Proposition 8-3.2:

Fact
The intersection of a finite number of open classes is open. Therefore
we can always assume that a countable open intersection

T
n
Un is de-

creasing. By passing to the complement, one can always assume that a
countable union of closed classes is increasing.

Recall that a class F ✓ 2N is perfect if it is the image of a continuous
injection from 2N to 2N (see Section 8-2.4), that is, F is of the form [T ]



2. ⌃0
1/⇧

0
1 forcing 235

[�]
[�0] [�1]

U0

[�0]

[�00] [�01]

[�1]

[�10] [�11]

U1

[�00] [�01] [�10] [�11]

U2

. . . . . . . . . . . .

Figure 2.15: Illustration of the construction of a perfect sub-class of points
in [�] \

T
n
Un. As each open class Un is dense, one can find for every

string �⌧ i an extension �⌧i ⌫ �⌧ i such that [�⌧i] ✓ Un.

for an f-tree T : 2<N
! 2<N (see Section 7-5). The following lemma shows

that a co-meager class has the power of the continuum.

Lemma 2.14. A co-meager class of Cantor space contains a perfect sub-
class of points in each cylinder [�]. ?

Proof. Let B be a co-meager class. Let
T

n
Un ✓ B be an intersection of

dense open classes. We can assume without loss of generality Un+1 ✓ Un.
The reader can use Figure 2.2 for a graphical representation of the following
construction.

Let � 2 2<N. Since U0 is dense, U0 \ [�0] is non-empty and so there is a
string �0 � �0 such that [�0] ✓ U0. Likewise there is a string �1 � �1 such
that [�1] ✓ U0. Suppose that for any string ⌧ of size n+ 1 we have defined
strings �⌧ ⌫ � that are pairwise incomparable and such that [�⌧ ] ✓ Un.
For each of these strings ⌧ and for each i 2 {0, 1} we define �⌧i as being
a string which extends �⌧ i and such that [�⌧i] ✓ Un+1, which is possible
because Un+1 is dense.

It is clear that for any set X the class
T

⌧�X
[�⌧ ] ✓

T
n
Un contains a single

element YX 2 [�] \
T

n
Un. We easily verify that the function T : 2<N

!

2<N defined by T (⌧) = �⌧ is an f-tree whose paths are the elements YX =
T (�0) � T (�1) � . . . for X = �0 � �1 � . . . .

So B contains a perfect subclass of points in the cylinder [�].



236 10. Cohen forcing

Note in particular as a consequence of the previous lemma that a countable
union of closed classes with empty interior has empty interior: if such a
union of closed classes contained a cylinder [�], its complement — a co-
meager class — could not contain any point in [�], which would be a
contradiction.

We now see the topological equivalent of Definition 2.1 of forcing for the
⌃0

1 and ⇧0
1 requirements:

Definition 2.16. Let R be a ⌃0
1 or ⇧0

1 requirement. Let BR be the class
of elements which satisfy R. Then, � forces R i↵ [�] ✓ BR. Note that
if R is ⌃0

1 then BR is an e↵ectively open class and if R is ⇧0
1 then BR is

an e↵ectively closed class. }

Note for example that if the class of elements satisfying a ⇧0
1 requirement

has empty interior, then no string forces this requirement: the open class
of elements not satisfying the requirement is a dense, and will contain any
su�ciently generic element. This brings us to the study of the sets which
are in “su�ciently dense open classes”: the 1-generic and the weakly 1-
generic, which we see now.

3. E↵ective genericity

Jockusch was undoubtedly one of the first to understand the usefulness of
Cohen’s ideas in computability theory, and he initiated the study of an
e↵ective version of Cohen’s concepts, with the notions of 1-genericity and
weak 1-genericity, resulting from the application of forcing to all ⌃0

1 and ⇧0
1

requirements.

Genericity can be seen as both a notion of strength and weakness. A
su�ciently generic set will, for example, always have hyperimmune degree.
On the other hand, we will see that su�ciently generic sets cannot compute
the halting problem, nor even a DNC function. Generally speaking, the
finite extension method satisfies strength and weakness properties in the
same way: by proving the density of some well-chosen sets.

3.1. Weakly 1-generic sets

We begin by presenting the weakly 1-generic sets, introduced by Kurtz
during his doctoral thesis, carried out under the supervision of Jockusch.

Definition 3.1 (Kurtz [130]). A set G 2 2N is weakly 1-generic if it is



3. E↵ective genericity 237

generic for all dense c.e. sets. In other words, G is weakly 1-generic if G
belongs to all the dense ⌃0

1 classes of Cantor space. }

Note that there is only a countable quantity of dense ⌃0
1 classes. The

notion of weakly 1-generic set turns out not to be restrictive enough to hold
properties normally inherent to generics, but in terms of Turing degree, the
notion is of some interest, in particular via the following characterization.

Theorem 3.2 (Kurtz [130])
Let G ✓ N. The following statements are equivalent:

(1) G is of hyperimmune degree.

(2) G computes a function which is often infinitely equal to any com-
putable function.

(3) G computes a weakly 1-generic set.

Proof. Let us first show (1)! (3), the most di�cult implication. Let f 6T

G be a function which is not bounded by any computable function. We as-
sume without loss of generality that f is increasing. Note that for any com-
putable function g, there is an infinity of values n such that f(n) > g(n).
We compute from f a set G 2 2N which belongs to any dense ⌃0

1 class.
Let (We)e2N be an enumeration of the ⌃0

1 subsets of 2<N. We construct G
by successive approximation �0 � �1 � �2 � . . . .

We first describe a recursive procedure to be performed each time we want
to concatenate a string ⌧ to a string � that we have so far computed. This
procedure, which we will name R, takes a third parameter: an integer e
which corresponds to the smallest integer such that �⌧ is enumerated in We

at the computation step f(|�|). We will note R(�, ⌧, e) for the result of
the call to this procedure. Finally, note that some integers are marked
as “satisfied” when the procedure is called: these are the integers e such
that � extends a string of We at the current computation step.

The R(�, ⌧, e) procedure does the following: for each prefix ⌧ 0 � ⌧ in order,
it searches for the smallest integer e0 < e that is not satisfied and such that
a string of the form �⌧ 0⇢ is listed inWe0 [f(|�⌧ 0|)]. If such an integer is found
then the procedure returns the result of the recursive call to R(�⌧ 0, ⇢, e0).
Otherwise it returns �⌧ . Note that reducing the value of the last parameter
in recursive calls causes the procedure to stop necessarily.

In step 0 we define �0 = ✏. Suppose �t defined in step t. In step t + 1,
we look for the smallest unsatisfied integer e 6 t + 1 such that a string
of the form �t⌧ is listed in We[f(|�t|)]. If we find such an integer e we
define �t+1 as being R(�t, ⌧, e). Otherwise �t+1 to be �0. This concludes
the construction.



238 10. Cohen forcing

Note that if We describes a dense open class, then the function fe which
to n associates the smallest computation time t such that all the strings of
size n have an extension in We[t], is a total computable function. We have
in particular fe(n) < f(n) for an infinity of values n. Suppose that We

describes a dense open class, that e is not satisfied at time t, and that
all e0 < e which are satisfied at some point in the construction are satisfied
at time t. Let n be the smallest integer greater than or equal to |�t| such
that f(n) > fe(n). Let s > t be the smallest integer such that |�s| 6 n <
|�s+1|. If |�s| = n then by minimality of e, the algorithm defines �s+1 = �s⌧
with �s⌧ 2We[f(n)]. If not then by construction when defining �s+1 = �s⌧
for a certain string ⌧ , the algorithm checks for any prefix ⌧ 0 � ⌧ , that we
do not have an extension of �s⌧ 0 listed in We[f(|�s⌧ 0|)], and in particular
for the prefix ⌧ 0 such that |�s⌧ 0| = n. If this is the case, the algorithm is
restarted on this extension. As it is indeed the case by hypothesis, and by
minimality of e, we will in fact have �s⌧ 2 We[f(n)] for �s+1 = �s⌧ . We
conclude that the set G = �0 � �1 � �2 � . . . belongs to all the dense
open classes.

Let us show (3) ! (2). Let G be a weakly 1-generic set. Note that if f
is a total computable function then the set Wf = {�0f(|�|)1 : � 2 2<N

}

describes a dense ⌃0
1 class. We compute from G the function g which to n

associates the maximum number g(n) of 0 such that G�n 0g(n) � G. Since
for any total computable function f the set G belongs to Wf , it is clear
that g is equal at least once to any computable function. If g were equal
only a finite number of times to a given computable function, one could
modify a finite number of values of this function to have a computable
function which is never equal to g. So g is infinitely often equal to any
computable function.

Let us show (2) ! (1). Let f be a function infinitely equal to any com-
putable function. Then, f + 1 is infinitely often above any computable
function.

We can relativize the notion of weak 1-genericity to any oracle:

Definition 3.3 (Kurtz [130]). Let A 2 2N. A set G is weakly 1-generic
relative to A if G meets W for any ⌃0

1(A) dense set of strings W . }

The hierarchy of Turing jumps allows to define a hierarchy of genericity as
follows:

Definition 3.4 (Kurtz [130]). A set G 2 2N is weakly n-generic if it

is weakly 1-generic relative to ;(n�1), that is to say if it meets all the

⌃0
1(;

(n�1)) dense sets of strings, or equivalently all ⌃0
n

dense sets of



3. E↵ective genericity 239

strings. }

Some implications of Theorem 3.2 generalize to any oracle A:

Exercise 3.5. Show that any set G weakly 1-generic relative to A
computes a function g : N ! N which is often infinitely equal to any A-
computable function. ⇧

Exercise 3.6. Let n > 1 and G 2 2N. Show that if G computes
a function which is infinitely often equal to all A-computable functions,
then G computes an A-hyperimmune function. ⇧

The direction (1) ! (3) of Theorem 3.2 does not hold in general. In the
Turing jump hierarchy, this only works at the first level.

Proposition 3.7 (Andrews, Gerdes and Miller [7]). . Any hyperim-
mune function relative to ;0 computes a weakly 2-generic set. ?

The idea to show the previous proposition is to use the fact that ;0-
computable objects are limit-computable. On the other hand, from n > 3,
weakly n-generic sets can no longer be constructed simply using functions
escaping collections of functions, in the following sense.

Definition 3.8. Let F be a collection of functions. A function f : N! N
is F-escaping if for all g 2 F , there exists n 2 N such that f(n) > g(n).}

The following theorem expresses a deep structural di↵erence between es-
caping functions and generic degrees, in the sense that whatever an ora-
cle A, there exists an A-hyperimmune function which computes no weakly
3-generic set.

Theorem 3.9 (Andrews, Gerdes and Miller [7])
For any countable collection of F functions, there exists a F-escaping
function which is not of weakly 3-generic degree.

Proof. We will use a variant of the notion of f-tree defined in Section 7
-5. We are going to define a total �0

3 function T : N<N
! N<N such that:

(1) domT (the domain of T ) is a prefix-closed set;

(2) for all �, ⌧ 2 domT , � � ⌧ if and only if T (�) � T (⌧);

(3) for all � 2 N<N and n 2 N, there exists an m > n such that Ts(�n)
extends Ts(�)m.

The function T extends as a function from NN to NN, defining for all X 2
NN, T (X) as the only element of the class

T
��X

[T (�)]. A path of T is a



240 10. Cohen forcing

sequence P 2 NN of which an infinity of initial segments belong to ImT .
In other words, a path is a sequence P 2 2N of the form P = T (X) for
an X 2 NN. We denote by [T ] the set of paths of T . By (3), for any
countable collection of functions F , there exists a path f 2 [T ] which is F-
escaping. We are going to construct T such that for any path f 2 [T ], f is
not of weakly 3-generic degree.

The reader can use Figure 3.10 to understand the following construction.
Let (�s)s2N be a computable enumeration of N<N which only shows each
string after enumerating its prefixes. In particular, �0 = ✏. At the start of
step s, we will have already defined T over �0, . . . ,�s. We will also assume
defined for each t 6 s, an infinite c.e. reservoir Vt,s ✓ N<N of strings
extending T (�s). We’ll make sure that for all n 2 N, T (�sn) extends a
string of Vt,s. Simultaneously, we will create for each e a dense ⌃0

1(;
00)

set Ue ✓ 2<N such that if �P

e
is total for a path P 2 [T ], then P does

not meet Ue. Thus, whatever the path P 2 [T ], �P

e
will not be a weakly

3-generic set.

Initially, f(✏) = ✏ and V0,0 = N. At step s = he, ii, we will make sure
that any string of length i has an extension in Ue. The set {�t : t 6 s}

forms a finite tree, and for each leaf ⌧ of this tree, �T (⌧)
e can have di↵erent

values. The set Ue must therefore add extensions to all strings of length i,

while ensuring that it will avoid �T (�t)
e for all t 6 s. We therefore fix a

su�ciently large length, k = i + s + 1, so that if we construct a set of
“forbidden” binary strings ⇢0, . . . , ⇢s each of length k, any binary string of
length i admits an extension of length k avoiding the forbidden strings.

For each t 6 s, we ask ;00 if there exists a string ⇢s of size k such that
there is an infinity of binary strings µ 2 Vt,s having an extension µ0

⌫ µ

for which �µ
0

e
�k= ⇢s. If this is the case, we define Vt,s+1 as the set of

these µ0. Note that Vt,s+1 is then still computably enumerable. Otherwise
for any string ⇢ of size k, only a finite number of strings of Vt,s have an
extension which will be sent to an extension of ⇢ via �e. In particular,
one can remove a finite number of strings from Vt,s so that no extension of
the remaining strings will ever be sent to a string larger than k. We then
take an arbitrary string ⇢s, and define Vt,s+1 as the restriction of Vt,s to
strings µ which have no extension µ0 sent to a string larger in size than k
via �. Since we remove a finite number of strings, Vs,t+1 is still c.e.

So we end up with a set of binary strings ⇢0, . . . , ⇢s each of length k, such
that for any path P 2 [T ], if �P

e
is total, then �P

e
�k= ⇢t for one t 6 s. We

list in Ue all the strings of length k other than ⇢0, . . . , ⇢s. Excluding these
strings, we make sure that for any path P 2 [T ], if �P

e
is total, then it will

not meet Ue. The length k being su�ciently large, any string of length i
has an extension in Ue.



3. E↵ective genericity 241

. . . V0,7

. . . V1,7 . . . V2,7 . . . V3,7

. . . V4,7 . . . V5,7 . . . V6,7 . . . V7,7

Below, the enumeration (�s)s2N starts with ✏, 0, 1, 2, 00, 01, 10, 11, . . .

Figure 3.10: Illustration of the proof : at step 8 we will restrict each of
the reservoirs from V0,7 to V7,7 by suppressing some of their branches, and
by extending others, so that the current functional �e avoids, for each of
the branches of the reservoirs Vi,8, a dense open class that we are currently
enumerating thanks to ;00. Once the reservoirs restricted, we complete
our tree by taking an extension in each of them, which creates for each
extension a new reservoir, and so on.

Finally, we define T (�s+1). Suppose that �s+1 = �tn for a t 6 s and n 2 N.
We choose ⌧ 2 Vt,s+1, remove it from Vt,s+1, and we define T (�s+1) = ⌧ .
Finally, we define Vs+1,s+1 = {⌧m : m 2 N}. This completes the proof of
Theorem 3.9.

Exercise 3.11. (??) Modify the proof of the previous theorem to show
that for any countable collection of functions F , there exists an F-escaping
function which does not compute any function which is often infinitely
equal to any ;00-computable function. ⇧

3.2. 1-generic sets

We now see 1-genericity, a somewhat stronger and much richer notion than
weak 1-genericity. The weakly 1-generic sets are those resulting from forc-
ing for dense ⌃0

1 requirements. But what about ⌃0
1 requirements which are

not dense?

The 1-genericity corresponds to the first level of forcing making it possible
to tackle any ⌃0

1/⇧
0
1 requirements, via the following theorem, which will

be demonstrated at the end of the subsection which follows (we refer the
reader to Definition 2.1 for the notation �⇤):



242 10. Cohen forcing

Theorem 3.12
Let G be a 1-generic set. Let R be a ⌃0

1 or ⇧0
1 requirement. Then, G

satisfies R i↵ there is a prefix � � G such that � �⇤
R.

3.2.1. Nature of 1-generic sets

Recall the motivation of the definition of density: a dense set W is such
that whatever the stage of the construction by the finite extension method,
it is always possible to meet W . If W is not dense, then in the worst case,
when we decide to meet it, our initial segment constructed so far may have
no extension in W . This motivates the following definition.

Definition 3.13. A string � 2 2<N avoids a setW ✓ 2<N (denoted �?W )
if not only � /2W , but also no extension of � is in W . }

Notation

We note W? = {⌧ 2 2<N : ⌧?W}.

Lemma 3.14. Let W ✓ 2<N be an arbitrary set. Then the set W [ W?

is dense. ?

Proof. Let � 2 2<N. Either � has an extension in W , and therefore
in W [ W?, or � avoids W , in which case � 2W?.

Note that if W is a dense set, then W? = ;. Remember that the density
of a set of strings W closed under su�x on 2<N corresponds to the density
on 2N of its corresponding open class [W ] =

S
�2W

[�]. The set W? also
corresponds to an open one: the interior of the complement of the set [W ],
that is to say the union of all the cylinders [�] included in the complement
of [W ].

If we reformulate it in Cantor space, Lemma 3.14 states that for any open
class U ✓ 2N, the class U [ int(2N\U) is a dense open class. If U is basically
dense then int(2N \U) = ;, otherwise we “densify” U by adding the interior
of its complement. We are now ready to define the notion of 1-generic set.

Definition 3.15 (Jockusch [104]). A setG 2 2N is 1-generic if it is {We [

W?
e

: e 2 N}-generic, where We is the computably enumerable set of
strings of code e. Equivalently, G is 1-generic if G 2 U [ int(2N \ U) for
any ⌃0

1 class U . }

As mentioned above, if W ✓ 2<N is a dense set, then W? = ;. It follows
that every 1-generic set meets every dense ⌃0

1 set, and is therefore weakly



3. E↵ective genericity 243

1-generic. In particular, the degrees of weakly 1-generic sets coinciding
with hyperimmune degrees, any 1-generic set is of hyperimmune degree,
and therefore not computable.

If we look at the contraposition of the notion of 1-genericity, a set G is
not 1-generic if there exists a c.e. set W ✓ 2<N containing no prefix of G
and such thatW “is dense along G”, that is, for all � � G there exists ⌧ ⌫ �
with ⌧ 2W and ⌧ ⌃ G. This idea is illustrated in Figure 3.16.

G

�1

�3

�2

�0

. . .

Figure 3.16: Illustration of a set G which is not 1-
generic : one can enumerate strings �0,�1, . . .
densely along G, without ever enumerating a pre-
fix of G.

We now see formally why Theorem 3.12 claimed above is true.

Proposition 3.17. Let Re be a ⌃0
1 requirement. Then the set W ✓ 2<N

of strings forcing Re is ⌃0
1. Moreover W? is the set of strings forcing ¬Re

and it is ⇧0
1. ?

Proof. Re being ⌃0
1, it can be written in the form �(G, 0)# for a func-

tional �. A string � forces Re if �(X, 0)# for all X 2 [�]. By König’s
lemma, � forces Re if there exists a length n such that for all ⌧ ⌫ � of
length n, �(⌧, 0)#. The set

W = {� 2 2<N : 9n 8⌧ 2 2n (⌧ ⌫ � ! �(⌧, 0)#)}

is ⌃0
1 (where 2n denotes the set of strings of size n).

Let us show that W? is the set of strings � which force ¬Re. If � does
not force ¬Re, then there exists an X 2 [�] such that �(X, 0)#. By the
use property, for n su�ciently large and for all Y 2 [X �n], �(Y, 0)#. We
can assume n > |�|. Let ⌧ = X �n. Then, ⌧ 2 W , so � /2 W?. By
contraposition, if � 2W?, then � forces ¬Re. Now suppose that � /2W?.
Then, there exists ⌧ ⌫ � such that ⌧ 2 W . In particular, there is an X 2
[⌧ ] ✓ [�] such that �(X, 0)#. It follows that � does not force ¬Re.



244 10. Cohen forcing

As the set W is ⌃0
1, it is clear that the set W? is ⇧0

1.

Corollary 3.18
Let Re be a ⌃0

1 requirement. Then, the set D of strings which force Re

or which force ¬Re is dense.

Proof. Immediate by Lemma 3.14 and Proposition 3.17.

Note that any set satisfies the formula “Re _¬Re”, and therefore that any
string forces “Re _ ¬Re”. On the other hand, it is much stronger for a
string � to force Re or to force ¬Re, because any set A 2 [�] must have
the same behavior towards Re.

We can now show Theorem 3.12 announced: if G is a 1-generic set and R

a ⌃0
1 or ⇧0

1 requirement, then G satisfies R i↵ there is a � � G prefix such
that � �⇤

R.

Proof of Theorem 3.12. Let G be a 1-generic set. Let R be a ⌃0
1 re-

quirement. If a prefix � � G forces R or ¬R then by definition G satisfies
respectively R or ¬R.

Conversely, suppose that G satisfies R. Let W be the c.e. set of strings
that force R. Since G is 1-generic it meets W [ W?. If G meets W?

then � forces ¬R for a prefix � � G and therefore G satisfies ¬R which is
a contradiction. So G meets W and a prefix � � G forces R.

Symmetrically if G satisfies ¬R then a prefix � � G forces ¬R.

3.2.2. Properties of 1-generic sets

In general, the function which toX associatesX 0 is not continuous. Indeed,
it is sometimes necessary to know an infinity of bits of X to know if n 2 X 0.
René Baire showed — in another form of course— that this function was,
on the other hand, continuous over a co-meager class of points. The 1-
genericity is the level of genericity required to account for this theorem.

Definition 3.19. A set G 2 2N is generalized low if

G0 6T G� ;0 }

If a set G is generalized low, then not only the function which to X asso-
ciates X 0 is continuous in G, but even more it is computable in G�;0. Any
set has a priori no reason to be generalized low. For example ;0 is not, but
it is the case for 1-generic sets.



3. E↵ective genericity 245

Theorem 3.20
The 1-generic sets are generalized low.

Proof. For any e, define the class Ue = {X : �e(X, e)#}. Let We ✓ 2<N

be a ⌃0
1 set which represents Ue, i.e., such that [We] = Ue (where [We] =S

�2We
[�]). Note that e 2 G0 i↵ G 2 Ue. We also have G 2 Ue i↵ there

exists ⌧ � G such that ⌧ 2 We, and by definition of the 1-genericity of G,
we have G /2 Ue i↵ there is ⌧ � G such that � /2 We for any � compatible
with ⌧ . The question of whether � /2We for any � compatible with ⌧ is ⇧0

1

uniformly in ⌧ and therefore can be asked to ;0. To know if e 2 G0, it
su�ces therefore to look for a prefix ⌧ of G such that we are in one case or
the other, which will necessarily happen.

We have seen that any 1-generic set has a hyperimmune degree, and there-
fore cannot be computed. Therefore, 1-genericity is not a weakness prop-
erty. We will now see that it is not a strength property either, in the sense
that certain computational powers can never be reached by the 1-generic
degrees. In particular, no 1-generic degree computes ;0.

Theorem 3.21 (Demuth and Kučera [48])
No 1-generic set is of DNC degree.

Proof. Suppose n 7! �(G,n) is a DNC function. We consider the class U =
{X : 9n �(X,n)#= �n(n)#}. By hypothesis G /2 U . Consider a string �.
We define by Kleene’s fixed point theorem the code e� of the function which,
on the input e�, searches for an extension ⌧� ⌫ � such that �(⌧�, e�)# and
assigns �(⌧�, e�) to �e� (e�). The process being uniform, we enumerate all
the strings of the form ⌧� in a c.e. set W .

Note that for all � � G the function code e� halts on the input e� because
there exists at least one extension of �—namelyG itself— for which � halts
on the input e�. Since n 7! �(G,n) is DNC, we have �(G, e�) 6= �e� (e�)
and therefore � � ⌧� ⌃ G.

We therefore have a c.e. set W of which no element is a prefix of G, but
which contains an extension of each prefix of G. It follows that G is not 1-
generic.

The restriction of genericity makes it possible to construct sets benefiting
from certain advantages of genericity while not being too complex from a
computational point of view.

Exercise 3.22. (?) Show by a direct argument that no 1-generic set is
computable. ⇧



246 10. Cohen forcing

Exercise 3.23. (?) Show that there exists a 1-generic �0
2 set. Deduce

that there exists a 1-generic set of low degree. ⇧

We will see in the next section with Corollary 3.34 that there are also 1-
generic sets of high degree. Let us end with an interesting exercise, which
requires elaborating on the techniques of Theorem 3.28, and which uses
the notion of e↵ective join of Definition 4-5.6, but extended to a countable
sequence of sets:

Definition 3.24. The e↵ective join
L

n2N An of a sequence of sets (An)n2N

is the set Y such that hn,mi 2 Y i↵ m 2 An. }

In the following exercises, the notation
L

j 6=i
Gj therefore corresponds to

the e↵ective join of the sequence (Gn)n2N from which we remove the set Gi.

Exercise 3.25. (??) Let G =
L

n2N Gn be a 1-generic set. Show that Gi

is hyperimmune relative to
L

j 6=i
Gj for all i 2 N. ⇧

Exercise 3.26. (??) (Miller). Let X =
L

n2N Xn be a set such that Xi

is hyperimmune relative to
L

j 6=i
Xj for all i 2 N. Show that X computes

a 1-generic set. ⇧

3.2.3. Relativization of 1-generic sets

Just as we relativized weak 1-genericity, we now relativize 1-genericity.

Definition 3.27 (Jockusch [104]). Let A 2 2N. A set G 2 2N is 1-
generic relative to A if G 2 U [ int(2N\U) for any class U which is ⌃0

1(A).

We will say that G is n-generic if it is 1-generic with respect to ;(n�1), or
in an equivalent way if it meets W [ W? for any ⌃0

n
set of strings W .}

We will study this relativization in more detail in Section 5. Let us see for
the moment a first key theorem.

Theorem 3.28
Let X be non-computable and G be a 1-generic set relative to X. Then,
we have G ⇤T X.

Proof. We are going to build a ⌃0
1(X) class U such that Y 2 U [ int(2N \

U) implies �(Y ) 6= X.

We simply enumerate in the set X-c.e. which describes U , all strings � such
that 9n �(�, n) #6= X(n). Suppose now that ⌧ is a string for which [⌧ ] ✓
2N \U , that is, no extension � ⌫ ⌧ is such that 9n �(�, n)#6= X(n). Let us
show that for all Y ⌫ ⌧ we have 9n �(Y, n)". Suppose this is not the case.



3. E↵ective genericity 247

Then, we can compute X as follows: to know X(n), it su�ces to look for
an extension � ⌫ ⌧ such that �(�, n) #. By hypothesis, such an extension
exists, and still by hypothesis, it is such that �(�, n) #= X(n). As this is
true for every n, this contradicts the fact that X is non-computable. So
if [⌧ ] ✓ 2N \ U then for all Y ⌫ ⌧ we have 9n �(Y, n) ". We deduce that
for all Y 2 U [ int(2N \ U) we have �(Y ) 6= X. As G is 1-generic relative
to X then G 2 U [ int(2N \ U) and the same is true for any functional �.
So G ⇤T X.

Let us now see the various implications between the notions of n-genericity
and n-weak genericity.

Proposition 3.29. Let G be a set. Then, for all n > 0, G weakly (n+1)-
generic implies G n-generic implies G weakly n-generic. The implications
are strict. ?

Proof. If G is weakly (n + 1)-generic, then it meets any ⌃0
1(;

(n)) dense

set. For any ⌃0
1(;

(n�1)) set W , W [ W? is dense and ⌃0
1(;

(n)), so G
meets W [ W?. Thus G is n-generic. If G is n-generic, then for any

⌃0
1(;

(n�1)) set W , G meets W [ W?. If W is dense, then W? = ;, so G
meets W . Thus G is weakly n-generic.

To see that the first implication is strict, it su�ces to construct an n-

generic ;(n)-computable set and to see that no weakly (n + 1)-generic set

is ;(n)-computable because {� : � � X} is a ⌃0
n+1 dense set of strings for

any set X which is �0
n+1. We can consult Exercise 3.30 for an example of

an n-generic set which is not weakly n-generic.

Exercise 3.30. (??) A set X is left-c.e. relative to A if there exists
an A-computable sequence of sets (Xs)s2N such that Xs is lexicographically
smaller than Xs+1 for all s, and such that lims Xs = X.

Show that for all A there exists a weakly 1-generic set relative to A and
left-c.e. relative to A. Show that no 1-generic set relative to A is left-c.e.
relative to A. ⇧

3.3. Posner/Robinson theorem

In a 1981 article, Posner and Robinson study degrees strictly under the
halting set, but the join of which makes it possible to compute the halting
set. A generalized and modern version of their main theorem is the fol-
lowing: for any set non-computable A — and in particular as “weak” as
computably possible— there exists a set G such that A�G >T G0. Infor-
mally, there always exists a set G whose computational distance between
itself and its jump, is “reduced” to A, and this for any A.



248 10. Cohen forcing

The modern presentation of the theorem is that of Jockusch and Shore,
who show something more general:

Theorem 3.31 (Jockusch and Shore [106])
Let A,Z be non-computable sets. There exists a 1-generic set G such
that A � G >T Z. Moreover, we can obtain G in a computable way
from A� Z � ;0.

Proof. The idea is to build a 1-generic set G, which will encode Z, so
that G and A allow to find the construction sequence. The construction
itself will be computable in A�Z�;0. We can assume without loss of gener-
ality that A is not a c.e. set (otherwise, one replaces A by its complement).
Let (We)e2N be an enumeration of the ⌃0

1 subsets of 2<N.

We define �0 = ✏, the empty word. Suppose �e defined. We consider the
set

De = {m : 9⌧ such that �eZ(e)0m1⌧ 2We}.

Note thatDe is a c.e. set. In particular as A is not c.e. there is somem 2 De

with m /2 A or some m /2 De with m 2 A. We consider the smallest m
such that we are in one case or the other. Note that ;0 � A allows to find
uniformly this integer m.

In the first case, we define �e+1 as being �eZ(e)0m1⌧ for the first string ⌧
such that �eZ(e)0m1⌧ is listed in We. In the second case, we define �e+1 as
being �eZ(e)0m1. Note that in this case no string of We can extend �e+1.
We define G as being �0 � �1 � �2 � . . . . This completes the construction.

It is clear that G is 1-generic and computable in A � Z � ;0. How do
you now compute Z from G � A? Suppose we know the string �e. We
then necessarily know the e-th bit of Z: it is the bit i such that �ei � G.
We can then find �e+1 as follows: we look at the number m of 0 which
follows �ei in G. If m 2 A, this means that �e+1 = �ei0m1. If m /2 A, this
means that �e+1 = �ei0m1⌧ for the first string ⌧ found in We. Finding
this string ⌧ is then a computable process. We can therefore in all cases
find �e+1, and by repeating the process, compute Z from A�G.

Corollary 3.32 (Posner and Robinson [188])
Let A be a non-computable set. There exists a set G such that A�G >T

G0. If A is �0
2 then we have A�G ⌘T G0.

Proof. We apply the previous theorem with Z = ;0. We therefore have
a 1-generic setG such thatG 6T ;

0
�A and such thatG�A >T ;

0. By using
the fact that the 1-generics are generalized low, we thus have G � A >T

G� ;0 ⌘T G0. It is clear that if A is �0
2 then A�G ⌘T G0.



3. E↵ective genericity 249

Another interesting corollary is the jump inversion theorem: any set that
computes the halting problem can be seen as the Turing degree of the jump
of a set.

Corollary 3.33 (Jump inversion theorem, Friedberg [65])
Let Z >T ;

0. There exists a set G such that Z ⌘T G0.

Proof. We apply the previous theorem with Z and A = ;0. We therefore
have a 1-generic set G such that G�;0 6T Z�;0 ⌘T Z and such that G�
;
0 >T Z. By using the fact that the 1-generics are generalized low, we thus
have G0

⌘T Z.

Theorem 3.31 also allows us to deduce the existence of high degrees which
are Turing incomplete, and even of non-DNC degree.

Corollary 3.34
There is a high set of non-DNC degree, and in particular Turing incom-
plete.

Proof. It su�ces to apply Theorem 3.31 to find a 1-generic set G such
that ;0 �G >T ;

00, which implies G0 >T ;
00. Note that as G is 1-generic, it

is not of DNC degree and in particular does not compute ;0.

3.4. Meager/co-meager nature of computational properties

Let us go back for a moment to the topological notions of meager and co-
meager classes introduced by Baire. We have already mentioned that not
every class is necessarily meager or co-meager. On the other hand, it is the
case for the classes having good closure properties, and in particular for all
those known as Borel (we will precisely define this term in Chapter 17) and
closed under Turing equivalence. This will be the case in particular for all
the notions of computability that we will see, and we will ask ourselves the
question of whether these latter are meager or co-meager. Also a class is
without loss of generality co-meager if it contains any su�ciently generic
element. In practice, 1-genericity is su�cient for the various computational
properties seen so far.

We have the high degrees — the low degrees being a countable class, they
are not of interest— the computably dominated vs hyperimmune degrees,
and finally the DNC and PA degrees. Is the class of sets of each of these
degrees meager or co-meager? We already have the answer when it comes
to computably dominated and hyperimmune degrees:



250 10. Cohen forcing

Proposition 3.35. The class of computably dominated sets is meager.
That of hyperimmune sets is co-meager. ?

Proof. According to Theorem 3.2 if G is weakly 1-generic then it is not
of computably dominated degree.

Proposition 3.36. The class of DNC sets is meager, as is of course the
class of PA sets. ?

Proof. According to Theorem 3.21 if X is 1-generic then it is not of DNC
degree, and the class of 1-generic sets is co-meager.

We are now tackling the high degrees. For this, we use our cone avoidance
theorem 3.28.

Proposition 3.37. If X is non-computable, then the class of sets which
compute X is meager. ?

Proof. The class of 1-generic sets relative to X is an intersection of dense
open classes, and is therefore co-meager. By Theorem 3.28, none of them
computes X and therefore the class of sets computing X is in its comple-
ment, a meager class.

We can finally show by combining what we have seen that the class of high
sets is also meager:

Proposition 3.38. The class of high sets is meager. ?

Proof. For this, we use a relativized version of Theorem 3.28: if X is
not ;0-computable then for any set G which is 1-generic relative to X � ;0

we have G � ;0 ⇤T X. This relativized version is shown in the same way
and does not present any particular di�culty.

We now use Theorem 3.20: if G is 1-generic then G0 6T G�;0. We deduce
that if G is 1-generic then G is high i↵ G�;0 >T ;

00. Moreover, according to
the relativized version of Theorem 3.28, no 1-generic relative to ;00 is such
that G�;0 >T ;

00. As any 1-generic set relative to ;00 is also 1-generic, one
therefore has that no 1-generic relative to ;00 is high. So the class of high
sets is meager.

4. ⌃0
n/⇧

0
n forcing

The concept of 1-genericity can be seen as an e↵ective formal framework
around the finite extension method, which enables to control the halting



4. ⌃0
n
/⇧0

n
forcing 251

or not of functionals, that is to say to control the truth value of ⌃0
1 or ⇧0

1

predicates. This is a first level of forcing: given a ⌃0
1 or ⇧0

1 requirement Re,
according to Corollary 3.18, any string � admits an extension ⌧ ⌫ � such
that any set X 2 [⌧ ] satisfies Re or such that any set X 2 [⌧ ] satisfies ¬Re.

From level ⌃0
2/⇧

0
2, things get more complex and the finite extension method

can no longer work in the same way, as the following example shows.

Example 4.1. Consider the requirement R: “9x8y > x G(y) = 0”
which expresses the finiteness of the set G. For all � 2 2<N, [�] contains
both a finite set and an infinite set. There is therefore no cylinder of
which all the elements satisfy R or of which all the elements satisfy ¬R.

Check-in on requirements

We now tackle the ⌃0
n

(resp. ⇧0
n
) requirements, that is to say the

requirements relating to a set G and which are expressed by a ⌃0
n

(resp . ⇧0
n
) formula of second-order arithmetic, with G as a free set

variable. Equivalently, a requirement is ⌃0
n

if there exists a func-
tional �e(G, x1, . . . , xn�1) such that the sets G satisfying the require-
ment are those such that:

9x1 8x2 . . . 8xn�1 �e(G, x1, x2, . . . , xn�1)# for n odd
9x1 8x2 . . . 9xn�1 �e(G, x1, x2, . . . , xn�1)" for n even.

The ⇧0
n
requirements have the analogous equivalence starting with a

universal quantification. By convention the negation ¬R in front of a
⌃0

n
formula (resp. ⇧0

n
) will not be considered as a symbol of the language,

but as a transformation operation over R, which reverses the quanti-
fiers, and replaces the final �0

0 predicate by its negation, to make ¬R a
⇧0

n
formula (resp. ⌃0

n
).

We must therefore abstract things a little, in order to give a more general
definition of forcing allowing to control the truth value of predicates of
arbitrary complexity. Before we begin, let’s introduce a definition that will
be used in future proofs.

Definition 4.2. A set D ✓ 2<N is dense below � if for all ⌧ ⌫ �, there
exists a ⇢ ⌫ ⌧ such that ⇢ 2 D. }

4.1. The semantic approach

The forcing relation will be defined by induction on n, between finite strings
and ⌃0

n
predicates. One of the objectives will then be to keep the following

property.



252 10. Cohen forcing

(D): The set of strings forcing R or forcing ¬R is dense.

In order to examine what we need, let’s take the previous example, namely
an arbitrary ⌃0

2 requirement R “9x �(G, x)"”, and see what does not work
when we try to prove the density of the set Q ✓ 2<N of strings all of whose
elements satisfy R or all of whose elements satisfy ¬R.

Let � 2 2<N be a string. Let’s do a case analysis. Case 1: there is an
extension ⌧ ⌫ � and an x 2 N such that for all ⇢ ⌫ ⌧ , �(⇢, x) ". In this
case, by the use property, for all A 2 [⌧ ], �(A, x) ". It follows that R is
satisfied for all A 2 [⌧ ], so that ⌧ 2 Q. Case 2: for any extension ⌧ ⌫ �
and any x 2 N, there exists a string ⇢ ⌫ ⌧ such that �(⇢, x) #. This
is where our attempt fails. Yet, intuitively, in this case, we should be
able to continue building a sequence while ensuring that the resulting set
satisfies ¬R. Indeed, whatever the state of progress of the construction, we
end up with a string ⌧ ⌫ �, so by hypothesis, for any x 2 N, it is always
possible to find an extension ⇢ ⌫ ⌧ such that �(G, x)# for all G 2 [⇢]: for
all x, the set Qx of strings ⇢ such that �(⇢, x) # is dense below �, that
is, for all ⌧ ⌫ � there exists ⇢ ⌫ ⌧ such that ⇢ 2 Qx. So if a su�ciently
generic set G extends �, then it will meet each of Qx. We will therefore
have 8x �(G, x)#, in other words G will satisfy ¬R.

This analysis therefore motivates the following definition for Cohen forcing:

Definition 4.3. A string � semantically forces a requirementR, in which
case we will write � � R, if any “su�ciently generic” set which ex-
tends � satisfies R : there exists a countable sequence of dense sets of
strings (Wn)n2N such that if G 2 [�] meets every Wn, then the require-
ment will be satisfied for G. }

Note that the relation � is more general than the relation �⇤ for the ⌃0
1

and ⇧0
1 requirements. For example, the empty string ✏ semantically forces

the requirement R: “9x G(x) = 1”, because the set of strings containing a
1 is dense, and therefore any su�ciently generic set will satisfy R. On the
other hand, the infinite sequence of zeros 01 belongs to [✏] and does not
satisfy the requirement R.

4.2. The syntactic approach

Definition 4.3 is simple to express in natural language, but escapes the
arithmetic hierarchy: a direct translation requires existentially quantifying
on all the countable sequences of dense sets of strings, then universally
quantifying on the generic sets for those sets of strings. We are going
to define a relation much simpler syntactically speaking, which will make
it possible to reason more easily and in particular to prove the essential



4. ⌃0
n
/⇧0

n
forcing 253

properties which one expects from the forcing relation, namely that it is
closed under extension and that the set of strings forcing a requirement or
its negation is dense.

Let us now define a syntactic forcing relation for any arithmetic require-
ment, by induction on its quantifications. The first level will be the one
we are already used to: let R a ⌃0

1 requirement — and therefore of the
form �e(G) # — then a string � forces R if �e(�) # and therefore if
all X 2 [�] satisfies the requirement. The same goes ⇧0

1 for requirements.

Definition 4.4.

(1) � �⇤
R for a ⌃0

1 or ⇧0
1 requirement R i↵ all X 2 [�] satisfy R.

(2) � �⇤
9xR(x) for a ⇧0

k
requirement R(x) for k > 0 with free variable x

i↵ there is an n 2 N such that � �⇤
R(n).

(3) � �⇤
8xR(x) for a ⌃0

k
requirement R(x) for k > 0 with free variable x

i↵ for all ⌧ ⌫ � and all n 2 N, ⌧ 6�⇤
¬R(n). }

First of all, note that (3) of the previous definition admits an equivalent
formulation, sometimes more suited to what we want to demonstrate:

Lemma 4.5. Let R be a ⇧0
n
requirement, we have � �⇤

R i↵

8⌧ ⌫ � ⌧ 1⇤
¬R

Proof. This is a simple reformulation of the definition.

Case 1: R is a ⇧0
1 requirement of the form �(G)". Then, � �⇤

R i↵ �(X)"
for all X 2 [�] i↵ �(X) " for all ⌧ ⌫ � and all X 2 [⌧ ] i↵ for all ⌧ ⌫ �,
there exists X 2 [⌧ ] such that �(X)" (by the use property) i↵ for all ⌧ ⌫
�, ⌧ 1⇤ �(G)#.

Case 2: R is a ⇧0
k+1 requirement of the form 8xQ(x) for a ⌃0

k
require-

ment Q(x) for k > 1. Then, � �⇤
R i↵ for all ⌧ ⌫ � and all n 2 N, ⌧ 6�⇤

¬Q(n) i↵ 8⌧ ⌫ � ⌧ 6�⇤
9x ¬Q(x) i↵ 8⌧ ⌫ � ⌧ 6�⇤

¬R.

The first property that we expect from a forcing relation is its closure under
extension. Indeed, “� forces R” means that the property R is already
decided on the final constructed object, which should not change during
the following stages of the construction.

Proposition 4.6. Let �, ⌧ 2 2<N and R be an arithmetic requirement.
If � �⇤

R and � � ⌧ , then ⌧ �⇤
R. ?

Proof. By induction on the arithmetic complexity of the requirement.



254 10. Cohen forcing

Case 1: R is ⌃0
1 or ⇧0

1. By definition, for all X 2 [�], R(X) is true.
As ⌧ ⌫ �, then [⌧ ] ✓ [�], so for all X 2 [⌧ ], R(X) is true. So ⌧ �⇤

R.

Case 2: R is of the form 9xS(x) for a ⇧0
k
requirement S(x) for k > 0.

By definition, there exists an n 2 N such that � �⇤
S(n). By induction

hypothesis, ⌧ �⇤
S(n), therefore ⌧ �⇤

9xS(x).

Case 3: R is of the form 8xS(x) for a ⌃0
k
requirement S(x) for k > 0.

According to Lemma 4.5, � �⇤
R implies 8⇢ ⌫ � ⇢ 1⇤

¬R. If ⌧ ⌫ �
then we also have 8⇢ ⌫ ⌧ ⇢ 1⇤

¬R, which again according to Lemma 4.5
implies ⌧ �⇤

R.

The second property, and perhaps the most important, is the density of
the set of strings forcing a requirement or its negation. Proposition 4.7
means in particular that the truth value of any arithmetic requirement will
be decided after a finite moment of the construction. This is what gives all
the power of the forcing relationship.

Proposition 4.7. Let R be an arithmetic requirement. The set

{� 2 2<N : � �⇤
R or � �⇤

¬R}

is dense. ?

Proof. We can assume without loss of generality that R is ⌃0
n
(in the op-

posite case we repeat the argument with ¬R). Let � be a string. According
to Lemma 4.5, either ⌧ �⇤

R for an extension ⌧ ⌫ �, or � �⇤
¬R.

A last property that we also expect is of course the validity of the definition
of the forcing relation, that is to say that if a string � forces a requirement,
then this requirement will be e↵ectively satisfied for any su�ciently generic
set that extends �. Let us insist again on what it means to be “su�ciently
generic” in this context: there exists a countable sequence of dense sets of
strings (Wn)n2N such that if G 2 [�] meets every Wn, then the requirement
will be satisfied for G.

Proposition 4.8. Let R be an arithmetic requirement and � 2 2<N.
If � �⇤

R, then � � R: if G 2 [�] is su�ciently generic then R is sat-
isfied for G. ?

Proof. By induction on the arithmetic complexity of the requirement.

Case 1: R is ⌃0
1 or ⇧0

1. Suppose that � �⇤
R. By definition, any set G 2 [�]

satisfies R, so a fortiori any su�ciently generic set G 2 [�]. Thus, � � R.

Case 2: R is of the form 9xS(x) for a ⇧0
k
requirement S(x) for k > 0.

Suppose � �⇤
9xS(x). By definition, there is an n 2 N such that � �⇤

S(n).
By induction hypothesis, � forces S(n), therefore � � 9xS(x).



4. ⌃0
n
/⇧0

n
forcing 255

Case 3: R is of the form 8xS(x) for a ⌃0
k
requirement S(x) for k > 0.

Suppose that � �⇤
8xS(x). By definition, for all ⌧ ⌫ � and n 2 N, ⌧ 6�⇤

¬S(x). By Proposition 4.7, for all n, the set Dn = {⌧ 2 2<N : ⌧ �⇤
S(n)}

is dense below �: for all ⌧ ⌫ � there exists ⇢ ⌫ ⌧ such that ⇢ �⇤
S(n).

Let G be a su�ciently generic set extending �. We suppose in particular
that the level of genericity of G guarantees that it meets every set Dn. So
for all n, there exists a prefix ⌧n � G such that ⌧n �⇤

S(n). For such
a string ⌧n, by induction hypothesis, there exists a countable sequence of
dense sets of strings (Dn,m)m2N such that if G 2 [⌧n] meets each Dn,m

then it satisfies S(n). We have G 2 [⌧n] and since G is su�ciently generic
it meets every Dn,m and it therefore satisfies S(n). As is the case for all n,
then G satisfies 8xS(x), so � � 8xS(x).

The heart of forcing is undoubtedly in the previous proposition, and in
particular in case 3 of its proof: it is there that the mechanism of the
relation � �⇤

R is exerted, which guarantees that if G belongs to [�] and
if G is su�ciently generic, then the requirement R will be satisfied for G.
This is actually a sophisticated modification of the finite extension method,
the key point being the following: regardless of the prefix � of G that we
have built so far, we can expand � to meet any dense set of strings fixed in
advance.

We now see in the following section that this idea is not new: the math-
ematician René Baire had already formalized all of these mechanisms at
the beginning of the 20th century, in particular via the following theorem:
“every Borel class has the Baire property”.

4.3. The topological approach: the Baire property

An important technique for the study of complex objects in mathematics
consists in reducing oneself to simpler objects while controlling the approx-
imation margin of error. In particular, in the study of sets, whether from
the point of view of measure theory or category theory, there are a number
of theorems of the form “any complex set is equivalent to a simple set mod-
ulo a negligible quantity of elements”. In measure theory for example, we
have the three Littlewood principles [149], which state that any measurable
set is “almost” a finite union of intervals, any function is “almost” contin-
uous, and any convergent sequence is “almost” uniformly convergent. In
this context “almost” means: “except on a set of measure less than " for "
as small as we want”.

The Baire property expresses the fact that a class S is “almost” open,
where almost means in this context: “except on a meager class”.



256 10. Cohen forcing

Definition 4.9. A class B ✓ 2N has the Baire property if there is an
open class U ✓ 2N such that B�U is a meager class. Here B�U is the
class of elements on which B and U do not match, ie (B \ U) [ (U \ B).}

Consider a requirement R and let BR and B¬R be the classes of the el-
ements which respectively satisfy and do not satisfy this requirement (in
particular BR \ B¬R = ; and BR [ B¬R = 2N). Suppose that BR and B¬R

both have the Baire property and fix two open classes UR and U¬R such
that BR�UR and B¬R�U¬R are both meager. This means that there is
a countable union of closed classes of empty interior containing BR�UR

and B¬R�U¬R. By passing to the complement, there exists a countable
intersection of dense open classes

T
n
Un such that for all X 2

T
n
Un, we

have X 2 BR i↵ X 2 UR and X 2 B¬R i↵ X 2 U¬R.

In particular X 2 BR i↵ there is a prefix � � X such that [�] ✓ UR.
We will then say that � forces the requirement R. Note that if X /2 BR

then X 2 B¬R and there then a prefix � � X such that [�] ✓ U¬R. At
this point � forces the requirement ¬R. The following definition is simply
a reformulation of Definition 4.3 which defines semantic forcing.

Definition 4.10. Let R be a requirement. We say that � semantically
forces R and we write � � R if [�] \ BR is a meager class, where BR is
the class of the elements which satisfy R. }

As mentioned earlier, the fundamental property expected of the forcing
relation for a requirement is as follows.

(D): The set of strings forcing R or forcing ¬R is dense.

We therefore start with a characterization of the requirements for which
this property is true, using the Baire property.

Proposition 4.11. Let R be a requirement and BR the class of elements
which satisfy R. The following statements are equivalent:

(1) BR has the Baire property

(2) {� 2 2<N : � � R or � � ¬R} is dense ?

Proof. Let UR = {� 2 2<N : � � R} and U¬R = {� 2 2<N : � � ¬R}.

(1) ) (2). Suppose that BR has the Baire property. Let U be an open
class such that BR�U is meager. In particular, U \ BR is meager, so U ✓

[UR]. Also, BR \ U = (2N \ U) \ B¬R is meager, so int(2N \ U) \ B¬R is
meager. It follows that int(2N \U) ✓ [U¬R]. Since U [ int(2N \U) is dense
in 2N, [UR] [ [U¬R] is also dense, so by Exercise 2.8, UR [ U¬R is dense
in 2<N.



4. ⌃0
n
/⇧0

n
forcing 257

(2) ) (1). Suppose that UR [ U¬R is dense in 2<N. By density, the
complement of [UR] [ [U¬R] is a closed class of empty interior, therefore
meager. Let us show that BR�[UR] is meager. By definition, for all � 2
UR, [�]\BR is meager, so [UR]\BR is a countable union of meager classes,
so is meager. By the same reasoning, if B¬R is the class of elements which
satisfy ¬R, [U¬R] \ B¬R is meager. As [U¬R] \ B¬R = BR \ [U¬R], and
since the complement of [UR] [ [U¬R] is meager, then BR \ [UR] is meager.
So BR�[UR] is meager.

Since the syntactic forcing relation implies the semantic relation, we can
deduce the density of the semantic forcing relation for arithmetic require-
ments:

Lemma 4.12. Let R be an arithmetic requirement. The set

{� 2 2<N : � � R _ � � ¬R}

is dense. ?

Proof. For all � there exists an extension ⌧ ⌫ � such that ⌧ �⇤
R or such

that ⌧ �⇤
¬R. If ⌧ �⇤

R then ⌧ � R and if ⌧ �⇤
¬R then ⌧ � ¬R.

The following corollary follows directly from the characterization of the
classes having the Baire property.

Corollary 4.13
Let R is an arithmetic requirement. The class BR of elements which
satisfy R, has the Baire property.

Proof. Immediate by Lemma 4.12 and Proposition 4.11.

We will develop in Chapter 17 and Section 27-3.1 the theory of Borel
classes, which formalizes and generalizes the notion of arithmetic require-
ments, and which all have the Baire property.

Let us end this section by clarifying the links between the semantic forc-
ing relation and the syntactic relation �⇤ that we defined in the previous
section:

Theorem 4.14
Let R be an arithmetic requirement. Then � � R i↵ {⌧ 2 2<N : ⌧ �⇤

R}

is dense below �.

To show the theorem we will use two lemmas. The first corresponds to
Proposition 4.6 for the relation �⇤.



258 10. Cohen forcing

Lemma 4.15. Suppose � � R for a string � and a requirementR. If ⌧ ⌫ �
then ⌧ � R. ?

Proof. Let BR be the class of elements which satisfy R. We have [⌧ ] \
BR ✓ [�] \ BR. So if [�] \ BR is meager then [⌧ ] \ BR is meager.

Lemma 4.16. Suppose � � R for a string � and a requirementR. Then, � 1
¬R ?

Proof. Let BR be the class of elements which satisfy R and Let B¬R be
the class of elements which satisfy ¬R.

Let us assume by the absurdity � � R and � � ¬R. Then, [�] \ (BR \ [�])
and [�] \ (B¬R \ [�]) are both meager. Moreover ([�] \ (BR \ [�])) [
([�] \ (B¬R \ [�])) = [�], which contradicts the fact that the union of two
meager classes is meager and therefore of empty interior.

Proof of Theorem 4.14. Recall Proposition 4.8: for any arithmetic re-
quirement R and for all �, if � �⇤

R then � � R.

Let us show that if {⌧ 2 2<N : ⌧ �⇤
R} is dense below �, then � � R.

According to Proposition 4.8, A = {⌧ 2 2<N : ⌧ � R} is dense below �.
So the class {X 2 [�] : 8n X �n1 R} is therefore a closed class of empty
interior, which we denote by F . Let BR be the class of elements which
satisfy R. By definition of A, for all ⌧ 2 A, the class M⌧ = [⌧ ]\ (BR \ [⌧ ])
is meager. It follows that the class [�] \ (BR \ [�]) is included in the union
of F and all the classes M⌧ . It is therefore meager.

Finally, let us show that if � � R then {⌧ 2 2<N : ⌧ �⇤
R} is dense below �.

By contraposition, let us suppose that there exists ⌧ ⌫ � such that for
all ⇢ ⌫ ⌧ we have ⇢ 1⇤

R. By Proposition 4.7, there must then exist ⇢ ⌫ ⌧
such that ⇢ �⇤

¬R. By Proposition 4.8, we then have ⇢ � ¬R. According
to Lemma 4.16, ⇢ 1 R and therefore according to Lemma 4.15, � 1 R.

5. Arbitrarily generic sets

Genericity can be seen as a notion of “typicality”, in the sense that anything
that can happen infinitely often will end up happening. In the case of Cohen
forcing, a dense set has infinitely often the possibility of being met, and if
a set is typical this will happen, which corresponds to the notion of generic
set.

We have seen relativizations of weakly 1-generic and 1-generic sets, and
in particular the concepts of n-generic and weakly n-generic set. In this



5. Arbitrarily generic sets 259

section, we study the properties of typical sets, that is, the properties that
su�ciently generic sets will have.

Note that if a property is verified by any su�ciently generic set, it is with-
out loss of generality verified for any weakly 1-generic set relative to A
for a certain oracle A su�ciently powerful: it su�ces that A encodes the
intersection of dense open classes corresponding to the required level of
genericity. We will therefore endeavor to determine “the right level” of
genericity necessary to satisfy such and such a property. In practice, this
will often correspond to being n-generic for some n.

5.1. Properties of su�ciently generic sets

We have seen that 1-genericity was the level of genericity corresponding
to the forcing of ⌃0

1/⇧
0
1 requirements. Unsurprisingly, we now see that

the n-genericity is the level of genericity corresponding to the forcing of
⌃0

n
/⇧0

n
requirements, and we will show the following theorem.

Theorem 5.1
Let G be an n-generic set. Let R be a ⌃0

n
or ⇧0

n
requirement. Then, G

satisfies R i↵ there is a prefix � � G such that � �⇤
R.

Let us note that this iteration is not trivial: we need to appeal for that to
the developments of the forcing relation of the preceding sections.

We will now proceed to the proof of Theorem 5.1 by exploiting the def-
initional simplicity of the syntactic forcing relation. Let’s start with the
following proposition.

Proposition 5.2. Let R be an arithmetic requirement.

(1) If R is ⌃0
n
, then the predicate � �⇤

R is ⌃0
n

(2) If R is ⇧0
n
, then the predicate � �⇤

R is ⇧0
n

?

Proof. We will prove (1) and (2) simultaneously by induction on the
arithmetic complexity of the requirement. The ⌃0

1 and ⇧0
1 case has already

been treated with Proposition 3.17.

If R is ⌃0
m+1 with m > 0, then it can be expressed in the form 9xS(x)

where S is a ⇧0
m

requirement. We have � �⇤
R i↵ there exists an n 2 N

such � �⇤
S(n). By induction hypothesis, the predicate � �⇤

S(n) is ⇧0
m
,

so the predicate � �⇤
R is ⌃0

m+1.

If R is ⇧0
m+1 with m > 0, then it can be expressed in the form 8xS(x)

where S is a ⌃0
m

requirement. We have � �⇤
R i↵ for all ⌧ ⌫ � and

all n 2 N, ⌧ 6�⇤
¬S(n). In particular, ¬S(n) is ⇧0

m
, so by induction



260 10. Cohen forcing

hypothesis, the predicate ⌧ �⇤
¬S(n) is ⇧0

m
, therefore ⌧ 6�⇤

¬S(n) is ⌃0
m
,

and the predicate � �⇤
R is ⇧0

m+1.

We now see the level of genericity required to make Proposition 4.8 true.

Proposition 5.3. Let R be an arithmetic requirement such that � �⇤
R

for � 2 2<N.

(1) If R is ⌃0
n
, then R is satisfied for all weakly (n� 2)-generic sets which

extend �.

(2) If R is ⇧0
n
, then R is satisfied for all weakly (n� 1)-generic sets which

extend �. ?

Proof. By definition of the forcing relation, if R is ⌃0
1 or ⇧0

1 then it is
satisfied for any set which extends �. Suppose the proposition is true for n.
Let R = 9xQ(x) be a ⌃0

n+1 requirement with Q(x) a ⇧0
n
requirement. We

have � �⇤
R i↵ there exists m 2 N such that � �⇤

Q(m). By induc-
tion hypothesis Q(m) is satisfied for any weakly (n� 1)-generic set which
extends � and therefore it is the same for R.

Suppose now that R = 8xQ(x) is a ⇧0
n+1 requirement with Q(x) a ⌃0

n
re-

quirement. We have � �⇤
R i↵ for all m 2 N and for all ⌧ ⌫ � ⌧ 1⇤

¬Q(m). According to Proposition 4.7 this means that for m fixed, the
set Am = {⌧ : ⌧ �⇤ Q(m)} is dense below �. According to Proposition 5.2
each set Am is ⌃0

n
. In particular if G is weakly n-generic and extends �

then G meets Am. By induction hypothesis if G meets Am and is weakly n-
generic then Q(m) is true for G. As is the case for all m then R is true for
weakly n-generic set G which extends �.

We can finally show Theorem 5.1.

Proof of Theorem 5.1. The ⌃0
1/⇧

0
1 case has already been treated with

Theorem 3.12. Let n > 1. We can assume without loss of generality that R
is ⌃0

n
. In the opposite case, we reproduce the following argument with ¬R

instead of R.

Let U = {� 2 2<N : � �⇤
R}. According to Lemma 4.5, U? = {� 2 2<N :

� �⇤
¬R}. According to Proposition 5.2, the set U is ⌃0

n
and the set U?

is ⇧0
n
. Note that as G is n-generic, it meets U [ U?.

Suppose that R is satisfied for G. Then, G cannot meet U? because in
this case we would have a prefix � � G such that � �⇤

¬R and by Propo-
sition 5.3, ¬R would therefore be satisfied on G, which contradicts the fact
that R is satisfied on G. So G meets U and we have a prefix � � G such
that � �⇤

R.



5. Arbitrarily generic sets 261

Suppose that ¬R is satisfied for G. Symmetrically, G meets necessarily U?

and we have a prefix � � G such that � �⇤
R.

Conversely if a prefix � � G is such that � �⇤
R or � �⇤

¬R then
respectively R or ¬R is satisfied on G according to Proposition 5.3.

5.2. Turing degree of su�ciently generic sets

Let us first recap a result that we have already established: given a set A,
if G is su�ciently generic then A does not compute G and G does not
compute A.

Theorem 5.4
Let A 2 2N be a non-computable set. If G is 1-generic relative to A,
then A and G are of incomparable Turing degrees.

Proof. According to Exercise 3.5 and Exercise 3.6, if G is weakly 1-generic
relative to A, it is of degree A-hyperimmune and therefore cannot be com-
puted by A. According to Theorem 3.28, if G is 1-generic relative to A, it
does not compute A.

Note that Theorem 5.4 can be generalized to show that for any countable
sequence of sets fixed in advance A0, A1, . . . , any set G su�ciently generic
for Cohen forcing is incomparable with the items from this list. Indeed
if G is su�ciently generic, it will be 1-generic relative to Ai for all i. This
result, despite its simplicity, admits of several interesting consequences:

Corollary 5.5
Let G be a su�ciently generic set for Cohen forcing. Then, G is not
arithmetic and does not compute any non-computable arithmetic set.

Let’s now see how to reinforce and iterate Theorem 5.4: for A not ;(n)-
computable, if a set G is su�ciently generic, not only will it not compute A,
but also the n-th Turing jump will not compute A. We will actually see
something a little more precise: if A is not ⌃0

n
and if G is su�ciently

generic, then A will not be ⌃0
n
(G). Let us first make sure of the complexity

of the requirement a 2 G(n) via the following lemma.

Lemma 5.6. For all a 2 N, the requirement a 2 X(n) is ⌃0
n
uniformly

in a. ?

Proof. For the case n = 1 we have a 2 X 0 i↵ �a(X, a)#, which is indeed
a ⌃0

1 requirement. In the case n, suppose that Fn(G, x) is a ⌃0
n
formula of

second-order arithmetic such that for all X 2 2N and for all a 2 N, F (X, a)



262 10. Cohen forcing

is true i↵ a 2 X(n). We then have:

a 2 X(n+1)
$ 9� 8i < |�|

✓
(�(i) = 0 ^ i /2 X(n))

_ (�(i) = 1 ^ i 2 X(n))

◆
^ �a(�, a)#

$ 9� 8i < |�|

✓
(�(i) = 0 ^ ¬Fn(X, i))

_ (�(i) = 1 ^ Fn(X, i))

◆
^ �a(�, a)# .

By using the fact that ¬Fn(G, x) and Fn(G, x) are both ⌃0
n+1 formulas,

and using the closure of the ⌃0
n+1 formulas under bounded quantification,

finite union and finite intersection, we can define a ⌃0
n+1 formula H(G, ⌧)

such that

H(X,�)$ 8i < |�| ((�(i) = 0 ^ ¬Fn(X, i)) _ (�(i) = 1 ^ Fn(X, i))).

Then,

a 2 X(n+1)
$ 9� H(X,�) ^ �a(�, a)#,

which is indeed a ⌃0
n+1 formula.

Theorem 5.7
Let A be a non ⌃0

n+1 set for n > 0. Then, for any 1-generic set G relative

to A� ;(n), A is not ⌃0
n+1(G).

Proof. Let G be a 1-generic set relative to A � ;(n+1). We must show

that for any e, the set A is di↵erent from WG
(n)

e
, the set G(n)-c.e. code e.

Let
U = {� : 9m /2 A � �⇤ m 2WG

(n)

e
}.

According to Lemma 5.6, the requirement m 2 WG
(n)

e
is ⌃0

n+1. So ac-

cording to Proposition 5.2, the set U is ⌃0
1(A � ;

(n)). If G meets U then

according to Proposition 5.3, we will have m 2 WG
(n)

e
for m /2 A and

therefore A 6= WG
(n)

e
.

If G does not meet U , since G is 1-generic relative to A � ;(n+1), G

meets U? = {� : 8m /2 A 8⌧ ⌫ � ⌧ 1⇤ m 2 WG
(n)

e
}. According to

Lemma 4.5, we have U? = {� : 8m /2 A � �⇤ m /2 WG
(n)

e
}. Let � 2 U?

be a fixed string. Then, the set D� = {m : � �⇤ m /2WG
(n)

e
} is a ⇧0

n+1 set

which by hypothesis contains N \ A. As N \ A is not ⇧0
n+1, there is neces-

sarily an element m 2 A such that m 2 D�. So if G meets U? it also meets

the set {� : 9m 2 A � �⇤ m /2WG
(n)

e
}. Then, according to Proposition 5.3,

we will have m /2WG
(n)

e
for m 2 A and therefore A 6= WG

(n)

e
.



5. Arbitrarily generic sets 263

Corollary 5.8
Let A be a non-;(n)-computable set for n > 0. Then, if G is 1-generic

relative to A� ;(n), the set A is not G(n)-computable.

Proof. As A is not ;(n)-computable it is not �0
n+1. Since A is not �0

n+1,

either A is not ⌃0
n+1, or A is not ⌃0

n+1. By Theorem 5.7, for any 1-

generic set G relative to A�;(n), A is not ⌃0
n+1(G) in the first case, and A

is not ⌃0
n+1(G) in the second case. In any case, A is not �0

n+1(G) and

therefore it is not G(n)-computable.

We saw with Theorem 3.20 that the Turing jump of 1-generic sets was a
continuous function on the class of 1-generic sets: the 1-generics are all
generalized low. This result can be put into perspective: the n-th Turing
jump is a continuous function on the class of n-generic sets:

Theorem 5.9
Let G be an n-generic set. Then, G(n) 6T G� ;(n).

Proof. Let n > 0 and G be an n-generic set. Let Ue = {� : � �⇤ e 2
G(n)

}. According to Lemma 5.6, the requirement e 2 G(n) is ⌃0
n

and
therefore Ue is a ⌃0

n
set. Consider U?

e
= {� : 8⌧ ⌫ � ⌧ 1⇤ e 2 G(n)

}. In
particular, U?

e
is a ⇧0

n
set. According to Lemma 4.5, we have U?

e
= {� :

� �⇤ e /2 G(n)
}. As G is n-generic, it meets Ue [ U?

e
. It su�ces using ;(n)

to search for a prefix of G in Ue or U?
e
. According to Proposition 5.3, in

the first case we have e 2 G(n) and in the second e /2 G(n).

Note that Corollary 5.8 is also deduced from the previous theorem and from
a relativized version of Theorem 3.28. Beware, in the literature, the notion
of generalized lown does not correspond to the property of theorem 5.9.

Definition 5.10. A set G 2 2N is generalized lown if G(n) 6T (G �
;
0)(n�1). }

Note that if X is generalized lown it is also generalized lown+1. Each n-
generic set is indeed generalized lown, but Theorem 5.9 proves something
stronger.





Chapter 11
E↵ective forcing

On the strength of the intuitions created with the study of Cohen forcing,
we can then introduce the abstract forcing notions on an arbitrary partial
order, and develop all the associated machinery.

1. Fundamentals of forcing

Now that we have familiarized ourselves with the notions of density and
genericity on the partial order of binary strings, equipped with the exten-
sion relation, we are ready to approach the concepts of forcing in all their
generality, while keeping the intuitions of the finite extension method. The
benefits of this abstraction will only appear from the introduction of the
forcing relation, which gives all its power to the formalism. So far, we
have seen the notion of genericity in the partial order of binary strings as
a systematization of constructions with the finite extension method.

Partial order. In all its generality, a forcing notion is quite simply a par-
tial order (P,6), whose elements are called conditions. A condition intu-
itively represents an approximation of the object that we are constructing.
A extension of c 2 P is a condition d 6 c.

Remark
Beware, for historical reasons, the order relation of the forcing is re-
versed. An extension of a condition c is therefore smaller condition d.
The underlying idea comes from the fact that d is a more precise ap-
proximation than c, and that therefore the set of “candidate” objects

– 265 –



266 11. E↵ective forcing

that we are building is a subset of the candidates of c, because the more
constraints we add, the more candidates we exclude.

Filter. In the case of the finite extension method, the constructed object
is an element of 2N, using a strictly increasing infinite sequence of strings.
In the language of an arbitrary partial order, we are going to construct
an infinite decreasing sequence of conditions. The produced object is a
maximal filter.

Definition 1.1. Two conditions c0, c1 are compatible if there is a condi-
tion d which extends both c0 and c1. Otherwise, c0 and c1 are incompat-
ible. A filter is an upward-closed set F ✓ P, such that for any c0, c1 2 F ,
there exists a condition d 2 F such that d 6 c0, c1. A filter is maximal if
it is not included in a strictly larger filter. }

If we consider the partial order on the strings, equipped with the su�x
relation, the maximal filters are in one-to-one correspondence with Cantor
space. Indeed, for any X 2 2N, the set {X �n: n 2 N} is a maximal filter,
and conversely, any maximal filter is of this form.

In the context of a countable partial order, it may be more intuitive to
think of a filter as the upward closure of an infinite decreasing sequence
of conditions. In particular, for any decreasing infinite sequence of condi-
tions c0 > c1 > c2 > . . . , the set

F = {d 2 P : 9n cn 6 d}

is a filter. This intuition corresponds more to the construction of the finite
extension method.

Notation
As explained, a condition c 2 P can be seen as an approximation of the
object being constructed, namely a maximal filter. We can therefore
associate with each condition the set [c]2 of maximum filters contain-
ing c, representing the candidate objects. In particular, according to
intuition, if d 6 c, then the approximation d is more precise than the
approximation c, thus reducing the number of candidates. We therefore
have [d]2 ✓ [c]2.

Note that for any maximal filter F ,
T

c2F
[c]2 = {F}. In other words, F is

the unique candidate of all the conditions of the filter simultaneously. We
have already encountered several forcing notions in the previous chapters.
Here are a few. We will see that for each of these forcing notions, the
maximum filters can be interpreted as sets of integers.



1. Fundamentals of forcing 267

Example 1.2.

1. Cohen forcing is the partial order of strings equipped with its su�x
relation (2<N,⌫). For any � 2 2<N, [�]2 is in bijection with the
set [�] = {X 2 2N : � � X}, by the function which to F 2 [�]2
associates the unique element of

T
�2F

[�].

2. Jockusch-Soare forcing is the partial order of non-empty ⇧0
1 classes,

ordered by the inclusion relation. For any ⇧0
1 class P, the set [P]2 is

in bijection with P. A maximal filter F containing P can therefore
be seen as the only element of

T
Q2F

Q, which is a member of P.

3. Sacks forcing is the partial order of computable f -trees, ordered by
the sub-f -tree relation. For any f -computable tree T , the set [T ]2 is
in bijection with the set

[T ] = {

[

n

T (X �n) : X 2 2N} = {Y 2 2N : 91n Y �n 2 ImT}

In each of the preceding examples, for any maximal filter F , we will denote
by Ḟ the corresponding element of 2N. We therefore have for each of these
forcing notions the equality [c] = {Ḟ : F 2 [c]2}.

Density, genericity. Recall that in the finite extension method, require-
ments can be represented as the set of strings that force them. This repre-
sentation has the advantage of being abstracted from the notion of require-
ment and is generalized to any partial order.

Definition 1.3. Let (P,6) be a partial order. A set D ✓ P is dense
in (P,6) if for all c 2 P, there exists a d 6 c such that d 2 D. }

The intuition that it is useful to keep with the notion of density is that if
a set D is dense, then whatever the finite piece of the decreasing sequence
of conditions that we have already constructed, it will never be too late to
integrate an element of D in the sequence.

Definition 1.4. Let ~D = (Dn)n2N be a collection of sets of conditions.

A filter F ✓ P is ~D-generic if it intersects Dn for all n 2 N. }

The following proposition shows that if the sets of conditions are dense,
there is a generic filter for these sets. The proof of this proposition corre-
sponds to the construction, by the finite extension method, of an increasing
infinite sequences of strings satisfying each requirement.



268 11. E↵ective forcing

Proposition 1.5. Let ~D = (Dn)n2N be a countable collection of dense

sets, and c 2 P a condition. There is a ~D-generic filter containing c. ?

Proof. Let us define an infinite decreasing sequence of conditions c0 >
c1 > c2 > . . . inductively as follows: c0 = c. If cn is defined, cn+1 6 cn is
a condition belonging to Dn. Such an extension of cn exists by density of
the set Dn. Let F = {d 2 P : 9n d > cn}. The set F is a filter containing c
and meeting Dn for all n.

As explained in Section 10-2, there is in general an uncountable quantity of
dense sets, and a filter F cannot be generic for all these sets simultaneously.
The notion of genericity is therefore dependent on a countable collection ~D
of dense sets. We will say that any su�ciently generic filter for a forcing
notion satisfies such property if there exists a countable collection of dense
sets ~D such that any filter ~D-generic satisfies this property.

Definition 1.6. Let (P,6) be a partial order, c 2 P and let D ✓ P be a
set. We say that D is dense below c if for all d 6 c, there exists an e 6 d
such that e 2 D. }

The following exercise will be useful in the rest of this development.

Exercise 1.7. Suppose that a set D ✓ P is dense below c 2 P. Show
that any su�ciently generic filter F containing c intersects D. ⇧

2. Forcing relation

So far, we have developed notions expressed purely in terms of partial order,
namely, the notions of density, filter and genericity. We will now define a
generalization of the forcing relation introduced in Section 10-4. For that,
we will restrict ourselves to forcing notions producing sets of integers.

Definition 2.1. A Cantor forcing is a partial order (P,6) equipped with
a function F 7! Ḟ from maximal filters towards Cantor space 2N, such
for all c 2 P, and all � 2 2<N for which [c] \ [�] 6= ;, there exists a
condition d 6 c such that [d] ✓ [�]. Here, [c] denotes the set {Ḟ : F 2
[c]2}. }

2.1. Semantic forcing relation

By abuse of language, we will say that a set G 2 2N is su�ciently generic
for a Cantor forcing if it is of the form Ḟ for a su�ciently generic filter F .



2. Forcing relation 269

Definition 2.2. A condition c semantically forces a requirement R, in
which case we write c � R if Ḟ satisfies R for any maximal filter F
su�ciently generic and containing c. }

This semantic definition gives us “for free” some properties of the relation:

Proposition 2.3. Let (P,6) be a Cantor forcing, c, d 2 P and R a re-
quirement.

(1) If c � R and d 6 c, then d � R.

(2) If c � R, then c 1 ¬R. ?

Proof. (1) Let F be a su�ciently generic filter containing d. By upward-
closure of the filters, c 2 F , so as c forces R, Ḟ satisfies R. It follows that d
forces R.

(2) If c forces R and ¬R, then for any su�ciently generic filter F contain-
ing c, Ḟ satisfies R and ¬R, contradiction.

Exercise 2.4. Let (P,6) be a Cantor forcing, c 2 P and R be a
requirement. Show that if the set {d 2 P : d � R} is dense below c,
then c � R. ⇧

On the other hand, some properties are much less obvious to prove. We will
see for example that for any arithmetic requirement R, the set of conditions
which force R or which force ¬R is dense. As in the case of Cohen forcing
with the partial order of the strings (2<N,⌫), we will define a syntactic
forcing relation which will allow us to account for this phenomenon.

We first insist on the three fundamental properties that a syntactic forcing
relation must have.

Definition 2.5 (Forcing relation). Given a Cantor forcing (P,6), a
relation �� is a forcing relation if it satisfies the following properties for
all c, d 2 P and any arithmetic requirement R.

(1) If c ��
R then c � R.

(2) If c ��
R and d 6 c, then d ��

R.

(3) The set {c 2 P : c ��
R or c ��

¬R} is dense. }

Properties (1-3) correspond to propositions 10-4.8, 10-4.6 and 10-4.7 for
Cohen forcing. It follows immediately from (1) that if c ��

R, then c 6��

¬R. Recall that a set S ✓ P is dense below c 2 P if for all d 6 c, there
exists an e 6 d such that e 2 S.



270 11. E↵ective forcing

Proposition 2.6. Let (P,6) be a Cantor forcing, c 2 P and R an arith-
metic requirement. Let �� be a forcing relation. Then c � R i↵ {d 2 P :
d ��

R} is dense below c. ?

Proof. Suppose that c ��
R. Let d 6 c. By Definition 2.5 (3), there

exists an e 6 c such that e ��
R or e ��

¬R. If the second case arises,
then by Definition 2.5 (1), e � ¬R. So we have e � R and e � ¬R, which
contradicts Theorem 2.3 (2). The first case therefore arises. We have shown
the density of the set {d 2 P : d ��

R} under c.

Conversely, suppose that the set {d 2 P : d ��
R} is dense below c. Let F

be a su�ciently generic filter containing c. By genericity, there exists d 2 F
such that d ��

R, and by Definition 2.5 (1), d � R, so Ḟ satisfies R. It
follows that c � R.

2.2. Syntactic forcing relation

We now define our syntactic forcing relation �⇤, which directly generalizes
the relation �⇤ defined in Section 10-4 for Cohen forcing. As for Cohen
forcing, the interest of the relation c �⇤

R is that it is simple to define:
relative to P, it has the same arithmetic complexity as that of the require-
ment R. We will see in the following sections that P as a partial order is
unfortunately rarely computable, which leads to additional computational
complexities which must be dealt with on a case-by-case basis.

Definition 2.7. Let (P,6) be a Cantor forcing. We define the rela-
tion �⇤ for all c 2 P and any arithmetic requirement R:

(1) c �⇤
R for a ⌃0

1 or ⇧0
1 requirement R i↵ all X 2 [c] satisfy R.

(2) c �⇤
9xR(x) for a ⇧0

k
requirement R(x) with k > 1 i↵ there is

an n 2 N such that c �⇤
R(n).

(3) c �⇤
8xR(x) for a ⌃0

k
requirement R(x) with k > 1 i↵ for all d 6 c

and all n 2 N, d 6�⇤
¬R(n). }

Note that just as in the case of Cohen forcing, we have c �⇤
8xR(x)

i↵ 8d 6 c d 1⇤
9x¬R(x). We leave as an exercise the proof that the

relation �⇤ respects the items (1-3) of Definition 2.5. Each time, it is a
simple proof by induction on the complexity of the requirements.

Exercise 2.8. (?) Let (P,6) be a Cantor forcing, c, d 2 P and R be an
arithmetic requirement. Show that if c �⇤

R and d 6 c, then d �⇤
R. ⇧



3. Forcing with trees 271

Exercise 2.9. (?) Let (P,6) be a Cantor forcing and let R be an
arithmetical requirement. Show that {c 2 P : c �⇤

R or c �⇤
¬R} is

dense. ⇧

Exercise 2.10. (?) Let (P,6) be a Cantor forcing, c 2 P and R an
arithmetic requirement. Show that if c �⇤

R, then c � R. ⇧

Complexity of �
The complexity of �⇤ has consequences on the complexity of the seman-
tic forcing relation �. According to the previous exercises, �⇤ respects
the items (1-3) of Definition 2.5. So according to Proposition 2.6, the
relation c � R is equivalent to 8d 6 c 9e 6 d e �⇤

R, which for example
for a ⌃0

n
requirement will be a ⇧0

n+1(P) predicate. This is a consider-
able simplification of the semantic relation, but which remains —relative
to P— of arithmetical complexity greater than that of the requirements
which it forces, which will make us prefer the relation �⇤.

3. Forcing with trees

Tree-based forcing is one of the major families of forcing. We detail here two
examples, already encountered in the previous chapters: Jockusch-Soare
forcing and the computable Sacks forcing. These notions were originally
created to control the single jump, via the forcing of ⌃0

1/⇧
0
1 requirements

or the double jump, via the forcing of ⌃0
2/⇧

0
2 requirements. We will discuss

this again in Section 4, and we will content ourselves for the moment with
seeing how these forcings have been used implicitly on several occasions in
this book.

3.1. Jockusch-Soare forcing

The Jockusch-Soare forcing corresponds to the partial order of non-empty
⇧0

1 classes, partially ordered by the inclusion relation. We can associate
with any maximal filter F on this order a set of integers Ḟ 2 2N which is
the element of the singleton

T
P2F

P. Equipped with this interpretation of
the filters, Jockusch-Soare forcing is a Cantor forcing (see Definition 2.1).

We have already encountered several uses of Jockusch-Soare forcing in
Chapter 8 on ⇧0

1 classes and PA degrees. Here is a reformulation of the
computably dominated basis theorems and the cone avoidance basis theo-
rems, via the forcing vocabulary:



272 11. E↵ective forcing

Theorem (Reformulation of Theorem 8-4.5 and Theorem 8-4.7)
Let A be a non-computable set. Let G be a su�ciently generic set for
Jockusch-Soare forcing. Then, G is computably dominated and does not
compute A.

Proof. Let (P,6) be Jockusch-Soare forcing, i.e., the set of non-empty
⇧0

1 classes ordered by inclusion. The proof of Theorem 8-4.5 shows the
following: for any functional �e and all c 2 P, there exists d 6 c such
that d �⇤

9n �e(G,n)" or there exists d 6 c and a computable function f :
N ! N such that d �⇤ �e(G,n) #< f(n) for all n. So the set Ce of the
conditions which force �e to be partial or else bounded by a computable
function is dense. Any su�ciently generic filter contains a condition in each
of Ce. So if G 2 2N is su�ciently generic it is computably dominated.

The proof of Theorem 8-4.7 shows the following: for any functional �e, the
set De = {c 2 P : c �⇤

9n �e(G,n) " or 9n c �⇤ �e(G,n) #6= A(n)} is
dense. So if G is su�ciently generic, it does not compute A.

Regarding the low basis theorem, things are di↵erent: it is indeed Jockusch-
Soare forcing that we use to build a low set, but it is an e↵ective use of
this forcing, where the passage from a step n to a step n + 1 is controlled
using ;0. It is therefore not strictly speaking a forcing result, in the sense
that it is not a property satisfied by any su�ciently generic set, but on the
contrary by a small countable class of sets which are not very generic.

We have seen with Cohen forcing that any su�ciently generic set di↵ers
from a countable quantity of sets fixed in advance (see Theorem 10-5.4). In
particular, no su�ciently generic set for Cohen forcing is arithmetic. This
is not the case with Jockusch-Soare forcing. Indeed, for any computable
set X, the singleton {X} is a ⇧0

1 class and the unique filter containing {X}

—namely the filter of all ⇧0
1 classes having X as an infinite path— is maxi-

mal. The set X is therefore as generic as we want under the condition {X}.

However, it is possible to slightly modify Jockusch-Soare forcing in order
to avoid computable elements.

Proposition 3.2. Let (P,6) be the partial order of non-empty ⇧0
1 classes

without computable element, ordered by inclusion. Let (An)n2N be any
sequence of sets. If G 2 2N is generic enough for P it is di↵erent from
each An. ?

Proof. Let us fix any set A and show that if G is su�ciently generic, it
is di↵erent from A. The result will follow automatically for the continua-
tion (An)n2N.

Let D ✓ P be the set of ⇧0
1 classes of P not containing A. Let us show

that D is dense in P. Let P 2 P. By Proposition 8-3.6, the class P contains



3. Forcing with trees 273

at least two elements. Let B 2 P be such that B 6= A, and let n 2 N be
such that A(n) 6= B(n). Then the class Q = {X 2 P : X(n) = B(n)} is a
non-empty ⇧0

1 class included in P and such that Q 2 D. So D is dense.

The modification of Jockusch-Soare forcing of the preceding proposition can
be declined in multiple ways to obtain di↵erent results: one can consider
the partial order of the non-empty ⇧0

1 classes containing only PA degrees,
or even those of the non-empty ⇧0

1 classes containing only random sets in
the sense of Martin-Löf (see Chapter 18).

3.2. Computable Sacks forcing

Sacks forcing generally designates the partial order of perfect trees of 2<N,
without any particular e↵ectiveness restriction. We restrict ourselves in
computability theory to computable perfect trees, which have already been
approached via the notion of f-tree.

Recall that an f-tree is a total function T : 2<N
! 2<N such that for

all �, ⌧ 2 domT , � � ⌧ if and only if T (�) � T (⌧). A sub-f-tree of an
f-tree T is an f-tree S such that ImS ✓ ImT . An f-tree T : 2<N

! 2<N

extends into a function T̂ : 2N ! 2N defined by {T̂ (X)} =
T

n
[T (X �n)]. A

path of T is an element of Im T̂ . We denote by [T ] the set of paths of T .

We call computable Sacks forcing the set of computable f-trees partially
ordered by the sub-f-tree relation. As there will be no possible ambiguity
in this book, we will sometimes simply say Sacks forcing. We can associate
with any maximal filter F on this order a set of integers Ḟ 2 2N which is
the element of the singleton

T
T2F

[T ]. Equipped with this interpretation
of the filters, Sacks forcing is a Cantor forcing (see Definition 2.1).

Remark

Recall that a class P ✓ 2N is perfect if P = [T ] for an f-tree T . Sacks
forcing is not, however, the restriction of Jockusch-Soare forcing to per-
fect ⇧0

1 classes: some perfect ⇧0
1 classes cannot necessarily be repre-

sented by a computable f-tree. Indeed, for any computable f-tree T , [T ]
contains an infinity of computable elements, namely T (X) for any com-
putable set X, which is for example not the case of the ⇧0

1 class of DNC2

functions, which is nevertheless a perfect class.

As explained in the previous remark, any computable f-tree possesses an
infinity of computable paths. On the other hand, any su�ciently generic
set for Sacks forcing will be non-computable:

Exercise 3.3. (?) Let (An)n2N be any sequence of sets. Show that any
su�ciently generic set G for Sacks forcing is di↵erent from each An. ⇧



274 11. E↵ective forcing

A careful examination of the first proof that we have given of the existence
of a computably dominated degree di↵erent from 0, using f-trees, in fact
shows that we have the following result.

Theorem (reformulation du théorème 7-5.6)
Let G be a su�ciently generic set for Sacks forcing. Then, G is non-
computable and computably dominated.

Proof. Let (P,6) be Sacks forcing. The proof of Theorem 7-5.6 shows
the following: for any functional �e and any c 2 P, there exists d 6 c
such that d �⇤

9n �e(G,n) " or there exists d 6 c and a computable
function f : N ! N such that d �⇤ �e(G,n) #< f(n) for all n. So the
set Ce of the conditions which force �e to be partial or else bounded by
a computable function is dense. Any su�ciently generic filter contains a
condition of each of Ce. So if G 2 2N is su�ciently generic, it is computably
dominated.

Moreover, Exercise 3.3 shows that if G is su�ciently generic, it is not
computable.

Exercise 3.5. (?) Let A be a non-computable set. Show that if G is
su�ciently generic for Sacks forcing, it does not compute A. ⇧

Exercise 3.6. (??) A set X is computably traceable (Terwijn and Zam-
bella [231]) if there exists a computable bound h : N ! N such that for
any X-computable function f : N ! N, there exists a computable se-
quence (Tn)n2N of finite sets such that |Tn| 6 h(n) and such that f(n) 2 Tn

for all n.

1. Show that if X is su�ciently generic for Sacks forcing, it is computably
traceable.

2. Show that if X is computably traceable via a computable bound h,
then it is computably traceable for any computable bound h0 such
that h0(n) 6 h0(n+1) and limn h(n) = +1 (Terwijn and Zambella [231]).

3. Let (2n)N be the set of functions f : N ! N such that f(n) < 2n.
Let (2n)<N be the set of function prefixes of (2n)N. Let (P,6) be the
forcing conditions given by T 2 P if T ✓ (2n)<N is a computable tree
which satisfies the following property: for all � 2 T there exists ⌧ 2 T
with ⌧ ⌫ � such that for all i < 2|⌧ | the string ⌧ i is in T . In other
words, each node has a maximally branching extension. Show that any
set su�ciently generic for this forcing is computably dominated and
not computably traceable.

⇧



4. Computational complexity and forcing question 275

4. Computational complexity and forcing
question

Cohen forcing presents a particularity that distinguishes it from other
computability-theoretic forcings: the partial order (2<N,⌫) is computable:
the set 2<N is computable and given � 2 2<N, we can compute the set of
strings ⌧ ⌫ �. Another of its particularities is that the forcing relation of
⌃0

1 and ⇧0
1 requirements is respectively ⌃0

1 and ⇧0
1. These two properties

make it possible to obtain Proposition 10-5.2: if R is a ⌃0
n
(resp. ⇧0

n
) re-

quirement, the predicate � �⇤
R is ⌃0

n
(resp. ⇧0

n
). This very fine control of

the complexity of the forcing relation then allows a fine control of the iter-
ated jumps of the generic sets, in order to obtain for example the following
results:

1. Corollary 10-5.8: if X is not ;(n)-computable and if G is su�ciently
generic then G(n) does not compute X.

2. Theorem 10-5.9: if G is su�ciently generic then G� ;(n) >T G(n).

It is in general the kind of property that one seeks to obtain with any
forcing notion: the control of the truth value of arithmetic requirements.
The finir this control is, the better the theorems we get. Unfortunately,
things will rarely be as simple as with Cohen forcing. Let us examine
the computational complexity of Jockusch-Soare forcing and that of Sacks
forcing.

4.1. Complexity of partial orders

To talk about the computability of partial orders of abstract objects, one
needs to first agree on their representation by sets of integers. For Cohen
forcing, the partial order of the strings admits a natural bijective coding,
while the notions of Jockusch-Soare and Sacks forcing involve more complex
objects.

Jockusch-Soare forcing. A natural idea is to identify P with the set of
codes of non-empty ⇧0

1 classes. Note that we then have repetitions because
several integers code for the same class, which in practice is not a problem.

Proposition 4.1. The partial order of Jockusch-Soare forcing is ⇧0
2. ?

Proof. Note that the set of codes of non-empty ⇧0
1 classes is ⇧0

1. Indeed
if a ⇧0

1 class is empty then the computable tree T ✓ 2<N which represents
it has no infinite path, and according to König’s lemma there exists an
integer n such that no length string n belongs to T , which is a ⌃0

1 event.

Now, given two non-empty ⇧0
1 classes P,Q we have P ✓ Q i↵ 8t 9s P[s] ✓

Q[t], which is a ⇧0
2 predicate.



276 11. E↵ective forcing

Note that it is possible to improve the complexity of the partial order of
Jockusch-Soare forcing, by working only on a well-chosen part of the codes
of non-empty ⇧0

1 classes. There is indeed a computable function f : N! N
such that f(e) always codes for a non-empty ⇧0

1 class and such that if e
codes for a non-empty ⇧0

1 class then e and f(e) code for the same class:
given e, it su�ces to stop the co-enumeration of the corresponding ⇧0

1 class
if this one is about to make the class empty.

We can also in practice improve the complexity of the partial order, by
restricting there too the set of codes on which we work: given the code e
of a non-empty ⇧0

1 class P, we can consider the set A of the codes of
all the ⇧0

1 classes Q such that P \ Q is not empty. The set A is ⇧0
1

and contains at least one code corresponding to each non-empty ⇧0
1 class

included in P. This does not of course make it possible to decide whether
two codes represent comparable forcing conditions, but it simplifies the
computational complexity of finding the list of all the conditions of P found
under a given condition.

Computable Sacks Forcing. Here, the natural idea is to identify the
conditions of the computable Sacks forcing with codes of functions T :
2<N

! 2<N corresponding to f-trees. Againn the coding is not injective,
but in practice this is not a problem.

Proposition 4.2. The partial order of computable Sacks forcing is ⇧0
2. ?

Proof. The set of conditions is the set of codes e of functions Te : 2<N
!

2<N such that 8� 2 2<N
9t 2 N Te(�)[t]# and such that 8�0,�1 2 2<N �0 �

�1 $ Te(�0) � Te(�1). These are ⇧0
2 conditions to check.

Given a computable f-tree T , the set of codes e of computable f-trees Se

such that [Se] ✓ [T ] is the set of codes e of f-tree (which is a ⇧0
2 condition),

which checks, for any string � and for any integer n su�ciently large such
that |T (⌧)| > |Se(�)| for any string ⌧ of size n, the existence of a string ⌧
such that |⌧ | 6 n for which Se(�) = T (⌧). This is a ⇧0

1 condition.

4.2. Forcing ⌃0
1/⇧

0
1 requirements

The complexity of the forcing relation for the ⌃0
1 and ⇧0

1 requirements is
not directly linked to the complexity of the partial order. We will see in
particular that the syntactic forcing relation of Jockusch-Soare forcing is
more complex than that of Sacks forcing.

Jockusch-Soare forcing. The complexity of the forcing relation does not
follow that of the complexity of the requirements to be forced, including
already for the ⌃0

1/⇧
0
1 requirements.



4. Computational complexity and forcing question 277

Proposition 4.3. Let (P,6) be Jockusch-Soare forcing and R a require-
ment. Let Pe be the non-empty ⇧0

1 class of code e.

(1) If R is ⌃0
1, then the predicate Pe �⇤

R is ⌃0
1

(2) If R is ⇧0
1, then the predicate Pe �⇤

R is ⇧0
2 ?

Proof. Let Te ✓ 2<N be a computable tree such that [Te] = Pe.

(1) Let R be of the form �(G, 0) # for a functional �. Then, Pe �⇤

R i↵ �(X, 0) # for all X 2 Pe i↵ (by the use property and König’s
lemma) 9n 8� 2 Te \ 2n, �(�, 0)#.

(2) Let R be of the form �(G, 0)" for a functional �. Then, we can obtain
the code a 2 N of the ⇧0

1 class such that Pa = {X : �(G, 0) "}. We then
have Pe �⇤

R i↵ Pe ✓ Pa. As seen in the proof of Proposition 4.2, the
inclusion relation on the codes of ⇧0

1 classes is ⇧0
2.

We will see in the next two sections how to get around the problem of
complexity raised by the previous proposition.

Exercise 4.4. (?) Let (P,6) be the partial order of infinite computable
trees T ✓ 2<N. Let �� be the relation defined by

(1) T ��
9n�(G,n)# if there exists n, t 2 N such that for any � 2 T of

length t, �(�, n)#

(2) T ��
8n�(G,n)" if for all � 2 T and all n < |�|, �(�, n)"

To show that

(a) (P,6) is a Cantor forcing, where [T ] is the class of the paths of T .

(b) The su�ciently generic sets for Jockusch-Soare forcing and for (P,6)
coincide.

(c) The set {T 2 P : T ��
9n�(G,n)# or T ��

8n�(G,n)"} is dense
in (P,6)

(d) The relations T ��
9n�(G,n) # and T ��

8n�(G,n) " are respec-
tively ⌃0

1 and ⇧0
1.

⇧

Computable Sacks Forcing. The forcing of ⌃0
1 and ⇧0

1 requirements is
in this case of minimal complexity.



278 11. E↵ective forcing

Proposition 4.5. Let (P,6) be Sacks forcing and let R be a requirement.
Let Te be the computable f-tree of code e.

(1) If R is ⌃0
1, then the predicate Te �⇤

R is ⌃0
1

(2) If R is ⇧0
1, then the predicate Te �⇤

R is ⇧0
1 ?

Proof. (1) LetR be of the form �(G, 0)# for a functional �. We have Te �⇤

R i↵ there exists n, t such that �(�, 0)[t] # for any string � 2 ImTe of
size n.

(2) Let R be of the form �(G, 0)" for a functional �. We have Te �⇤
R i↵

for all � 2 ImTe and for all t, we have �(�, 0)[t]".

Continuity of the Turing jump. We now see a theorem that contrasts
with the fact that every su�ciently generic set for Cohen forcing is gener-
alized low. This is generally not the case for tree-based forcings, and it is
in particular not the case for computable Sack forcing.

Theorem 4.6
Let X be any set. Let G be a su�ciently generic set for computable
Sacks forcing. Then, X �G ⇤T G0.

Proof. Let T : 2<N
! 2<N be a computable f-tree. Let �e be a Turing

functional. We will build a subf-tree S of T such that for each of the
paths G of S we have �e(X �G,n) 6= G0(n) for a certain n. First consider
a computable sub-tree S of T such that for all � 2 ImS there exists ⌧ ⌫ �
with ⌧ 2 ImT and ⌧ /2 ImS.

Now consider the code a of the partial computable functional �a such
that �a(Y, a) " for all Y 2 [S] and such that �a(Y, a) # for all Y /2 [S].
Note in particular that �a(Y, a) # for all Y 2 [T ] \ [S]. Suppose first
that �e(X � �, a) "/2 {0, 1} for all � 2 ImS. Then, we can take S as a
forcing extension of T in order to force the partiality of �e on the input a.
Otherwise let � 2 ImS be such that �e(X��, a)#= i for i 2 {0, 1}. If i = 0,
then we choose a string ⌧ ⌫ � such that ⌧ 2 ImT and ⌧ /2 ImS, and we
take as a forcing extension a subf-tree of T whose image only contains
extensions of ⌧ . Note that we then have �a(Y, a) # for any path Y of our
forcing extension. If i = 1, then we take as a forcing extension the subf-
tree of S whose image only contains extensions of �. Note that we then
have �a(Y, a)" for any path Y of our forcing extension.

In both cases we force �e(X�G, a) to be di↵erent from G0(a) for any set G
of our forcing condition.



4. Computational complexity and forcing question 279

An analogous theorem for Jockusch-Soare forcing will not necessarily be
true, for example because of the existence of ⇧0

1 classes containing a single
computable element. Even if we restrict ourselves to ⇧0

1 classes which do
not contain computable points, things are not so simple and will depend
on the ⇧0

1 class with which we start the forcing.

Exercise 4.7. (???) Let P be a non-empty ⇧0
1 class. Then, P is thin

(definition due to Downey [49]) if for any non-empty ⇧0
1 subclass Q ✓ P,

there exists a finite sequence of cylinders [�0], . . . , [�n] such that Q = P \

([�0] [ . . . [ [�n]).

1. Show the existence of a perfect thin ⇧0
1 class (this is an algorithm of

the priority method type as explained in Chapter 13).

2. Show that if P is thin and if X 2 P then X � ;00 >T X 0.

⇧

Exercise 4.8. (??) This exercise anticipates on Part II within which
Lemma 18-3.3 should be useful. We consider a variant of Jockusch-Soare
forcing with ⇧0

1 classes containing only random ones, in the sense of Martin-
Löf. Show that for any X and any set Z su�ciently generic for this forcing
we have Z �X ⇤T Z 0. ⇧

4.2.1. Forcing ⌃0
2/⇧

0
2 requirements

Tree-based forcing are generally suitable, not to force ⌃0
1 or ⇧

0
1 requirements

(as shown by Theorem 4.6 they do not allow to obtain generalized low sets),
but to force ⌃0

2 or ⇧0
2 requirements, on which they work particularly well.

We saw in Section 10-4 that in the case of Cohen forcing, if we define the
forcing relation by “any maximal filter satisfies the requirement”, then the
set of conditions forcing a ⇧0

2 requirement or its negation, is not dense in
general. This led us to define the forcing relation for any su�ciently generic
maximal filter.

Unlike Cohen forcing, tree-based forcings, like Jockusch-Soare forcing or
Sacks forcing, generally the existence of forcing conditions whose members
all satisfy ⌃0

2 or ⇧0
2 formulas. The reader will be able to note that it

is indeed this mechanism which is at work to force a generic set to be
computably dominated. To see this, we introduce the notion of forcing
question, denoted ?`, which will be developed and studied in the following
sections for arbitrary arithmetic requirements.



280 11. E↵ective forcing

Definition 4.9. LetR be a ⌃0
2 requirement corresponding to 9n �(G,n)"

for a functional �.

(1) Let P be a condition of Jockusch-Soare forcing. We define

P ?`9n �(G,n)"

if there is n such that P 1⇤ �(G,n)#.

(2) Let T be a computable Sacks forcing condition. We define

T ?`9n �(G,n)"

if there exists n and � such that T ���⇤ �(G,n)", where T �� is the
f-tree S defined by S(⌧) = T (�⌧). }

The first interest of the forcing question relation that we have defined is its
complexity, which is the same as that of the requirement concerned.

Proposition 4.10. Let c be a condition of Jockusch-Soare forcing or Sacks
forcing. Let R be a ⌃0

2 requirement corresponding to 9n �(G,n) " for a
functional �. The predicate c ?`9n �(G,n)" is ⌃0

2. ?

Proof. Let’s start with Jockusch-Soare forcing. According to Proposi-
tion 4.3, given n, the predicate P �⇤ �(G,n) # is ⌃0

1 and therefore the
predicate P 1⇤ �(G,n)# is ⇧0

1. So the predicate 9n P 1⇤ �(G,n)# is ⌃0
2

and the predicate P ?`�(G,n)" is therefore ⌃0
2.

Let’s move on to the computable Sacks forcing. According to Proposi-
tion 4.5, given n, and an f-tree S, the predicate S �⇤ �(G,n)" is ⇧0

1. So the
predicate 9n 9� T ���⇤ �(G,n)" is ⌃0

2 and the predicate T ?`9n �(G,n)"
is therefore ⌃0

2.

The second interest of the forcing question relation, is that it allows to
decide if a condition c can be extended into a condition d to force a ⌃0

2 re-
quirement, or the negation of this requirement. Moreover, in the case of
⌃0

2/⇧
0
2 formulas, we can find an extension d 6 c such that the requirement

will be satisfied for all the elements of [d] (As for the ⌃0
1/⇧

0
1 requirements).

Proposition 4.11. Let c be a condition of Jockusch-Soare forcing or Sacks
forcing. Let R be a ⌃0

2 requirement corresponding to 9n �(G,n) " for a
functional �.

1. If c ?`9n �(G,n) " then there exists d 6 c such that 9n �(X,n) " is
true for all X 2 [d].

2. If c ?0 9n �(G,n) " then there exists d 6 c such that 8n �(X,n) # is



4. Computational complexity and forcing question 281

true for all X 2 [d].

In both cases, we can find d uniformly in c and � using ;00. ?
Proof. Let’s start with Jockusch-Soare forcing. Let P be a non-empty
⇧0

1 class.

1. If P ?`9n �(G,n)" then there exists n such that P 1⇤ �(G,n)#. This
means that the class Q = {X 2 P : �(X,n)"} is a non-empty ⇧0

1 class.
This is then our forcing extension.

2. If P ?0 9n �(G,n) " then P �⇤ �(G,n) # for all n. In this case for
all X 2 P we already have 8n �(X,n)#.

Note that ;00 can decide between the two cases and therefore find the appro-
priate forcing extension. Let’s move on to the computable Sacks forcing.
Let T : 2<N

! 2<N be a computable f-tree.

1. If T ?`9n �(G,n)" then there exists � 2 2<N and n 2 N such that T ���⇤

�(G,n)". In this case the f-tree T �� is our forcing extension.

2. If T ?0 9n �(G,n) " then for all � 2 2<N and for all n 2 N we
have T ��1⇤ �(G,n) ". This implies that for all � 2 2<N and for
all n 2 N, there exists ⌧ ⌫ � such that �(T (�⌧), n) #. Then, we pro-
ceed as in the proof of Theorem 7-5.6 to compute a subf-tree S of T
such that 8n �(X,n)# for all X 2 [S].

Note that there again ;00 can decide between the two cases and therefore
find the appropriate forcing extension.

Before seeing how to extend the forcing question relation to requirements of
arbitrary complexity, let us see how to use the developments obtained so far
to show that any set su�ciently generic for Sacks forcing or Jockusch-Soare
forcing is generalized low2.

Theorem 4.12
If G is su�ciently generic for Sacks forcing or Jockusch-Soare forcing, it

is generalized low2 in a strong sense: ;00 �G0 >T G00.

Proof. For all n, according to Lemma 10-5.6 the requirement n 2 G00

is ⌃0
2. According to Proposition 4.10 and Proposition 4.11 we can enu-

merate with the help of ;00 a set D1 of conditions c such that n 2 X 00 for
all X 2 [c], and a set D2 of conditions c such that n /2 X 00 for all X 2 [c],
the whole such that D1 [ D2 is a dense set of conditions. If G is su�-
ciently generic, there exists a condition of c 2 D1 [ D2 such that G 2 [c].
The condition c being a tree, we need G0 to know if G 2 [c]. Once the



282 11. E↵ective forcing

condition c has been found such that G 2 [c], if c 2 D1 then n 2 G00 and
if c 2 D2 then n /2 G00.

4.2.2. Forcing ⌃0
n/⇧

0
n requirements

For more complex requirements, it is not possible to find conditions in
which all the elements satisfy the requirement, and one needs to return to
the inductive definition of forcing. Our objective is now to show an analogue
of the theorem 10-5.7 of preservation of the arithmetic hierarchy. As the
relation �⇤ for the Sacks and Jockusch-Soare forcings is too complex, we
will extend and instead use the forcing question relation defined previously
for the ⌃0

2 requirements.

Definition 4.13. Let c be a condition of the Jockusch-Soare or Sacks
forcing. Let R be an arithmetic requirement. We define the relation ?`
between c and R as follows:

(1) c ?`R for a ⌃0
1 requirement R i↵ c �⇤

R.

(2) c ?`9xR(x) where R(x) is a ⇧0
1 requirement i↵ c ?`9xR(x) within

the meaning of Definition 4.9.

(3) c ?`9xR(x) where R(x) is a ⇧0
k
requirement for k > 2 i↵ there is

a d 6 c and an n 2 N such that d ?`R(n).

(4) c ?`R where R(x) is a ⇧0
k
requirement i↵ c ?0¬R. }

We now extend Proposition 4.10 and Proposition 4.11, first by showing
that the forcing question relation is ⌃0

n
for ⌃0

n
requirements:

Proposition 4.14. Let c be a condition of Jockusch-Soare forcing or Sacks
forcing. Let R be a ⌃0

n
(resp. ⇧0

n
) requirement. The relation c ?`R is ⌃0

n

(resp. ⇧0
n
). ?

Proof. The case where R is a ⌃0
1 requirement has been dealt with in

Proposition 4.3 and Proposition 4.5. The case where R is a ⌃0
2 requirement

was dealt with in Proposition 4.10.

Suppose that R is a ⌃0
n+1 requirement equal to 9xQ(x) where Q(x) is a

⇧0
k
requirement for k > 2. Then, c ?`9xQ(x) i↵ there exists a forcing

condition d and an integer n such that d 6 c and such that d ?`Q(n).
The predicate d 6 c is ⇧0

2 (in the case of Jockusch-Soare forcing and Sacks
forcing) and the predicate d ?`Q(n) is by ⇧0

k
induction for k > 2. It follows

that the predicate c ?`9xQ(x) is ⌃0
k+1.

Finally if R is a ⇧0
n
requirement. Then, P ?`R i↵ P ?0¬R which is ⇧0

n

by induction hypothesis.



4. Computational complexity and forcing question 283

We now show the extension of Proposition 4.11: if c ?`R then we will be
able to find an extension d 6 c which will force R, but be careful, it is here
semantic forcing and not syntactic forcing.

Proposition 4.15. Let c be a condition of the Jockusch-Soare or Sacks
forcing. LetR be an arithmetic requirement. If c ?`R then there exists d 6
c such that d � R. ?

Proof. If R is a ⌃0
1 or ⇧0

1 requirement then the result is trivial by defini-
tion. If R is a ⌃0

2 or ⇧0
2 requirement then it is Proposition 4.11.

Suppose R = 9xS(x) where S(x) is a ⇧0
k
requirement for k > 2. Sup-

pose that c ?`9xS(x). By definition, there is an extension d 6 c and an
integer n 2 N such that d ?`S(n). By induction hypothesis, there exists
an e 6 d such that e � S(n). In particular e � 9n S(n).

Suppose R = 8xS(x) where S(x) is a ⌃0
k
requirement for k > 2. Sup-

pose that c ?`8xS(x). Then, c ?0 9x¬S(x). By definition, for any exten-
sion d 6 c and any n 2 N, d ?0¬S(n). Let us show that for all n, the
set Dn = {d : d � S(n)} is dense below c. Let n 2 N and d 6 c. By defini-
tion as d ?0¬S(n) then d ?`S(n). By induction hypothesis, as d ?`S(n),
then there exists an extension e 6 d such that e � S(n). The set Dn is
therefore dense below c. It follows from Exercise 2.4 that c � S(n) for all n,
therefore c � 8xS(x), in other words c � R.

This forcing question will allow us a fine control of what computes arbitrary
iterations of the Turing jump. This is the subject of the next section.

4.3. Forcing question

Let us try to abstract a little from what has been done so far, in order to
study the notion of forcing question, independently of the forcing we are
working with.

Definition 4.16. Let (P,6) be a Cantor forcing. A forcing question is
a relation ?` between conditions and requirements, such that for any
condition c 2 P and any arithmetic requirement R

(1) If c ?`R, then there exists an extension d 6 c such that d forces R

(2) c ?`R or c ?`¬R. }

It follows from (1) and (2) that if c ?0R, then there exists an exten-
sion d 6 c such that d forces ¬R. Any forcing relation � induces a forcing
question ?` by defining c ?`R for a ⌃0

n
requirement R if there exists an ex-

tension d 6 c such that d � R and c ?`R for a ⇧0
n
requirement if c ?0¬R.



284 11. E↵ective forcing

If the forcing notion is computable, as is the case for Cohen forcing, the
complexity of the forcing question for ⌃0

n
requirements inherits from the

complexity of the forcing relation for the same requirements.

Exercise 4.17. Let (P,6) be a Cantor forcing, and � a forcing relation.
Show that the relation defined by c ?`R if there exists an extension d 6 c
such that d � R is a forcing question. ⇧

4.3.1. Preservation of the arithmetic hierarchy

A certain number of weakness properties of su�ciently generic sets for
Cantor forcings depend on the existence of a forcing question with good
definitional properties. In what follows, we fix a Cantor forcing (P,6) as
well as a forcing question ?`. The following Proposition 4.19 is the first
example, and generalizes Theorem 10-5.7.

Definition 4.18. A forcing question ?` preserves the arithmetical hier-
archy if for any condition c and any ⌃0

n
requirement R, the relation c ?`R

is ⌃0
n
uniformly in R. }

Proposition 4.19. Let ?` be a forcing question which preserves the arith-
metic hierarchy. Then, for any n > 1, for any set A which is not ⌃0

n
, and

for any su�ciently generic set G, A is not ⌃0
n
(G). ?

Proof. For all e 2 N, let

De = {c 2 P : (9m /2 A c � m 2WG
(n�1)

e
) or (9m 2 A c � m /2WG

(n�1)

e
)}

Let us show that De is a dense set in (P,6). Let c 2 P and let

U = {m 2 N : c ?`m 2WG
(n�1)

e
}

According to Lemma 10-5.6, the requirement m 2WG
(n�1)

is ⌃0
n
uniformly

in m, so since the forcing question preserves the arithmetic hierarchy, the
set U is ⌃0

n
. The set A not being ⌃0

n
, then the symmetric di↵erence U�A =

(U \A) [ (A \ U) is not empty. Let m 2 U�A.

Case 1: m 2 U \A. Then, by definition of the forcing question, there exists

an extension d 6 c such that d � m 2WG
(n�1)

e
. In particular, d 2 De.

Case 2: m 2 A \ U . Then, still by the definition of the forcing question,

there exists an extension d 6 c such that d � m /2WG
(n�1)

e
. Again, d 2 De.

In all cases, there is an extension of d in De, so the set De is dense. Let F
be a su�ciently generic filter for (P,6). By density of De, we can assume
that F intersects De for all e 2 N. Let G = Ḟ . By definition of the forcing

relation, for all e 2 N, either m 2 WG
(n�1)

e
for an m /2 A, or m /2 WG

(n�1)

e

for an m 2 A, so A is not ⌃0
n
(G).



4. Computational complexity and forcing question 285

Corollary 4.20
Let ?` be a forcing question which preserves the arithmetic hierarchy.

Then, for any n > 0 and any set A not ;(n)-computable, for any su�-
ciently generic set G, A is not G(n)-computable.

Proof. As A is not ;(n)-computable, it is not �0
n+1. Either A is not ⌃0

n+1,

or A is not ⌃0
n+1. By Proposition 4.19, for any set G su�ciently generic

for (P,6), A is not ⌃0
n+1(G) in the first case, and A is not ⌃0

n+1(G) in

the second case. In any case, A is not �0
n+1(G) and therefore not G(n)-

computable.

Corollary 4.21
Let n > 0 and A 2 2N be a non ;(n)-computable set. If G is su�ciently

generic for Jockusch-Soare forcing or for Sacks forcing, A is not G(n)-
computable.

Proof. According to Proposition 4.14, these two forcing notions preserve
the arithmetic hierarchy.

4.3.2. Preservation of hyperimmunity

Recall that a function f : N! N is hyperimmune relative to X if it is not
dominated by any X-computable function (see Section 7-4). No function
is hyperimmune relative to all Turing degrees, starting with the Turing
degree of the function itself. However, if a function is hyperimmune, it
is also hyperimmune relative to any computably dominated degree. We
can therefore consider that the computably dominated degrees “preserve”
the hyperimmunities of all functions simultaneously. We will now study to
what extent su�ciently generic sets for Cantor forcings preserve hyperim-
munities.

We saw in Section 10-3.1 that any weakly 1-generic set X was of hyper-
immune degree. More precisely, the principal function pX of X which to n
associates the n-th element of X is hyperimmune. The sets which are
su�ciently generic for Cohen forcing therefore do not preserve all the hy-
perimmunities simultaneously. However, it is possible to ensure that they
preserve hyperimmunity from any fixed hyperimmune function.

Definition 4.22. A forcing question ?` is compact if for any c 2 P, any
arithmetic requirement R(x), if c ?`9xR(x), then there exists a finite
set U ✓ N such that c ?`9x 2 U R(x). }



286 11. E↵ective forcing

The compactness of a forcing question is su�cient to ensure preservation
of hyperimmunity:

Proposition 4.23. Let ?` be a compact forcing question which preserves
the arithmetic hierarchy. Then, for any n > 0 and any hyperimmune

function f : N ! N relative to ;(n), for any set G su�ciently generic
for (P,6), f is hyperimmune relative to G(n). ?

Proof. Let f : N ! N be a hyperimmune function relative to ;(n). For
all e 2 N, let

De = {c 2 P : (9m c � �e(G
(n),m)") or (9m c � �e(G

(n),m)#< f(m))}

Let us show that De is a dense set in (P,6). Let c 2 P and let g : N! N,
the partial function which for all m, searches for a finite set U ✓ N such
that c ?`�e(G(n),m)# 2 U . If such a set U is found, g(m) = 1 + maxU ,
otherwise g(m) is not defined. Knowing that the forcing question preserves

the arithmetic hierarchy, g is partial ;(n)-computable. Two cases arise:

Case 1: There is an m such that g(m) is not defined. Then, by compactness
of the forcing question, c ?0�e(G(n),m) #, so there exists a d 6 c such
that d � �e(G(n),m)". In particular, d 2 De.

Case 2: The function g is total ;(n)-computable. By hyperimmunity of f

relative to ;(n), there is an m 2 N such that g(m) 6 f(m). In particu-
lar, c ?`�e(G(n),m)# 2 U for a finite set U such that maxU < f(m).
By definition of a forcing question, there is an extension d 6 c such
that d � �e(G(n),m)# 2 U , therefore �e(G(n),m)#< f(m). It follows
that d 2 De.

In all cases, there is an extension of d in De, so the set De is dense. Let F
be a su�ciently generic filter for (P,6). By density of De, we can as-
sume that F intersects De for all e 2 N. Let G = Ḟ . By definition of
the forcing relation, for all e 2 N, either �e(G(n)) is a partial function,
or �e(G(n),m)#< f(m) for an m 2 N, therefore f is hyperimmune relative
to G(n).

The canonical forcing question of Cohen forcing is compact and preserves
the arithmetic hierarchy, which implies that any set su�ciently generic for
Cohen forcing preserves the hyperimmunity of any previously fixed func-
tion. It can be shown that the same goes for the forcings of Jockusch-Soare
and Sacks.

4.3.3. Preservation of non PA degrees

We will end the study of the properties of the forcing questions with a
criterion for not computing a PA degree.



4. Computational complexity and forcing question 287

Definition 4.24. A forcing question ?` is ⇧-merging if for any c 2 P,
any pair of ⇧0

n
requirements R0, R1 such that c ?`R0 and c ?`R1, there

is an extension d 6 c which simultaneously forces R0 and R1. }

Proposition 4.25. Let ?` be a ⇧-merging forcing question which pre-
serves the arithmetic hierarchy. Then, for any n > 0 for any set G su�-

ciently generic for (P,6), G(n) is not of PA degree relative to ;(n). ?

Proof. According to Theorem 8-6.2, a Turing degree is PA i↵ it com-
putes a {0, 1}-valued DNC function. In what follows, we will assume
that �0,�1, . . . is an enumeration of all {0, 1}-valued Turing functionals.
For all e 2 N, let

De =

⇢
c 2 P :

(9m c � �e(G(n),m)")

or (9m c � �e(G(n),m)#= �e(;
(n),m))

�

Let us show that De is a dense set in (P,6). Let c 2 P and let g : N! N,
the partial function which for any m, searches for an integer v 2 {0, 1} such
that c ?`�e(G(n),m)#= v. If such a v is found, g(m) = v, otherwise g(m)
is not defined. Knowing that the forcing question preserves the arithmetic

hierarchy, g is partial ;(n)-computable. Two cases arise:

Case 1: There is an m such that g(m) is not defined. Then, for all v 2
{0, 1}, c ?0�e(G(n),m)#= v, in other words c ?`¬(�e(G(n),m)#= v). As
the relation is ⇧-mergeable, there exists a d 6 c such that d force at
the same time ¬(�e(G(n),m)#= 0) and ¬(�e(G(n),m)#= 1), however the
functional being {0, 1}-valued, d therefore forces �e(G(n),m)". In particu-
lar, d 2 De.

Case 2: The function g is total ;(n)-computable. Knowing that no degree
is PA relative to itself, there exists an integer m 2 N such that g(m) =

�m(;(n),m). In particular, c ?`�e(G(n),m) #= g(m), so by definition
of a forcing question, there exists an extension d 6 c such that d �
�e(G(n),m)#= g(m) = �m(;(n),m). It follows that d 2 De.

In all cases, there is an extension of d in De, so the set De is dense. Let F
be a su�ciently generic filter for (P,6). By density of De, we can assume

that F intersects De for all e 2 N. Let G = Ḟ . By definition of the forcing
relation, for any e 2 N, either m 7! �e(G(n),m) is a partial function,

or �e(G(n),m)#= �m(;(n),m) for an m 2 N, therefore G(n) is not of PA

degree relative to ;(n).

The forcing question for Cohen forcing is ⇧-merging, just like the forcing
question for computable Sacks forcing. On the other hand, there is no ⇧-



288 11. E↵ective forcing

merging forcing question for Jockusch-Soare forcing, because there exist
non-empty ⇧0

1 classes containing only sets of PA degree.

Exercise 4.26. A forcing question ?` is ⇧-!-merging if for any c 2 P, any
sequence of ⇧0

n
requirements R0,R1, . . . such that c ?`Ri for all i 2 N,

there exists an extension d 6 c which simultaneously forces Ri for all i.
Show that if ?` is a ⇧-!-merging forcing question which preserves the
arithmetic hierarchy, then for any set G su�ciently generic and all n, its

iterated jump G(n) is not of DNC degree relative to ;(n). ⇧



Chapter 12
Quest for natural degrees

The beginnings of computability theory enabled to observe that all com-

putable enumerable sets originating from natural problems were either com-

putable or as powerful as the halting problem, moreover via a many-one

reduction (see Section 5-4). This led Post to ask the following question in

1944:

Question (Post’s problem [189]). Are there non-computable c.e. de-

grees which are strictly weaker than the halting problem? ?

Post’s problem remained open for almost a decade, before being solved in

the a�rmative by Muchnik [168] and Friedberg [66] via the priority method,

which we will see in Section 13-3. Post’s problem has since seen many other

di↵erent resolutions, not necessarily using the priority method. We can cite

for example the construction of a non-computable K-trivial c.e. set that we

will see with Theorem 16-4.5. However, all these constructions are based on

a complex argument allowing the ad-hoc construction of an “artificial” set

having the desired properties, and the only undecidable “natural” decision

problems known to date are reduced to the halting problem1. Conversely,

the halting problem seems to arise naturally all over the place. The question

then arose of the properties that give it this naturalness.

1This statement should be taken with caution, however, and will be attenuated in

the last section of this chapter.

– 289 –



290 12. Quest for natural degrees

1. Three emblematic undecidable problems

Before tackling Post’s problem directly, let us see three emblematic exam-

ples of undecidable c.e. decision problems, all many-one equivalent to the

halting problem.

Post correspondence problem

We start with a problem defined by Post himself in 1946, which is called

the Post correspondence problem, and which should not be confused with

“Post’s problem” which refers to the above question.

Given two finite lists of strings �0, . . . ,�n 2 2<N and ⌧0, . . . , ⌧n 2 2<N, is

there a sequence of indices (ik)k6K —possibly with repetition— such that

the concatenations �i0�i1 . . .�iK and ⌧i0⌧i1 . . . ⌧iK form the same string?

The question may seem simple on the surface, and one might even think at

first that it is easy to create an algorithm to solve it. After all, the number

of strings involved is finite. On further reflection, the problem shouldn’t

appear so obvious, and for good reason: although it may seem surprising, it

is an undecidable question, and as di�cult as whether a computer program

halts or not.

To show it, Post finds a nifty way to encode the computation of a Turing

machine via instances of the correspondence problem. Thus, an instance

for which a correspondence exists will correspond to a computation which

halts, and an instance for which no correspondence exists will correspond

to an infinite computation.

Domino problem

In 1961, Hao Wang imagines the following problem: given a finite set of

tiles, that is to say of squares having a color on each of their sides, the

objective is to make a tiling of the plan using only tiles in our finite set,

requiring that two neighbour tiles share the same color on their common

side. There are of course sets of tiles for which such a tiling of the plane is

possible, and others for which it is not.



1. Three emblematic undecidable problems 291

Figure 1.1: Start of a tiling of the plan using the four tiles above.

A lemma deriving from that of König applies to tilings of the plane using
a finite number of tiles: if for all n there exists a tiling of n⇥ n tiles, then
there exists an infinite tiling of the plane. We then deduce that if a finite
set of tiles does not allow the plane to be paved, there exists n such that
no tiling of size n⇥n is possible. If a tiling is impossible, it su�ces to look
for the smallest n such that no tiling configuration of size n⇥ n will work.
In other words, the finite sets of tiles which do not allow the plane to be
paved can be enumerated by an algorithm.

Wang then conjectures that the same is true for finite sets of tiles making it
possible to pave the plane, which would make the problem of tiling the plane
decidable: there would exist an algorithm making it possible to decide,
given a finite set of tiles if the latter may or may not pave the plane.

But in 1966, Robert Berger (a student of Wang) shows that the problem
of paving the plane is not decidable, by reducing to it again the halting
problem for Turing machines, in the manner of Post: Berger creates a
paving system allowing to “simulate” the computation being carried out
on a Turing machine, an impossible paving meaning that the machine halts,
and a possible paving meaning that the computation continues indefinitely.

Tenth Hilbert problem

A Diophantine equation is a polynomial equation with one or more un-
knowns, whose solutions are sought among integers —or possibly rational



292 12. Quest for natural degrees

— the coe�cients being themselves also integers. For example a2+ b2 = c2

is a Diophantine equation having many solutions like a = 3, b = 4 and c = 5.
On the other hand, there are Diophantine equations having no solution.
Some of them have asked for their resolution — to find the solutions or
show that they do not have any— considerable e↵orts from many math-
ematicians over several centuries. The example par excellence is certainly
the famous “Fermat’s last theorem” which states that for any integer n > 2,
the equation an + bn = cn has no integer solutions.

Fermat states his theorem in the margin of a translation of “Arithmetic
of Diophantus”, in which he writes: “On the contrary, it is impossible to
divide either a cube into two cubes, or a Quadruple in two quadruple, that
is in general any power greater than the square in two powers of the same
degree: I have discovered a truly marvelous demonstration of this, which
this margin is too narrow to contain”.

Many mathematicians have sought this wonderful demonstration for cen-
turies without success. It is only after 357 years of e↵orts that the mathe-
matician Andrew Wiles, helped by his student Richard Taylor, will provide
a proof using mathematical tools obviously much more complex than those
which existed at the time of Fermat.

In 1900, Hilbert places the question of solving Diophantine equations in
tenth position in his famous list of 23 problems: “Given a Diophantine
equation with any number of unknown quantities and with rational integral
numerical coe�cients: To devise a process according to which it can be
determined in a finite number of operations whether the equation is solvable
in rational integers.”

Hilbert asks, before we have a formal definition, the existence of an algo-
rithm allowing to know if any Diophantine equation admits a solution or
not.

Here again, the set of Diophantine equations having a solution is com-
putably enumerable; it su�ces to search among all the potential candi-
dates if one of them is a solution. Martin Davis, Hilary Putnam and Julia
Robinson had the idea of showing that Hilbert’s tenth problem is undecid-
able by following a daring intuition, and which turns out to be correct: a
Diophantine equation is the building block of a formula of arithmetic, in
this case the equality between two terms. Gödel showed that computably
enumerable sets are exactly those which can be defined by ⌃0

1 formulas of
arithmetic.

Would it not be possible to transform such a formula into an equivalent ⌃0
1

formula 9x1 . . . 9xn F (x1, . . . , xn), but where F is no more than a big
Diophantine equation?



2. Natural Turing degrees 293

Consider for example the case of the formula

t1(a1, . . . , ai) = q1(b1, . . . , bj) _ t2(x1, . . . , xk) = q2(y1, . . . , yl),

where t1, t2 and q1, q2 are terms. Then, this formula is true in N i↵ the
formula

t1(a1, . . . , ai)� q1(b1, . . . , bj) = 0 _ t2(x1, . . . , xk)� q2(y1, . . . , yl) = 0

is true in Z, or equivalently if the Diophantine equation
�
t1(a1, . . . , ai)� q1(b1, . . . , bj)

�
⇥
�
t2(x1, . . . , xk)� q2(y1, . . . , yl)

�
= 0

admits solutions. We easily show something similar for the connector ^, the
remaining di�culty being in the deletion of existential and bounded univer-
sal quantifications. Davis, Putnam, and Robinson succeeded in removing
bounded quantifications at the cost of using the exponential function in
the resulting equations. The work will then be completed by Matiiasse-
vitch, who succeeded in encoding the exponential function in Diophantine
equations, leading to the following theorem.

Theorem 1.2 (MRDP theorem)
Let A ✓ N be a computably enumerable set. Then, there is a ⌃0

1 for-
mula of arithmetic F (x) = 9y1, . . . , 9yn G(x, y1, . . . , yn) where G has no
quantifier, such that x 2 A i↵ N ✏ F (x).

The MRDP theorem is remarkable in that it illustrates the fact that the
undecidability of Peano arithmetic is concealed in the very structure of ad-
dition and multiplication of integers, without any need to resort to bounded
quantifications. It provides of course an answer to the tenth problem of
Hilbert: if an algorithm makes it possible to know if a Diophantine equa-
tion has integer solutions, then one can create an algorithm computing the
halting problem.

2. Natural Turing degrees

Let’s go back to our original question: what is special about the halting
problem, so that all natural c.e. decision problems are equivalent to it?
What makes a Turing degree natural? Steel [226] suggests an answer: a
natural Turing degree should be definable, and its definition should be
relativizable to any degree. For example, the halting problem ;0, initially
defined as a particular set, namely {e : �e(e)#}, is relativized to any set X,
by considering the set X 0 = {e : �e(X, e) #}. As we saw in Section 4-6, this
is a notion on Turing degrees, in the sense that if X ⌘T Y , then X 0

⌘T Y 0.



294 12. Quest for natural degrees

2.1. Sacks question

Steel’s idea echoes an old question from Sacks [196]: is there a solution to
Post’s problem that is invariant on Turing degrees? We will say that W is
a c.e. operator if W corresponds to a Turing functional which, uniformly
in a set X, enumerates a set which we will denote by WX . Sacks asks if
there is a c.e. operator W such that X <T WX <T X 0 for all X and such
that X0 ⌘T X1 implies WX0 ⌘T WX1 for all X0, X1.

By working on it a little, the reader will be able to see that the priority
method used in Theorem 13-3.1 to construct a c.e. set Y such that 0 <T

Y <T ;
0, can be relativized to any oracle X to obtain a set X-c.e. Y such

that X <T Y <T X 0. On the other hand, it is much more uncertain that
this relativization is invariant in the Turing degrees, and in fact, it is not.
The first result in this direction was obtained by Lachlan, who gave a neg-
ative answer to Sacks’ question, in the particular case where invariance is
expected to be uniform, i.e., that we ask for the existence of functions h1, h2

such that if �a1(X1) = X2 and �a2(X2) = X1, then �h1(a1)(W
X1) = WX2

and �h2(a2)(W
X2) = WX1 . Note that Lachlan does not require that the

functions h1, h2 are computable, but simply that they exist.

In the case where the operator is invariant in the Turing degrees, the nota-
tion W (a) for a Turing degree a has a meaning: it is the Turing degree ob-
tained by applying toW any set in the degree a. Lachlan actually shows the
following: for any c.e. operator uniformly invariant such that W (d) > d for
any degree d, then there exists a degree a such that for any degree d > a we
haveW (d) = d, or then such that for any degree d > a we haveW (d) = d0.
In the first case we will say that W coincides with the identity on a cone,
and in the second that W coincides with the Turing jump on a cone. The
expression on a cone then signifying on a cone in the Turing degrees, that
is to say on all the degrees greater than a for a certain a, the degree a
being the base of the cone. Lachlan therefore obtains the following result.

Theorem 2.1 (Lachlan [136])
Let W be a c.e. operator uniformly invariant such that W (d) > d for
any degree d. Then, W is the jump operator on a cone or W is the
identity operator on a cone.

2.2. Sacks question for any degree

We have so far talked about natural c.e. degrees, arguing that 0 and 00

are the only ones. There are, however, many natural decision problems
that are strictly more powerful than the halting problem, and which are of
course not c.e. We can then push the question of naturality to any degree.
Let’s see some canonical examples first:



2. Natural Turing degrees 295

1. P: The problem of determining if a polynomial of Z[x, y0, y1, y2, . . . ] has
solutions for any su�ciently large element x.

2. T: The problem of knowing if a statement of arithmetic is true in N.

3. WF: The problem of knowing if a computable tree of N<N has infinite
paths.

The problem P is ⌃0
2 and and ;00 6m P . The problem T is such that

;
(n) 6m T for all n 2 N uniformly in n. It is moreover many-one com-

putable with the oracle ;(!) = �n;
(n) and therefore corresponds to the

first transfinite level in the hierarchy of Turing jumps (we will see this for-
mally in Part IV). The WF problem is even more complex, and corresponds

to a higher transfinite Turing jump that can be noted ;(!
ck
1 ) and which is

commonly called hyperjump (we will also see this formally in Part IV).

Note that the iterations of the Turing jump, just like the simple Turing
jump, are also relativized to any oracle invariantly on Turing degrees: for
example if X ⌘T Y then X(3)

⌘T Y (3). The iterated jump operators are
therefore also natural, and one can find for each of them decision prob-
lems which correspond to them. At the same time, we can iterate Sacks’
question: the solutions to Post’s problem are not the only constructions of
exotic degrees in computability theory, and this question of the invariance
of the operators can be extended to any construction. Consider for exam-
ple the construction of a computably dominated set of Theorem 7-5.6 or
that of Theorem 8-4.5. In both cases, the construction requires ;00. One
verifies easily with one or the other construction that one can create a ;00-
computable operator W such that for all X the set WX verifies X <T WX

and is such that WX is computably dominated relative to X. Can such an
operator be invariant in the Turing degrees? If this is not the case, can we
get one that can be computed in ;000 or in a more powerful oracle?

2.3. Martin’s conjecture

Inspired by these questions, and perhaps by Lachlan’s result on the c.e.
operators, Martin then proposes a rather daring conjecture which essen-
tially says: the jump operator and its iterations, are the only definable and
invariant operators in Turing degrees. More formally, the conjecture has
two distinct parts:

Conjecture 2.2 (Martin [1] p. 281). Let f : 2N ! 2N be a Borel func-
tion invariant in the Turing degrees. Then, we can see f as a function on
the Turing degrees, in which case we have:

I. Either f is constant on a cone, or f is increasing on a cone.



296 12. Quest for natural degrees

II. If f is strictly increasing on a cone, then it corresponds to the Turing
jump or to one of its iterations (possibly transfinite). ?

What do we mean by Borel function? Before answering it, let us note
that if we go completely out of the framework of computability theory, we
can perfectly define functions f invariant in Turing degrees such that a <
f(a) < a0 for all a, simply using the axiom of choice in set theory. The
objective of restricting the conjecture to Borel functions f essentially aims
to prohibit the use of this axiom, and the conjecture is generally presented
without the restriction for f to be Borel, and with additional assumptions
on the axioms of set theory, essentially meaning: “for any function f that
can be defined without using the axiom of choice”.

Martin’s conjecture essentially tells us that the only natural and non-
constant operators in the Turing degrees are the identity operator, the
jump operator and its iterations. If this conjecture is still open to this
day, much progress has been made, by adding to it, as Lachlan did, the
condition of uniformity in the invariance of the functions f considered.
First, Steel [226] showed II of Martin’s conjecture, for uniformly invariant
functions, thus generalising the Lachlan result considerably. Then, still for
uniformly invariant functions, Slaman and Steel [213] have shown I, and
also managed to get rid, via a very clever proof, of uniformity for the case of
functions f such that f(a) < a for any degree a on a cone: these functions
are necessarily constant on a cone.

To date, not much is known about the conjecture in the general case, and
it is also also valid for the potentially much simpler question of Sacks,
which also remains open in the case of non-uniformity. This story of non-
uniformity has however something to instill doubt: if we basically seek
to construct functions invariant in the Turing degrees, we always obtain a
uniform invariance. This finding led Steel to make the following conjecture:

Conjecture 2.3 (Steel [226]). If a Borel function is invariant in the Tur-
ing degrees, then it is uniformly invariant. ?

If Steel’s conjecture is true, then it will show Martin’s conjecture.

3. Mass problems

Faced with Post’s problem, we saw a first negative response, namely that
under naturality assumptions, there are no c.e. sets of intermediary degree.
There is another approach, complementary to the first, which consists in
saying that if the iterations of the Turing jump are the only natural degrees,
it is because of the too restrictive nature of a Turing degree: there are



3. Mass problems 297

computational powers which do not correspond to Turing degrees taken
individually, but to classes of degrees.

Consider for example the completions of Peano arithmetic. We have seen
with Theorem 9-3.10 a proof that any complete and consistent theory which
extends Peano arithmetic is non-computable, but we did not do it by show-
ing that the halting problem could be reduced to such a theory, and for
good reason: it is not always the case. There exist �0

2 PA degrees not
computing the halting problem. This is not incompatible with Martin’s
conjecture, in the sense that if one seeks to define a very specific natural
extension of Peano arithmetic which is complete and consistent, one will
find one which computes the halting problem or more. This is the case for
example of the set of true formulas in N.

The PA degrees form a natural computational power as a class: for any
computable infinite binary tree, there exists a procedure which takes a
completion of Peano arithmetic as input, and computes a path of the tree
in return. Here we go beyond the naturality of the degrees, to consider
instead the naturality of the classes of degrees. As we have seen in this
book, there is a wide variety of classes of degrees, all defined in a very
natural way, and which do not correspond to iterations of the halting set:
the high, hyperimmune, PA degrees . . . The notion of class of degrees is
generally approached via the principle of mass problems. These go back
to Kolmogorov [123], who speaks informally of them as a formalization of
Brouwer’s principles of intuitionist logic, before being rigorously defined by
Medvedev [159] and Muchnik [170]:

Definition 3.1. A mass problem P ✓ 2N is seen as the set of its possible
solutions, identified, via an appropriate encoding, to elements of 2N. }

For example, a problem will be solvable if it contains a computable ele-
ment. Problems are studied in particular through the balance of power
they maintain with one another. Muchnik suggests the following approach:

Definition 3.2 (Muchnik reduction). A mass problem P is Muchnik
reducible to a mass problem Q, in which case one notes P 6w Q if any
solution to Q allows to compute a solution to P. }

For example, any non-empty ⇧0
1 class reduces in Muchnik’s sense to the

problem consisting of complete and consistent extensions of PA. Medvedev
proposes a more restrictive definition asking for uniformity:

Definition 3.3 (Medvedev reduction). Amass problem P isMedvedev



298 12. Quest for natural degrees

reducible to mass problem Q, in which case write P 6s Q if there exists
a functional � such that �(X) 2 P for all X 2 Q. }

Any non-empty ⇧0
1 class is also reduced in Medvedev’s sense to the class of

PA sets. The two concepts do not, however, coincide in the general case.
Jockusch [109] for example showed that the class of DNC2 functions was
reduced in the sense of Muchnik to that of DNC3 functions, but not in the
sense of Medvedev.

The equivalence classes of the relations ⌘w and ⌘s (whose definitions re-
sult from 6w and 6s) are respectively calledMuchnik degrees andMedvedev
degrees, the structure of which has been extensively studied. There is a nat-
ural embedding of the Turing degrees towards the Muchnik and Medvedev
degrees, by associating with a Turing degree deg

T
(X) the Muchnik or

Medvedev degree of the problem {X}. This embedding respects the semi-
lattice structure. We can therefore consider the Muchnik and Medvedev
degrees as an extension of the Turing degrees. In particular, we can de-
fine 0w and 00

w
, the Muchnik degrees of {;} and {;

0
}, respectively. So the

following proposition is in some way related to Post’s original question.

Proposition 3.4. Let PA be the Muchnik degree of the PA degrees. Then

0w <w PA <w 00

w

This generalization of the Turing degrees comes at a cost: the Muchnik and
Medvedev degrees are much more numerous. More precisely, the Turing
degrees have the power of the continuum (|2N|) while the Muchnik and

Medvedev degrees have cardinality |22
N
| and have anti-chains of this size.



Chapter 13
Priority method and c.e. degrees

Among the non-computable sets, the computably enumerable sets play a
particularly important role. These sets are “almost computable”, in the
sense that if an integer n belongs to a c.e. set A, then this information will
be known in a finite time. The class of computably enumerable sets is quite
natural, for several reasons.

First, the c.e. sets have several very di↵erent characterizations, which makes
it a relatively robust class. By definition, a set is c.e. if it is the domain of
a partial computable function. The non-empty c.e. sets are also precisely
those which are the image of a total computable function, the function being
able to be injective if the set is infinite (see Proposition 3-7.2). Equivalently,
a set is c.e. if and only if it is reducible to the halting problem by a many-one
reduction, or if it is ⌃0

1.

Computably enumerable sets form a syntactic class unlike computable sets.
Indeed, the c.e. sets are precisely the ⌃0

1 sets, while the computable sets are
the sets definable by both a ⌃0

1 and ⇧0
1 predicate. This syntactic nature

gives the c.e. sets better uniformity properties. Thus, the class of com-
putably enumerable sets is uniformly c.e., Because it su�ces to list all the
partial computable functions, or in an equivalent way all the ⌃0

1 formulas.
The computable sets cannot, on the other hand, be listed in a computable
way (according to Theorem 7-6.2, the high degrees are exactly those allow-
ing to list the computable sets).

Finally, and this is perhaps one of the most important arguments in favor
of the naturality of c.e. sets, A number of non-decidable problems in math-
ematics happen to be computably enumerable. Among them, we will of
course cite the halting problem, but also the set of theorems of arithmetic
(see Theorem 9-3.7), or even the set of solutions of Diophantine equations
(see, for this purpose, Theorem 12-1.2).

– 299 –



300 13. Priority method and c.e. degrees

1. C.e. degrees

Being computably enumerable is a property of a set and not of a Turing
degree. Indeed, we have seen that the Turing degrees are closed under
complementation, or by Proposition 3-7.4, if a set and its complement are
c.e., Then they are computable. In particular, the decision problem ;0 is
c.e., but is Turing-equivalent to its complement which is not. However, we
have defined a notion of c.e. degree at the start of Section 7-3, definition
that we repeat here:

Definition 1.1. A Turing degree is c.e. if it contains a computably enu-
merable set. }

We saw that the Turing degrees are not bounded, because for any degree d,
its Turing jump d0 is strictly above. The c.e. degrees, on the other hand,
are bounded by 00.

Proposition 1.2. The c.e. degrees have for maximum degree 00. ?

Proof. By Post’s theorem (see Proposition 5-4.3), a set is c.e. if and only
if it is many-one reducible to ;0. The many-one reductions being special
cases of Turing reductions, any c.e. degree is Turing-reducible to ;0.

The c.e. degrees forming a subset of the Turing degrees, questions about
Turing degrees also apply to computably enumerable degrees. Are they
linearly ordered? Do they form a well-founded order? And before all this,
are there c.e. degrees other than 0, the Turing degree of computable sets,
and 00, the Turing degree of the halting problem?

The c.e. degrees are notoriously di�cult to handle, due to the computability
constraint of their enumeration. The finite extension method is no longer
suitable, and it will be necessary to appeal to very elaborate techniques to
prove results similar to those obtained in the Turing degrees.

2. Permitting method

The permitting method allows to compute a c.e. set A from another c.e.
set B. It is based on the notion of computation function seen at Section 4
-7. Recall that, given a c.e. approximation (As)s2N of a c.e. set A (or more
generally for any �0

2 approximation), the computation function associated
with this approximation is the function cA : N ! N which to n associates
the smallest time s > n such that As �n= A�n. In particular, this function
can be computed in A. Moreover, by Theorem 4-7.9, any dominating
function cA recomputes A.



3. ⌃0
1 priority method (finite injury) 301

Proposition 2.1 (Permitting method). Let A and B be c.e. sets of
c.e. approximations (As)s2N and (Bs)s2N, respectively. If there exists a B-
computable function f : N! N such that for all n, s 2 N

As+1 �n 6= As �n ) Bs+1 �f(n) 6= Bs �f(n),
then A 6T B. ?

Proof. For all n, cA(n) 6 cB(f(n)), but cB � f 6T B, so B computes a
function dominating cA. By Theorem 4-7.9, B computes A.

Most of the time, the function f will be computable and increasing, or
even the identity function. Informally, the approximation of A is only
allowed to add an element to A if at the same time, B adds an element
smaller than f(x). In other words, the set A waits for permission from B to
add elements, which gives this method its name. The permitting method
is often combined with other techniques, like the priority method, which
we will see in the next section. The permitting method does not lose in
generality, in the sense that we can prove the following reversal in the case
where the set B is infinite.

Proposition 2.2. Let A and B be c.e. sets such that A 6T B and B is
infinite. Then, there exist c.e. approximations (As)s2N and (Bs)s2N and
a B-computable function f : N! N such that for all n, s 2 N

As+1 �n 6= As �n ) Bs+1 �f(n) 6= Bs �f(n) ?

Proof. Let (As)s2N and (Bs)s2N be c.e. approximations of A and B, re-
spectively. Knowing that B is infinite, by accelerating its c.e. approxima-
tion, we can assume without loss of generality that Bs+1 6= Bs for all s.
Let f : N ! N be the function which to n associates the smallest in-
teger m such that Bs+1 �m 6= Bs �m for all s 6 cA(n). The function f
is cA � B-computable, or cA 6T A 6T B, so f 6T B. For all n, s 2 N,
if As+1 �n 6= As �n, then cA(n) > s+ 1, therefore Bs+1 �f(n) 6= Bs �f(n).

3. ⌃0
1 priority method (finite injury)

Post asked the question in 1944 [189] whether there are computably enu-
merable sets which are both non-computable and Turing incomplete, that
is to say which do not allow as an oracle to compute the halting problem.
The question remained open for more than a decade, before being solved in
the a�rmative independently by Muchnik [168] and Friedberg [66], who in-
troduced the famous priority method. This technique will subsequently find



302 13. Priority method and c.e. degrees

many applications for the study of c.e. and �0
2 sets, which turn out to have

a very rich structure, as witnessed by Sacks’ density theorem: let X,Y
be c.e. sets such that X <T Y . Then, there exists a c.e. set Z such
that X <T Z <T Y .

In general, the priority method serves the same purpose as the finite exten-
sion method (see Section 4-8), i.e., to construct sets satisfying properties
of strength and weakness, but this time by controlling the complexity of
these sets in the arithmetic hierarchy. This additional constraint is at the
origin of an explosion in the complexity of constructions. Indeed, like the
finite extension method, it consists of satisfying an infinity of requirements
simultaneously, but while for the finite extension method, the construction
is omniscient, the priority method argument must be carried out with a
limited computational power. It is therefore necessary to continue building
the set without having full knowledge of the situation. The construction
is therefore done by trial and error, with backtracking when an error is
noticed. The strategies to satisfy the requirements come into conflict, and
the whole di�culty of the construction lies in ensuring that these conflicts
and backtracking do not prevent the overall goal: to build a set satisfying
all the requirements.

We simply start here with the easiest use of the priority method, which was
the first to be introduced, to solve Post’s problem. This is a finite injury
priority method, meaning that each strategy to fulfill a requirement will
only have to backtrack a finite number of times before it can achieve its
goal.

Theorem 3.1 (Friedberg (1957), Muchnik (1956))
There are incomparable c.e. sets for the Turing reduction.

The statement of Friedberg and Muchnick’s theorem is similar to Kleene
and Post’s theorem (see Proposition 4-8.1), but imposes the additional
constraint on sets to be computably enumerable.

Proof. As for the theorem of Kleene and Post (see Proposition 4-8.1),
we are going to construct two sets, A and B, each satisfying a strength
property and a weakness property. These properties are each declined in
the form of two sets of requirements: (Re)e2N and (Se)e2N:

Re : WA

e
6= B Se : WB

e
6= A.

Recall the meaning of the notationWA

e
which designates the c.e. set relative

to A of code e (ie {n 2 N : �e(A, n) #}). The requirements (Re)e2N ensure
that A 6>T B because the complement of B is not c.e. in A. Symmetrically,
if the requirements (Se)e2N are simultaneously satisfied, then B 6>T A.



3. ⌃0
1 priority method (finite injury) 303

Remark
The sets A and B being c.e., it is equivalent to say that they are not
computable, or that their complement is not c.e. Thus, the require-
ments (Re)e2N and (Se)e2N are without loss of generality. This formu-
lation of requirements simplifies notations.

Since the sets A and B must be c.e., We are going to enumerate elements
in A and in B during a computable process. More formally, we will de-
fine two uniformly computable sequences of finite sets A0 ✓ A1 ✓ . . .
and B0 ✓ B1 ✓ . . . starting with A0 = B0 = ;. For presentation rea-
sons, we will omit the index s and will speak of A and B as sets under
construction and evolving over time. We will use the indices when nec-
essary to distinguish the sets at di↵erent time stages. For each Re or Se

requirement, we will describe a process responsible for its satisfaction. The
di↵erent processes will run in parallel. A process responsible for the satis-
faction of a requirement Re (resp. Se) is called strategy for Re (resp. Se).
In this construction, only one strategy will be needed per requirement. We
will see priority arguments later which will associate several strategies with
each requirement.

Satisfaction of a requirement Re. Here is a strategy for constructing
two c.e. sets A and B satisfying a unique requirement Re. To gain in
generality and prepare the satisfaction of several requirements, we will also
assume that other processes or strategies run in parallel, and add elements
to A and B over time. At any time t, the strategy for Re is found in one
of the following three states:

State i
Initial

State e
Execution

State t
Terminated

State i. This is the initial state of the process. To get out of this state, the
process goes through an initialization phase which consists in choosing a
unique integer xRe /2 B. This number exists because at any time, the sets A
and B have a finite number of elements. Once xRe is chosen, our process
sets a restraint on xRe , that is to say, it forbids other processes running
in parallel to add xRe in B. Only our process is the decision maker of the
enumeration of xRe . Note that once xRe is added to B, it will no longer
be able to leaver it, because the set B is c.e. Once the restraint is set, the
process enters State e, called execution.

State e. During this phase, the process executes �A

e
(xRe) until it halts. If it

never halts, the process remains in this state. Note that during this phase,
the set A can evolve, because other processes can add elements to A in



304 13. Priority method and c.e. degrees

parallel. The process must take this evolution into account, and therefore
compute �At

e
(xRe)[t] at time t. If �At

e
(xRe) # at a time t, then the process

poses a restraint on the use of this computation, that is to say on the bits
of the oracle At used for this execution, thus preventing other processes
from making a modification to it. We therefore make sure that �A

e
(xRe) #,

in other words that xRe 2 WA

e
. The process then adds xRe to B, so

that WA

e
6= B, and ends up in State t.

State t. In this state, the process has completed its execution. He does
leave this state.

Outcomes. Let us study the di↵erent outcomes of the strategy for Re.
The process always goes from State i to State e, but may never reach
State t. We therefore have two possible outcomes. Outcome p: it re-
mains stuck in the execution state (Qtate e). In this case, �A

e
(xRe) "

and xRe /2 B, so WA

e
6= B. We say that the requirement Re is passively

satisfied. Outcome a: it enters the termination state (State t). Then, by
its actions of restraints and the enumeration of xRe in B, it ensures that
the requirement Re is satisfied by the second clause of the disjunction. We
then say that the requirement Re is actively satisfied. In both cases, the
requirement Re is satisfied.

State vs strategy outcome
It is important to distinguish between the state of a strategy and its
outcome. The state of a strategy depends on each step, and is known
information at that step. The outcome of the strategy is a limit behavior
that is not known in finite time. We have only seen outcomes of the
form “The strategy will remain in such state after a while”, but we will
see other outcomes in the infinite injury priority method, such as “The
strategy will go through all of its states successively.”

Conflicts. Complications arise when one wants to satisfy several require-
ments simultaneously. Indeed, the strategy of a requirement places re-
streints on finite segments of A and B over time, which can conflict with
the needs of other strategies. We will therefore analyze to what extent the
strategies can come into conflict, whether between strategies for require-
ments of the same type (for example Ra and Rb), or between strategies for
requirements of di↵erent type (for example Ra and Sb).

Satisfaction of all requirements (Re)e2N. Generally speaking, in prior-
ity arguments, strategies for requirements of the same nature are relatively
easy to satisfy simultaneously. The only possible conflicts between two
requirements Re and Rd would arise if the two strategies had chosen the
same integer x (in other words xRe = xRd) during their passage of State i



3. ⌃0
1 priority method (finite injury) 305

in State e, and one of the two, say Re, sees its computation �A

e
(x) termi-

nate and seeks to add x in B to pass in the termination State t, while Rd

is still in the executing state (State e). To avoid these conflicts, it su�ces
to associate in State i a di↵erent integer x for each requirement Re. This
is possible because, B being finite during the construction, there exists an
infinity of integers outside B.

Satisfaction of a requirement Re and Sd. Suppose now that we want to
satisfy two requirements of opposite nature. By default, the requirement Sd

playing a symmetrical role, the strategy to satisfy it is obtained from that
for Re by substituting A for B and vice versa:

• State i: Choose an integer xSd /2 A and restrain xSd .

• State e: Execute �B

d
(xSd). If execution stops at time t, restrain the

use of �Bt
d
(xSd) and add xSd to A, then switch to State t.

• State t: The process is complete.

A new conflict can arise between the strategy for Re and that for Sd. In
State e, the strategy for Re may see execution of �A

e
(x) terminate with

use of s oracle bits, for s > xSd . It then restrains At �s, preventing other
processes from modifying these values. If, later, the strategy for Sd sees
its execution of �B

d
(xSd) terminate, it will not be able to add xSd to A

because of the previous restraint. The strategy for Sd is injured and will
have to return to its State i, choose a new integer xSd large enough not to
be restrained, and start the procedure again. The strategy for Re being in
the termination state (State t), it will no longer act and will therefore no
longer pose a new restraint which risks injuring the strategy for Sd.

In general, one can satisfy a finite number of requirements Re and Sd

simultaneously with the same method. As soon as a strategy restrains
the use of its computation when this one passes to State t and ends, it
injures all the strategies which have not reached State t yet, and which
then return to State i. The strategies thus injured will then choose new
elements free from any restraint. Note that when a strategy enters State t,
it no longer leaves it. The injuries being caused only by the a strategy
arriving in State t, each strategy is only injured a finite number of times,
and will end up entering State t, or will remain stuck in State e.

Satisfaction of all requirements (Re)e2N and (Se)e2N. A new prob-
lem arises when we want to satisfy an infinity of requirements (Re)e2N

and (Se)e2N. Suppose the strategy for Re chooses in State i an integer xRe

and starts the execution of �A

e
(xRe), but does not have time to reach the

end of the execution, because the strategy for a requirement Sd0 sees its



306 13. Priority method and c.e. degrees

own execution terminate before Re, and places a restraint on xRe to pre-
serve the use of its computation. The strategy for Re is then injured, and
goes back to State i and chooses a new integer xRe and starts the execution
of �A

e
(xRe) again with its new xRe . Before reaching the end of its com-

putation, for lack of luck, another strategy Sd1 reaches State t, and again
injures the strategy for Re, and so on infinitely often. The strategy for Re

will then change infinitely often integers xRe , and the requirement Re will
never be satisfied.

To solve this problem, we will order the strategies. Let Re be the strategy
for Re and Se the strategy for Se. We order the strategies as follows:

R0 > S0 > R1 > S1 > R2 > S2 > . . .

considering that a strategy has lower priority than the strategies to its left,
but higher priority than those to its right. For example, the strategy for S1

has lower priority than the strategies for R0 and S0, but has higher priority
than the strategies for R2,S2 and so on. Thus, each strategy is “below” a
finite number of strategies, and “above” the rest.

Remark
In the proof of Friedberg and Muchnik’s theorem, each requirement has
exactly one strategy, which makes the distinction between strategy Re

and requirement Re useless. The order given on the strategies thus
induces an order on the requirements. However, in the following con-
structs, when requirements will be assigned more than one strategy, it
will be essential to give total priority order to the strategies and not to
the requirements.

The golden rule that we establish is then the following.

The restraints imposed by a strategy only apply to strategies of
lower priority. Thus, a strategy can only be injured by the higher
priority strategies, and can injure all lower priority strategies.

Assuming that a strategy poses only a finite number of restraints before
reaching its terminal state, and ceases to act after a while if it is not injured,
a simple induction shows that each strategy gets injured a finite number
of times. Contrary to the satisfaction of a finite number of requirements
simultaneously, it is possible that a process arrives at State t, but is then
injured by a strategy of higher priority which will have ignored the imposed
restraint. Fortunately, after a while, the higher priority strategy will stop
injuring the weaker one, which will eventually stabilize.

Construction. Formally, the construction is done in stages t = 0, 1, . . .
and each stage is divided into sub-stages s < t. Initially, all strategies are in



3. ⌃0
1 priority method (finite injury) 307

State i. In step t > 0 and sub-step s < t, we consider the requirement Re

if s = 2e and Se if s = 2e+1. At the start of sub-step s = 2e, the strategy
for Re has 3 possible states:

(i) The strategy chooses an integer xRe /2 Bt that has not been restrained
by a higher priority strategy, and restrains it. It is then found in State e.

(e) The strategy executes �At
e
(xRe)[t]. If �At

e
(xRe)[t] #, then it restrains

all the bits used for the computation of �At
s
(xRe)[t], and injures all the

lower priority strategies by returning them to State i. It is then found
in State t. If �At

e
(xRe)[t] ", the strategy remains in State e.

(t) The strategy does not act and remains in this state.

In the sub-step s = 2e + 1, we apply the same procedure for Se mutatis
mutandis, then we go to the next sub-step, until reaching t, in which case
we go to step t+ 1, and so on. This concludes the construction.

R0 R0

S0

R0

S0

R1

R0

S0

R1

S1

R0

S0

R1

S1

R2

R0

S0

R1

S1

R2

S2

Steps

Sub-steps

Verification: First of all, let us notice that the construction described
above is indeed a computable process which enumerates two sets A and B.
In particular, once an element is listed in A or B, we do not change our
mind and it stays there. Note also that if a strategy for a requirement is
no longer injured after a step r, then the associated requirement will be
satisfied passively or actively at the end of the construction. The di�culty
lies in showing that for any requirement there is indeed such an r.

Let us show by induction on e 2 N that the strategies for the require-
ments Re and Se injure only finitely often strategies of lower priority. Sup-
pose by induction hypothesis that there is a step t after which none of the



308 13. Priority method and c.e. degrees

strategies for the requirements Rd and Sd with d < e injure lower priority
strategies. In particular, from step t, the strategy for Re will no longer be
injured, and either now remains in the execution state (State e), or goes to
after a while in the termination state (State t), only injuring lower priority
strategies one last time. The same reasoning applies to the strategy for
the requirement Se. So each strategy injures finitely often lower priority
strategies, and each requirement will end up being satisfied, passively or
actively. This concludes the proof of Theorem 3.1.

Remark
The previous proof was very detailed in order to give intuitions of the
priority method. We will now go more directly to the final construction
for the other proofs. However, it is often useful, when trying to prove a
new result using the priority method, to proceed step by step, seeking to
satisfy one requirement, then several simultaneously, to end up satisfying
all of them, in order to better understand their interactions.

Corollary 3.2
There exists a non-computable c.e. set A such that A ⇤T ;

0.

Proof. Let A and B be two c.e. sets such that neither computes the other.
Then, in particular, they are both non-computable. Moreover if A could
compute the halting set, it would also compute B since any c.e. set is
many-one reducible to the halting problem.

Before tackling more elaborate constructions based on the technique of fi-
nite injury priority methods of Friedberg and Muchnik, we see here another
simple application.

Theorem 3.3
There exists a non-computable c.e. set of low degree.

Proof. We are going to construct a c.e. set A by the finite injury priority
method, together with a stable total computable function � : N⇥N! {0, 1}
satisfying the requirements (Re)e2N and (Se)e2N:

Re : We 6= A Se : A0(e) = lim
t

�(e, t).

Satisfying all the requirements (Re)e2N ensures that the set A is not com-
putable, while the requirements (Se)e2N cause A0 (the halting problem rel-
ative to A) to admit a �0

2 approximation, which, by the Shoenfield limit



3. ⌃0
1 priority method (finite injury) 309

lemma (see Lemma 4-7.2), ensures that A0 6T ;
0, and therefore that A is

of low degree.

Satisfaction of a requirement Re. Here is a strategy for satisfying a
requirement Re, independently of other requirements. Our strategy has 3
states: initial (i), in execution (e) and terminated (t). The strategy takes
the following steps depending on its condition.

• State i: Choose an integer xRe /2 A and restrain xRe .

• State e: Execute �e(xRe). If the execution stops at time t, add xRe

to A, then switch to State t.

• State t: The process has completed its execution and remains in this
state.

Assuming that the strategy is only injured a finite number of times, it could
have two possible outcomes. Issue p: it will end up staying in State e,
in which case �e(xRe) " and xRe /2 A, so We 6= A. In this case the
requirement Re is said to be passively satisfied. Issue a: The strategy will
reach State t and stop. In this case, �e(xRe) #, xRe 2 A, and Re is said
to be actively satisfied.

Satisfaction of a requirement Se. In step t, we will define the value
of �(x, t) for all x < t. The strategy has 2 states: in execution (e) and
completed (t). Here is the procedure to follow according to each state of
the strategy.

• State e: Execute �A

e
(e). While �At

e
(e)[t] ", hold �(e, t) = 0. If the

execution stops at time t, restrains the use of �A

e
(e) then go to State t.

• State t: Define �(e, t) = 1 for any new step t.

The two possible outcomes of the strategy are as follows. Issue p: it will
eventually remain in execution state (State e), in which case �A

e
(e) "

and limt �(e, t) = 0. Thus, A0(e) = 0 = limt �(e, t). In this case the
requirement Se is said to be passively satisfied. Issue a: The strategy
will reach State t and stop. In this case, �A

e
(e) # and limt �(e, t) = 1.

So A0(e) = 1 = limt �(e, t) and Se is said to be actively satisfied.

Construction. The construction is globally the same as that of Theo-
rem 3.1. The strategies are ordered by decreasing priority R0, S0, R1, S1, . . .
The construction is divided into stages t = 0, 1, . . . and each stage is itself
divided into sub-stages s < t. Initially, all strategies are in State i. In
step t > 0 and sub-step s < t, we consider the requirement Re if s = 2e
and Se if s = 2e+1. In sub-step s = 2e, we execute the strategy for Re as
described above depending on its state. When it reaches State t, all lower



310 13. Priority method and c.e. degrees

priority strategies are injured and either return to State i in the case of
strategies for requirements of type R, or in State e in the case of strategies
for requirements of type S. In the same way, in the sub-step s = 2e+1, we
execute the strategy Se as described above, injuring all the lower priority
strategies if we reach the termination state t.

Verification: The set A produced is indeed c.e. because the process is
computable, and does not remove any element from A once added. We
easily prove by induction on e 2 N that the strategies for requirements Re

and Se injure only finitely often lower priority strategies. Thus, each strat-
egy is only finitely often injured, and will end up having limit behavior. It
also follows that limt �(e, t) exists, and by construction, is equal to A0(e).
This concludes the proof of Theorem 3.3.

4. ⌃0
2 priority method

In the previous constructions using the priority method, finite injuries are
structurally ensured, that is, in the very structure of the construction,
the strategies pose only a finite number of restraints when they are not
injured, and are ensured by construction that they will only be injured a
finite number of times. The number of injuries can even be computably
bounded: In Friedberg and Muchnik’s construction, the e-th process is
injured at most 2e � 1 times.

We will now see an elaboration of the previous method, which could struc-
turally result in an infinite number of injuries of a strategy, but construction
assumptions will ensure that this never happens. Technically, this is there-
fore a finite injury priority method, as each strategy will only be injured
a finite number of times. However, this elaboration can be seen as a de-
generate version of the infinite injury priority method, shown in the next
section.

Theorem 4.1 (Sacks)
For any non-computable c.e. set B, there exists a c.e. non-computable
set A which does not compute B.

Proof. We are going to build a c.e. set A satisfying the following require-
ments (Re)e2N and (Se)e2N:

Re : We 6= A Se : �A

e
= B ) B is computable.

Satisfying all requirements (Re)e2N ensures that the set A is not com-
putable, while requirements (Se)e2N ensure that B 66T A. The require-



4. ⌃0
2 priority method 311

ment Se could also have been noted WA

e
6= B, but its current formulation

better represents the form of the argument used to satisfy it.

Satisfaction of a requirement Re. The satisfaction of a requirement Re

is exactly the same as for Theorem 3.3. We recall the actions of the strategy
according to its three states:

• State i: Choose an integer xRe /2 A and restrain xRe .

• State e: Execute �e(xRe). If the execution stops at time t, add xRe

to A, then switch to State t.

• State t: The process is complete.

The two outcomes of the strategy are still p (passive satisfaction) and a

(active satisfaction).

Satisfaction of a requirement Se. The strategy to satisfy Se is more
complex and less intuitive. It consists in trying to make longer and longer
initial segments of �A and B coincide, in a computable way, by setting each
time larger and larger restraints on A to preserve the use of �A. At first
glance, this strategy will therefore cause infinite injury to lower priority
strategies. Fortunately, the set B not being computable, the procedure
will stop finding new initial segments coinciding, and will thus satisfy the
requirement Se. More precisely, the strategy has an initial state (State i),
and an infinity of states (wn)n2N. During the execution of the process, we
will define a computable function � : N! {0, 1} supposed to coincide with
the characteristic function of B. Let (Bt)t2N be a c.e. approximation of B.

• State i: Define� as the empty domain function, and change to State w0.

• State wn: Wait for a step t > n where �At
e
[t] �n+1= Bt �n+1. If this

happens, restrain the use of �At
e
[t] �n+1, define �(n) = Bt(n), and

switch to State wn+1.

Here, �At
e
[t] �n+1= Bt �n+1 means that for all x 6 n, �At

e
(x)[t] # 2

{0, 1}, and �At
e
(x)[t] = 1 i↵ x 2 Bt for x 6 n. The strategy does not

return to State i unless injured. At this time, the � function is also reset.
However, assuming that the strategy is injured a finite number of times,
the function will only be reset finitely often, and therefore will be defined
in a computable way.

The strategy has an infinite number of outcomes: for all n, the outcome pn
consists of remaining stuck in State wn. If the strategy never goes out
of this state, then �At

e
[t] �n+1 6= Bt �n+1 for all t, hence �A

e
6= B, and

the requirement Se is satisfied because the premise of the implication is
false. The strategy has a last possible outcome, of an infinite nature, which



312 13. Priority method and c.e. degrees

consists in going through all the states wn. Let us name this issue 1. By
using the hypothesis according to which B is not computable, we will now
show that this outcome cannot happen.

Lemma 4.2. If the outcome 1 occurs, then B is computable. ?

Proof. Let e be the smallest integer such that the strategy for Se goes
through all states (wn)n2N. By induction, all higher priority strategies are
finitely injured, and will reach a limit state where they will no longer injure
the strategy for Se. From this moment, the strategy for Se will go through
all the states (wn)n2N successively. The function � defined by the process
is then total computable. Let us show that � is the characteristic function
of B. Let us assume absurdly that�(n) 6= B(n) for an n 2 N. By definition
of �, �(n) = Bt(n) = �At

e
(n) for a t 2 N. Since B is c.e., This di↵erence

comes from an element that appears in B, because no element can come
out of it. Thus, �(n) = Bt(n) = �At

e
(n) = 0 and n 2 B. Let m be large

enough such that n 2 Bm. Then, at state wm, �At
e
(n)[t] = 0 6= Bt(n) for

all t > m, so �At
e
[t] �n+1 6= Bt �n+1 for all t > m, and the strategy will

never reach State wm+1. Contradiction. The function � is therefore the
characteristic function of B, which proves that B is computable.

Construction. The overall construction is that of a standard finite in-
jury priority method. The strategies are ordered by decreasing prior-
ity R0, S0, R1, S1, . . . . The construction is divided into stages t = 0, 1, . . .
and each stage is itself divided into sub-stages s < t. Initially, all strate-
gies are in State i. In step t > 0 and sub-step s < t, we consider the
requirement Re if s = 2e and Se if s = 2e + 1. In the sub-step s = 2e,
the strategy for Re is executed as described above depending on its state.
When it reaches State e, all lower priority strategies are injured and revert
to State i. Likewise, in the sub-step s = 2e + 1, the strategy for Se is
executed according to the steps described above. Each time it transitions
to a next state wn+1, all lower priority strategies are injured and revert to
State i.

Verification is left to the reader. This concludes the proof of Theorem 4.1.

Sacks preservation strategy
The strategy to satisfy Se consists in not trying to actively di↵erentiate
two sets, but on the contrary, to preserve increasingly long common
initial segments in a computable process, then to use the hypothesis of
incomputability of one of the sets to deduce that this process should
fail. This strategy is frequently found in this type of construction. It
is sometimes referred to as Sacks preservation strategy, in honor of its



5. ⇧0
2 priority method (infinite injury) 313

author.

5. ⇧0
2 priority method (infinite injury)

We are now going to approach a new elaboration of the priority method,
known as the infinite injury method. As the name suggests, some strate-
gies will act infinitely often by placing larger and larger restraints, causing
infinite injury to lower priority strategies. We will therefore start to have
conditional strategies, adopting di↵erent behaviors depending on the out-
comes of the higher priority strategies, thus taking full advantage of the
formalism of the “strategy tree” that we will see soon.

Our illustration of the infinite injury priority method concerns the exis-
tence of minimal pairs of c.e. degrees. It improves the Friedberg-Muchnik
theorem by combining it with Sacks’ preservation strategy.

Definition 5.1. Two non-computable degrees a and b form a minimal
pair if their lower bound is 0, in other words if for any set A such
that A 6T a and A 6T b, then A is computable. }

The existence of minimal pairs of c.e. degrees has been independently
proven by Lachlan [133] and Yates [243].

Theorem 5.2 (Lachlan 1966, Yates 1966)
There is a minimum pair of c.e. degrees

Proof. We are going to construct two c.e. sets A and B satisfying the
following requirements (Re,Se,Ne)e2N:

Re : We 6= A Se : We 6= B Ne : �A

e
= �B

e
) �A

e
is computable.

The requirements (Re)e2N and (Se)e2N ensure that A and B are not com-
putable. The (Ne)e2N requirements force the lower bound of the degrees
of A and B to be 0.

Posner’s trick
At first glance, to impose that the lower bound deg

T
A and deg

T
B is 0,

one would expect to have to satisfy requirements of the form (Ni,j)i,j2N

with
Ni,j : �A

i
= �B

j
) �A

i
is computable.

However, if �A

i
= �B

j
, then it is possible to create a new functional �e

which will hardcode an integer n such that A(n) 6= B(n), and execute �i



314 13. Priority method and c.e. degrees

or �j in function of the value of its oracle at position n. Thus, �A

e
= �A

i

and �B

e
= �B

j
. This trick, due to Posner, makes it possible to simplify

the notations by using a single index.

Satisfaction of a requirement Re or Se. The satisfaction of a require-
ment Re or Se is exactly the same as for Theorem 3.3. We recall, in the
case of Re, the actions of the strategy according to its three states:

• State i: Choose an integer xRe /2 A and restrain xRe .

• State e: Run �e(xRe). If the execution stops at time t, add xRe to A,
then enter State t.

• State t: The process is complete.

So far, we have considered that this strategy has two outcomes, depending
on the state in which it stabilizes. These two outcomes are of the same
finite nature, in that they pose only a finite number of restraints when
they are injured finitely often. We will therefore consider them as a single
finitary outcome f.

Satisfaction of a requirement Ne The satisfaction of a requirement Ne

will follow Sacks’ preservation strategy to preserve increasingly long com-
mon initial segments to �A

e
and �B

e
. However, unlike Theorem 4.1, the pro-

cess will not necessarily fail after a finite number of steps, because nothing
in the assumptions prevents this equality. We are therefore in a case where
the infinite outcome will be able to occur, with increasingly long restraints,
resulting in an infinite injury. As in the case of Theorem 4.1, the strategy
has an initial state i, and an infinity of states (wn)n2N. In what follows,
we will call use of �At

e
[t]�n+1 the maximum of uses of {�At

e
(x)[t] : x 6 n}.

During the execution of the strategy, we will define a computable func-
tion � : N! {0, 1} such that if �A

e
and �B

e
are total and equal, then they

are both equal to �.

• State i: Define � as the empty domain function, and go to State w0.

• State wn: Wait for a step t > n where �At
e
[t]�n+1= �Bt

e
[t]�n+1. If this

happens, release its previous restraint, and place a restraint on the use
of �At

e
[t] �n+1 if n is even, and on the use of �Bt

e
[t] �n+1 if n is odd.

Next, define �(n) = �At
e
(n)[t], and go to State wn+1.

The strategy has two possible outcomes. Issue f (finitary): it gets stuck in
state wn for a given n. In this case, either �A

e
or �B

e
is partial, or �A

e
6= �B

e
.

Issue 1 (infinitary): the strategy goes through all states (wn)n2N. In this
case, the two sets coincide, and infinitely often, the restraint changes sides.



5. ⇧0
2 priority method (infinite injury) 315

We still have to prove that � = �A

e
= �B

e
to deduce that this set is

computable. The underlying idea of the proof is very simple, but it is a
bit cumbersome to formalize. We will therefore illustrate it with a figure
(see Figure 5.3) before formally proving the result through Lemma 5.4.
Whatever the outcome, the requirement Ne is therefore satisfied.

�
At3
e [t3]�4

�
Bt3
e [t3]�4

t3

�
At4
e [t4]�5

�
Bt4
e [t4]�5

t4

�
At5
e [t5]�6

�
Bt5
e [t5]�6

t5

�
At6
e [t6]�7

�
Bt6
e [t6]�7

t6

�
At7
e [t7]�8

�
Bt7
e [t7]�8

t7
Étapes

Figure 5.3: Let tn be the step at which we reach State wn+1. The grey

rectangle between step t3 and step t4 means that the use of �
At3
e [t3] �4 is

restraint, hence is preserved up to step t4. Thus, �
At3
e [t3] �4= �

At4
e [t4] �4.

At each step tn, the initial segments of length n + 1 of both functionals

coincide. Thus, �
At4
e [t4] �5= �

Bt4
e [t4] �5. We therefore have �

Bt3
e [t3] �4=

�
At3
e [t3] �4= �

At4
e [t4] �4= �

Bt4
e [t4] �4. Even if the use of �

Bt3
e [t3] �4 can

di↵er from that of �
Bt4
e [t4] �4, since no restraint is posed on B between

steps t3 and t4, the first 4 output values of the functional are preserver.

Remark

The choice of the restrained side (A if the strategy goes from a state wn
to wn+1 with n even, and B if n is odd) does not intervene in the proof
of the validity of a strategy Ne independently of the others. We could
just as well always have kept the same side, or even restrained both
sides, which would have considerably simplified the proof of validity.
However, this alternation of sides becomes necessary when one seeks to
satisfy a requirement of type R or S under a strategy for Ne, as we will
see hereafter.

Lemma 5.4. If the outcome 1 happens, then � = �A

e
= �B

e
. ?

Proof. Let P (n, s) be the proposition “Either (1) � �n+1= �As
e

[s] �n+1

with a restraint on its use, or (2) � �n+1= �Bs
e

[s] �n+1 with a restraint
on its use.” For all n, let tn be the step at which the strategy changes
to state wn+1. We will show by induction on n and s that for all n > 0
and s > tn, the proposition P (n, s) is true. By convention, t�1 = 0 and for
all s > t�1, P (�1, s) is true.



316 13. Priority method and c.e. degrees

Let n > 0. Let us show that if for all s > tn�1, P (n � 1, s) is true,

then P (n, tn) is true. In step tn, �(n) = �
Atn
e (n)[tn] = �

Btn
e (n)[tn],

and �
Atn
e [tn] �n+1= �

Btn
e [tn] �n+1. As tn > tn�1, by induction hypoth-

esis, P (n� 1, tn) is true, so either ��n= �Atn
e [tn]�n or ��n= �Btn

e [tn]�n.
So � �n+1= �

Atn
e [tn] �n+1= �

Btn
e [tn] �n+1. At this step, the strategy re-

strains �
Atn
e [tn]�n+1 or �

Btn
e [tn]�n+1, so P (n, tn) is true.

Let s > tn. Let us show that if P (n, s � 1) is true, then P (n, s) is true.
If the strategy does not change state at step s, then it keeps its restraint,
and by the use property, P (n, s) remains true. If the strategy changes
to a wp+1 state, then by definition, �As

e
[s] �p+1= �Bs

e
[s] �p+1, or p > n,

so �As
e

[s] �n+1= �Bs
e

[s] �n+1. By P (n, s � 1), either � �n+1= �As�1
e [s �

1] �n+1 with a restraint on its use, or (2) � �n+1= �Bs�1
e (n)[s � 1] �n+1

with a restraint on its use. By the restraint to step s � 1 and the use
property, either � �n+1= �As

e
[s] �n+1, or � �n+1= �Bs

e
[s] �n+1. It follows

that � �n+1= �As
e

[s] �n+1= �Bs
e

[s] �n+1. The strategy restrains the use
of �As

e
[s]�p+1 or �Bs

e
[s]�p+1, so P (n, s) is true. This ends the proof of the

lemma.

Note that unlike Theorem 4.1, the infinite outcome will really occur with
the strategy for Ne. It therefore does not combine that well with the strate-
gies for Rd and Sd. Indeed, when this outcome occurs, the strategy for Ne

will impose increasingly long restraints, causing infinite injury. We will
therefore have to adapt the construction to allow the other requirements
to be satisfied.

Execution step
It is not necessary to execute the strategies for Re, Se and Ne at each
step to satisfy their respective constraints. It su�ces to perform them
each for an infinite number of steps, while maintaining their restraints
during the intermediate steps.
Let us take the example of the strategy for Re. If it is only executed at
times t0 < t1 < . . . , it may be that it “misses” the first step t between t0
and t1 where �e(xRe)[t] stops, which prevents it from entering State t

at this step. However, in step t1, �e(xRe)[t1] will also stop, and the
transition to State t will still take place. The limit behavior of the
strategy for Re therefore does not depend on the choice of steps.
The case of the strategy for Ne is a bit more subtle. It may be that
the default strategy for Ne has an infinite outcome, but that when it is
executed only at times t0 < t1 < . . . , we have �At

e
[ti]�n+1 6= �Bt

e
[ti]�n+1,

so that the strategy does not will never change to state wn+1, which is
the finite outcome. Fortunately, even in this case Ne will be satisfied,



5. ⇧0
2 priority method (infinite injury) 317

as long as the enumeration of steps (ti)i2N is computable so that the
function � is also computable.

Satisfaction of a requirement Rd or Sd under Ne. Suppose we want
to satisfy a requirement Rd under the strategy for Ne, i.e., with the strat-
egy for Ne of higher priority than that for Rd. Several solutions arise,
depending on the outcome of the strategy for Ne:

• Issue f (finitary). In this case, it su�ces to use the standard strategy
for Re presented above. Indeed, the strategy for Ne will set a finite
number of restraints, so that the strategy for Re will be injured and
reset a finite number of times before being satisfied. This strategy does
not work if the outcome of the strategy for Ne is infinite (Issue 1).
Indeed, in this case, the strategy for Re will be injured infinitely often,
and might never satisfy Re.

• Issue 1 (infinitary). Note that in this case, the restraint posed by
the strategy for Ne will infinitely often alternate sideways, and will
therefore free the other side, allowing the strategy forRd to be satisfied.
We will therefore only execute the strategy for Rd at the stages where
the restraint of the strategy for Ne is removed from the A side. The
outcome of the strategy for Ne being infinite, the strategy for Rd will
be executed for an infinite number of steps, and as explained above,
an infinite subset of steps is su�cient to satisfy Rd. This strategy
for Rd does not work, however, if the outcome of the strategy for Ne is
finite, because it may never remove its restraint and the strategy for Rd

therefore waits forever.

We therefore have two di↵erent strategies to satisfy Rd under Ne, depend-
ing on the outcome of the strategy for Ne. This case analysis poses a
di�culty: to produce a c.e. set, The construction must be a computable
process, but the outcome of Ne cannot be decided in a finite time. We
therefore cannot know which strategy to choose for Rd. The solution is
to run the two strategies for Ne in parallel, each making a guess about
the outcome. The one making the correct assumption will then be able to
satisfy Rd under Ne. We will therefore end up with a tree of strategies,
induced by the successive case analysis on the outcomes of strategies of
type N . We will detail this tree structure below.

Satisfaction of a requirement Nd under Ne. Similar requirements are
often easy to satisfy simultaneously because their strategies generally do
not conflict. In the case of the satisfaction of a requirement Nd under Ne,
the di�culty is not to satisfy these two requirements simultaneously, but



318 13. Priority method and c.e. degrees

then to leave room for a requirement of the type R or S to be satisfied
under Nd. Indeed, in the worst case, the strategies for Ne and Nd will both
be infinitary, and each time the strategy for Ne releases its restraints on
the A side, the strategy for Nd will set its own, so that the A side will have
increasingly larger restraints at all times, not allowing strategies of type R

to be satisfied below. The solution is to “synchronize” the strategies for Nd

and Ne. More precisely, the strategy for Nd will be defined by case analysis
depending on the outcome of Ne:

• Issue f (finitary). In this case, the strategy for Nd is the standard
strategy presented above. Indeed, the restraints of the strategy for Ne

will be finitary, and the other requirements will have the possibility of
being satisfied under Nd by being injured finitely often by the strategy
of Ne.

• Issue 1 (infinitary). Let’s modify the strategy for Nd, as follows: This
strategy will only be executed during stages where the strategy for Ne

changes the side of its restraints, in other words changes from state wn
to wn+1. This makes sure that when the strategy for Nd changes its
restraints side, at the same step, the strategy for Ne will change its side
restraints. Finally, we must ensure that these changes go on the same
side. For this, if the strategy for Nd is in a state wn with n an even
integer, in other words if its restraints are on the B side, the strategy
for Nd will not be executed only during the steps where the strategy
for Ne changes from a state wm to wm+1 with m even, so that both
strategies put their restraints on the side A simultaneously. Likewise,
if the strategy for Nd is in a state wn with n an odd integer, it will
be executed during the steps where the strategy for Ne changes from a
state wm to wm+1 with m odd.

As in the case of the satisfaction of a requirement Rd under a require-
ment Ne, we therefore have di↵erent strategies for Nd for each outcome
of the strategy for Ne. We are therefore going to run two strategies in
parallel, each assuming that its hypothesis is correct. We will now describe
the strategy tree.

Strategy tree. The requirements are listed as follows.

N0,R0,S0,N1,R1,S1, . . .

In the previous constructions, each requirement was assigned a unique
strategy, and the priority order of the strategies followed the enumera-
tion of requirements. We now have a tree structure of strategies based on
the outcomes of the previous strategies, as follows: the requirement N0 has
a single strategy N✏ (where ✏ is the empty string). The requirement R0



5. ⇧0
2 priority method (infinite injury) 319

has two strategies R1 and Rf, depending on the outcomes 1 and f of the
strategy N0. The requirement S0 also has two strategies S1f and Sff, de-
pending on the outcomes of the higher strategies. For example, S1f must
satisfy the requirement S0 under the assumption that the outcome of N✏

is 1 and the outcome of R1 is f.

In general, we can define a tree T ✓ {f,1}
<N of strings in the alpha-

bet {f,1}, induced by the prefix relation, such that for all � 2 T and i <
|�| such that i 6⌘ 0 mod 3, �(i) = f. To each string � 2 T , if |�| = 3e we
associate a strategy N� for Ne, if |�| = 3e + 1 we associate a strategy R�

for Re and if |�| = 3e+2, we associate a strategy S� for Se (see Figure 5.5).
To simplify the notations, we will denote by C� the strategy whose index
is �.

N✏

R1

S1f

N1ff

R1ff1

S1ff1f

1

R1fff

S1ffff

f

1

Rf

Sff

Nfff

Rfff1

Sfff1f

1

Rffff

Sfffff

f

f
N0

R0

S0

N1

R1

S1

Figure 5.5: Strategy tree for the construction of a minimal pair. Full arrows
indicate the tree structure, but also a partial order of priority between
strategies. Dotted arrows enable to linearize the partial order to obtain a
total order between strategies. For example, all the strategies on the left
sub-tree of the strategy N1ff are weaker than N✏, R1, S1f et N1ff, but
are stronger than all the other strategies.

Construction. At the start of the construction, each strategy is in the
initial state (State i). At each step t, we will define a current node, which is
a string �t 2 T of length t, representing an approximation of the outcomes
at the end of step t. More precisely, �t(i) represents the approximation
at step t of the outcome of the strategy C�t�i . The current node at step t
is defined by induction on the substeps s < t as follows: at the start of
the substep i, we assume �t �i defined. We then execute the strategy C�t�i
at time t as described above. Recall that we may not execute the strat-
egy C�t�i for reasons of synchronization with the strategies for requirements



320 13. Priority method and c.e. degrees

of type N . In this case, the strategy remains in its state and keeps its con-
straints unchanged. At the end of sub-step t, we define �t(i) =1 if i ⌘ 0
mod 3 and the strategy N�t�i has changed state at step t. In all the other
cases, �t(i) = f, because the strategies of type R and S only have the finite
possible outcome, and if i ⌘ 0 mod 3 and N�t�i does not change state, we
assume that its outcome is finite.

True path. We can now define the true path of T , which is the path along
which the outcomes are true. More precisely, the true path of T is the
infinite sequence P 2 ⇤N (with ⇤ = {1, f} where1 is less than f) defined
inductively on i by

P (i) = lim inf{o 2 ⇤ : 91t (P �i)_o � �t}.

Intuitively, the strategies along the real path are going to be the ones
that make the correct assumptions about the outcomes of the previous
strategies. They will be finitely injured by a higher priority strategies, and
will succeed in fulfilling their requirement. We are now going to prioritize
the strategies so that the strategies along the true path are finitely injured.

Priority order. Let ⇤ = {1, f} be the set of possible outcomes. Let us
provide this set with an order of priority (⇤, <p) by considering that1 <p

f, which means that the outcome 1 has priority over f. This order
will induce a total order (T , <p) (and therefore a total order of prior-
ity on the strategies) as follows: � <p ⌧ if � � ⌧ , or if i is the first
position where the two strings di↵er, and �(i) <p ⌧(i). A visual ex-
ample of this order is given in Figure 5.5. Note that, unlike finite in-
jury priority methods, the strategies are generally below an infinite num-
ber of higher priority strategies. For example, the strategy R1fff is be-
low N✏, R1, S1f, N1ff, R1ff1, S1ff1f, . . .

Remark
One would be tempted to define a priority order such that each strategy
only has a finite number of higher priority strategies, for example by
defining the priorities by traversing the nodes of the tree. However,
there is a problem:
Suppose that the strategy N✏ has the outcome 1. The strategy Rf

making the wrong assumption according to which the outcome of N✏

has a finite outcome, it will be injured and reinitialized at each change
of state of N✏. It will therefore potentially pose an infinite number of
restraints, and will therefore prevent all lower priority strategies from
functioning normally. It is therefore essential that all strategies along
the true path of the tree take precedence over Rf, in order to ignore its
restraints. The strategy for Rf must therefore be under an infinity of
higher priority strategies.



5. ⇧0
2 priority method (infinite injury) 321

Verification. Note first that by definition, the strategies along the real
path P (strategies C� for � � P ) are executed at an infinite number
of steps. Although a strategy is generally below an infinite number of
strategies, we will show that the strategies along the real path are injured
finitely often, which is the necessary condition to satisfy them. The follow-
ing lemma is a property that we generally expect from an argument with
⇧0

2 priority:

Lemma 5.6. Let P be the true path, and ↵ � P . Then, ↵ 6p �t for a
co-finite number of steps t. ?

Proof. By induction on the length n of ↵. If n = 0, then ↵ = ✏, and
by definition, ✏ 6p �t for all t. Let n > 0. By induction hypothesis,
there exists a threshold t0 such that ↵ �n�16p �t for all t > t0. Let S =
{t > t0 : �t <p ↵}. Suppose absurdly that S is infinite. Note that for
all t 2 S, as ↵ �n�16p �t and �t <p ↵ we necessarily have ↵ �n�1� �t
with �t(n�1) <p ↵(n�1). In other words, �t(n�1) =1 and ↵(n�1) = f

and 8t 2 S (↵ �n�1)_1 � �t. Thus, (↵ �n�1)_1 � P , contradicting the
hypothesis ↵ � P . This concludes the proof of the lemma.

Only the strategies along �t are executed in step t. Thus, for any strat-
egy C↵ along the real path P , there is a threshold t0 after which only the
lower priority strategies or strategies along the real path will be executed.
We can therefore prove by induction on n that the strategy CP�n will only
be injured finitely often, and will have the outcome P (n). Any requirement
being represented by a strategy along the real path, the requirements will
all be satisfied. This concludes the proof of Theorem 5.2.

Cappable degrees

We have seen two ways of creating incomparable Turing degrees. The first
(see Proposition 4-8.1) consists in creating two sets simultaneously, while
the second (see Proposition 4-8.2) starts from a non-computable set, and
creates a second set of incomparable degree with the first. It is natural
to ask whether it is possible, in the case of minimal pairs of c.e. degrees,
to start from an arbitrary non-computable c.e. set, and complete it with
another c.e. set to form a minimum pair. This is not the case, as proved
by Yates [243] and Lachlan [133].

Definition 5.7. A c.e. degree a > 0 is cappable if there exists a de-
gree b > 0 such that a and b form a minimal pair. Otherwise, a is said
to be non-cappable. }



322 13. Priority method and c.e. degrees

Ambos-Pies et al. [5] obtained a surprising characterization of non-cappable
degrees, using promptly simple sets.

Definition 5.8. A co-infinite c.e. set A is promptly simple if there exists
a computable enumeration A0 ✓ A1 ✓ . . . and a computable function f :
N! N such that

We infinite ) 91x, s (x 2We[s] \We[s� 1] ^ x 2 Af(s)).

In other words, a co-infinite set A is promptly simple if it is not only co-
immune, but even more, this co-immunity must be achieved by making
infinitely many elements enter A few time after they appear in We. A c.e.
degree is promptly simple if it contains a promptly simple set.

Theorem 5.9 (Ambos-Spies, Jockusch, Shore, et Soare [5])
The non-cappable degrees are precisely the promptly simple degrees.

In particular, the proof showing that if a degree is not promptly simple,
then it is cappable, is obtained via a variation of Theorem 5.2.



Chapter 14
Structure of the Turing degrees

Gerald Sacks, 1933–2019

The study of Turing degrees has been
carried out in conjunction with that of
its structure, as a partial order. Gerald
E. Sacks is undoubtedly one of the main
protagonists of this adventure.

Sacks began studying engineering at
Cornell University in his youth, which
he interrupted mid-term to enlist in the
army for three years. It was at this time
that he got his hands on a copy of Intro-
duction to Metamathematics by Kleene,
which fascinated him [38]. On his re-
turn to civilian life, he then oriented the
rest of his studies towards mathemat-
ics. Barkley Rosser, an eminent logician
who studied with Kleene and Church,
agrees to take him on as a doctoral stu-
dent. Sacks will become in the sixties one of the pioneers of modern com-
putability theory. He will participate in particular as we will see in the
first studies on the structure of Turing degrees, and besides his work, he
will become famous for the large number of his students who will become
leading logicians, among whom we can quote Harvey and Sy Friedman, Léo
Harrington, Richard Shore, Théodore Slaman and Stephen Simpson. We
will see that the last three members of this list took a very active part in
the study of the structure of Turing degrees.

– 323 –



324 14. Structure of the Turing degrees

Let’s pose without further ado the vocabulary we will be using.

Notation

(D,6) denotes the partial order structure of Turing degrees.

We will write a 6 b for two degrees a,b 2 D if A 6T B for any element A 2
a and any element B 2 b, and we will write a < b if a 6 b and b ⇥ a. In
order to be completely clear, let us recall the vocabulary of use of partial
orders: given a partially ordered set A and a subset B ✓ A, an upper bound
(resp. lower bound) of B is an element of A greater (resp. smaller) than all
the elements of B. An upper bound (resp. lower bound) of B is minimal
(resp. maximal) if no other upper bound of B is smaller than it (resp. no
other lower bound of B is greater than it). Finally a least upper bound
(resp. greatest lower bound) of B is a upper bound (resp. lower bound) if it
is smaller than any upper bound of B (resp. greater than any lower bound
of B). It is easy to show that a least upper bound (resp. greatest lower
bound) when it exists is unique.

1. Minimal degrees

One of the first results obtained on the structure of Turing degrees con-
cerns the initial segments of D, and in particular the existence of so-called
minimal degrees:

Definition 1.1. A Turing degree d is minimal if it is di↵erent from 0 —
the computable degree— and if there is no degree e such that 0 < e < d.}

In other words a set X 2 2N is of minimal degree if it is not computable
and if for any functional � such that �(X,n) # 2 {0, 1} for all n, either
the set {n : �(X,n) #= 1} is computable, or it is able to compute back X.

The proof of the existence of a minimal degree is one of the first uses of forc-
ing in computability theory, via Sacks forcing, which we saw in Section 11
-3.

1.1. Existence

The existence of minimal degrees, due to Spector [224], was initially made
by forcing with uniform computable f-trees, that is to say f-trees T : 2<N

!

2<N such that for any size n there exists a unique string ⌧n such that for
any string � of size n and any i 2 {0, 1} we have T (�i) = T (�)i⌧n. We can
also see the paths of these f-trees as being all the possibilities of completion
of a set X on which an infinity of bits are not specified.



1. Minimal degrees 325

Spector’s restriction is of interest for the more general study of initial seg-
ments in Turing degrees, but for minimal degrees (i.e., initial segments of
size 2), Shoenfield [206] noticed that computable Sacks forcing, easier to
handle, is su�cient.

Definition 1.2. Let � be a Turing functional. Two strings �, ⌧ 2 2<N

form a �-split if there is an integer n 2 N such that ��(n)#6= �⌧ (n)#. An
f-tree T : 2<N

! 2<N is �-splitting if for all � 2 2<N, the strings T (�0)
and T (�1) form a �-split. An f-tree T avoids �-splitting if no pair of
strings �, ⌧ 2 ImT forms a �-split. }

For this section, we will consider the functionals � as being partial functions
from 2N to 2N. In this particular context we will then denote by dom� —
the domain of definition of �— the class {X 2 2N : 8n �(X,n)# 2 {0, 1}}.
Given X 2 dom�, we will write �(X) for the set {n 2 N : �(X,n)#= 1},
and we will speak of the totality of � with respect to 2N, and not with
respect to its inputs for a fixed oracle.

The key lemma in the construction of a minimal degree says that for any
functional � and any computable f-tree, there exists a computable sub-tree
on which � is everywhere defined and injective, or on which � is a constant
function, restricted to its domain of definition in the sub-f-tree.

Lemma 1.3. For every computable f-tree T : 2<N
! 2<N and every Turing

functional �, there exists a computable sub-f-tree S of T which is either �-
splitting, or avoids �-splittings. ?

Proof. Two cases arise.

Case 1: there exists a string � 2 2<N such for all ⇢, ⌧ ⌫ �, T (⇢) and T (⌧)
do not form a �-split. Let S be the computable sub-tree defined by S(µ) =
T (�µ). Then, S is sub-tree of T avoiding �-splittings.

Case 2: for any string � 2 2<N, there are extensions ⇢, ⌧ ⌫ � such that T (⇢)
and T (⌧) form a �-split. We then compute S as follows. We define S(✏) =
T (✏). Suppose we have computed S(�) = T (µ) for strings �, µ 2 2<N. We
then look for strings ⇢0, ⇢1 ⌫ µ such that T (⇢0) and T (⇢1) form a �-split.
By hypothesis, the search always succeeds. We then define S(�0) = T (⇢0)
and S(�1) = T (⇢1). Note that since T (⇢0) and T (⇢1) form a �-split, in
particular, these two strings are incomparable. Thus, S is indeed an f-tree,
and ImS ✓ ImT . By construction, S is �-splitting.

The interest of obtaining �-splitting or avoiding �-splitting f-trees is found
in the following lemma.



326 14. Structure of the Turing degrees

Lemma 1.4. Let T be a computable f-tree and � a functional.

(1) If T avoids �-splittings then for all X 2 dom� \ [T ] the element �(X)
is computable.

(2) If T is �-splitting then for all X 2 dom� \ [T ] we have X 6T �(X).
?

Proof. (1) Suppose that T avoids �-splittings. Let X 2 dom� \ [T ].
Then, to know the n-th bit of �(X) it su�ces to search � 2 ImT such
that �(�, n) #= i for i 2 {0, 1}. The n-th bit of �(X) is then equal to i.

(2) Suppose that T is �-splitting. Let X 2 dom� \ [T ]. Let Y = �(X).
To compute X from Y we proceed as follows: as T (0) and T (1) form
a �-split, there exists i 2 {0, 1} such that �(T (i), n) 6= Y (n) for some n.
We can find i in a computable way in Y . The correct prefix of X is
then necessarily T (1 � i). Suppose we have computed a prefix � � X
and a string ⌧ such that � = T (⌧). As T (⌧0) and T (⌧1) form a �-split,
there exists i 2 {0, 1} such that �(T (⌧ i), n) 6= Y (n) for some n. We
can find i in a computable way in Y . The correct prefix of X is then
necessarily T (⌧(1 � i)). By proceeding in this way, we then compute
larger and larger prefixes of X from Y = �(X).

We now have all the necessary ingredients to prove the existence of minimal
degrees.

Theorem 1.5 (Spector [224])
Any su�ciently generic set for Sacks forcing is of minimal degree.

Proof. Let (P,6) be computable Sacks forcing. Let us note first that,
according to Exercise 11-3.3, if G 2 2N is su�ciently generic for this forcing
then it is not computable.

Let � be a Turing functional. According to Lemma 1.3 the set of con-
ditions c 2 P such that c is �-splitting or c avoids �-splittings is dense.
According to Lemma 1.4, in the first case, for all G 2 [c] the functional � is
defined on G and �(G) >T G. In the second case, according to Lemma 1.4,
for all G 2 [c], if the functional � is defined on G then �(G) is computable.

So if G is su�ciently generic for Sacks forcing, it is of minimal degree.

Corollary 1.6
There is a perfect class of sets, all of distinct minimal degrees.



1. Minimal degrees 327

Proof. We can first show that there exists a perfect tree of minimal de-
grees. It su�ces to proceed as in the proof of Theorem 8-5.1, in order to
“duplicate” the construction of a minimal degree. With the forcing formal-
ism, let (Dn)n2N be a sequence of dense sets of Sacks forcing conditions,
su�cient to force a set to be of minimal degree. We choose c✏ 2 D0, then
for any string � of size n, assuming c� 2 Dn defined, we define c�0 6 c�
and c�1 6 c� in such a way that [c�0] \ [c�1] = ;. We can also make sure
that the first branching node of c�i strictly extends the first branching node
of c� for i 2 {0, 1}. The final tree is given by the set of strings ⌧ such that
there is X 2 2N for which ⌧ 2

T
��X

c�.

Once we have a perfect tree containing only minimal degrees, we can refer to
Exercise 8-5.4 to extract from it a perfect subtree containing only pairwise
incomparable degrees.

1.2. Computation of a minimal degree

A fine analysis of the level of e↵ectiveness necessary to carry out Theo-
rem 1.5 shows that there exists a ;00-computable minimal degree. It is in
fact possible to considerably improve this result, by noting that the use of
computable f-trees is not absolutely necessary:

C.e. tree

A c.e. f -tree is a partial function T : 2<N
! 2<N such that for any �

such that T (�) #, either T (�0) " and T (�1) ", or T (�0) #⌫ T (�)
and T (�1) #⌫ T (�) with T (�0) and T (�1) incomparable.

The use of c.e. f -trees which are �-splitting or avoid �-splittings, allows to
make constructions of minimal degrees requiring less computational power.
It is then a question of e↵ective constructions which do not fall strictly
speaking any more into the scope of forcing. We list, without proving
them, three important results which use this new type of tree to more
easily compute sets of minimal degrees. By “more easily”, one needs to
understand “with little computational power”, the proofs being on the
contrary more complex . . .

Theorem 1.7 (Sacks [193])
There is a minimal degree under ;0.

Note that according to Proposition 7-4.7, Sacks’ result implies the existence
of a minimal hyperimmune degree. This result was subsequently improved
by Yates [244], and independently by Cooper [43]:



328 14. Structure of the Turing degrees

Theorem 1.8 (Yates [244], Cooper [43])
Let X be a non-computable c.e. set, then X computes a set G of minimal
degree.

Note that a minimal degree can never be c.e.: a sophisticated use of the
famous priority method which we saw in Chapter 13, makes it possible to
show that any non-computable c.e. set A compute another non-computable
c.e. set B which does not compute it A (see Theorem 5.1 for the result in
all its generality).

Finally, Groszek and Slaman showed that any PA degree could compute a
minimal degree, via the following remarkable result.

Theorem 1.9 (Groszek et Slaman [82])
Any PA degree computes a minimal degree. More precisely, there exists
a non-empty ⇧0

1 class whose members are either of minimal degree, or
compute a non-computable c.e. degree.

Exercise 1.10. (?) Show that any non-empty ⇧0
1 class contains a set of

the same degree as a c.e. set. Deduce that there is no non-empty ⇧0
1 class

containing only elements of minimal degrees. ⇧

The possibility of constructing “complex” minimal degrees has also been
well studied. The main result in this direction is as follows.

Theorem 1.11 (Kumabe [129])
There is a minimal degree which is also DNC.

Kumabe first showed the existence of a minimal DNC degree, in a very
complex article, which was never published. The proof was then reworked
by Kumabe and Lewis [129], and the presentation was subsequently sim-
plified by Khan and Miller [114], who rewrote it under the formalism of
forcing, via Forcing with Bushy Trees. The following exercise shows that a
minimal degree on the other hand can never be DNC2.

Exercise 1.12. (?) Show that there exists a non-empty ⇧0
1 class of

sets X � Y such that X is of PA degree and Y and of PA degree relative
to X. Deduce that no PA set is of minimal degree (the reader can consult
Proposition 24-2.4 for an iteration of this result). ⇧

1.3. Relativization: minimal cover

The construction of a minimal degree with the forcing on f-trees is rela-
tivized to any Turing degree in the following sense.



1. Minimal degrees 329

Definition 1.13. Let a and b be Turing degrees. We say that b is a
minimal cover of a if b > a and if there is no degree c such that a < c <
b. }

In other words, b is a minimal cover of a if it is a minimal element in the
cone of Turing degrees strictly above a. The relativization of Theorem 1.5
shows the following theorem.

Theorem 1.14
Any Turing degree has minimal cover.

Proof. Let A ✓ N be any set. The objective is to build a set B >T A
such that any set C computable by B is either A-computable, or such
that A� C >T B. Thus, if B >T C >T A we will have C >T B.

It su�ces to consider a variant of Sacks forcing, for which our f-trees are
this time A-computable, and such that each of their paths computes A. We
could, for example, restrict ourselves to A-computable f-trees such that A
is encoded in the even bits of each path of the f-tree.

It su�ces then to repeat the proof of Theorem 1.5 with this new par-
tial order, noting the following di↵erence: given a �-splitting f-tree T ,
for all X 2 [T ] we now need A in order to find X starting from �(X):
indeed we need the knowledge of T . This is the reason why we will
have A� �(X) >T X and not �(X) >T X.

Note that a minimal cover b of a does not exclude the existence of de-
grees c < b incomparable with a. This leads us to define a stronger notion
of cover:

Definition 1.15. Let a and b be Turing degrees. We say that b is a
strong minimal cover of a if b > a and if for any Turing degree c < b,
we have c 6 a. }

As noted in the proof of Theorem 1.14, the relativized version of Theo-
rem 1.5 does not prove the existence of a strong minimal cover for any
Turing degree, and for good reason: some degrees do not admit any strong
minimal cover, although many will.

Ishmukhametov [99] has established an elegant characterization of the c.e.
degrees admitting a strong minimal cover.

Theorem 1.16 (Ishmukhametov [99])
A c.e. set A ✓ N admits a strong minimal cover i↵ any A-computable
function f : N! N is bounded for n su�ciently large by the function n 7!



330 14. Structure of the Turing degrees

min {s 2 N : ;0[s]�n= ;0 �n}.

A general characterization of the degrees admitting a strong minimal cover
is for the moment unknown, although many partial results have been es-
tablished (see Lewis [147]).

2. Nature of D

What does the partial order (D,6) look like? Regarding its size first, we
have seen in this book several constructions of perfect trees where each path
is in a di↵erent Turing degree (see for example Exercise 7-5.8, Exercise 8
-5.3 or Exercise 8-5.4). This gives us an injection of 2N into D. Using
the axiom of choice we can choose a representative in each Turing degree,
which gives an injection of D into 2N. The cardinality of D is therefore |2N|,
that of 2N. Note that we cannot necessarily choose a representative in each
Turing degree if we do not have the axiom of choice. The fact remains that
“morally”, D is of cardinality |2N|.

Given an element a 2 D, the set of elements below a is at most countable
since a set can only compute a countably many elements. On the other
hand, the cardinality of the elements above a is that of 2N: given A 2 a
we can easily create a perfect tree whose paths are all of the form A �X
for X 2 2N, and all in di↵erent Turing degrees.

The use of the Turing join leads us to the following consideration: given two
sets A,B, the set A� B computes both A and B, and any set computing
at the same time times A and B computes A � B. In terms of degrees,
this implies that every pair of degrees degrees a,b has a least upper bound.
There is therefore a minimum of structure in this partial order, for which
we introduce the following concept.

Definition 2.1. A lattice is a partially ordered set in which any pair of
elements a, b has a least upper bound noted a [ b and a greatest lower
bound noted a \ b. An upper (resp. lower) semilattice is an ordered set
for which every pair of elements has a least upper bound (resp. greatest
lower bound). }

The paragraph preceding this definition leads to the following theorem,
appearing in the founding article of the study of the structure of Turing
degrees.

Theorem 2.2 (Kleene et Post [122])
(D,6) is an upper semilattice of cardinality |2N|, with a smallest but
no largest element, such that each element has a most countably many



2. Nature of D 331

elements below it, and a set of cardinality |2N| of elements above it.

We sometimes base the vocabulary of Turing degrees on that of the sets
they contain: given two degrees a,b we say that the least upper bound a[b
of a and b is the join of a,b. Note that in an upper semilattice, any finite
sequence of elements also admits a least upper bound. In particular for a
finite set of degrees a1, . . . ,an we will denote it a1 [ . . . [ an and it will
be the degree of the join A1 � · · ·�An for any representatives Ai 2 ai.

What happens for countable sets of degrees? The following theorem implies
that if such a set is closed under join — i.e. a [ b is in our set for all a,b
in our set— and has no maximal element, then it does not have any least
upper bound.

Theorem 2.3 (Sacks [196])
Any countable set of degrees closed under join and without maximal
element has minimal upper bounds in quantity |2N|.

Proof sketch. First note that an upper bound of a set of integers of
degrees (an)n2N, is also an upper bound of a0 6 a0 [ a1 6 a0 [ a1 [ a2 6
. . . . As (an)n2N has no maximal element and is closed under join, we can
therefore consider without loss of generality that our set of degrees is such
that an < an+1. For all n, let An be a representative of an.

It is now enough to elaborate on Sacks forcing (see Section 1) allowing to
create the minimal cover of a degree. We start with an A0-computable f-tree
whose paths all compute A0. A forcing condition will be an An-computable
f-tree whose paths all compute An (for a certain n). We extend such a forc-
ing condition T : 2<N

! 2<N to the f-tree Q such that ImQ ✓ ImT consists
of the paths which encode An+1 � X for all X 2 2N. Formally, Q(�i) =
T (An+1 �|�i| ��i) for any string � and any i 2 {0, 1}. As An+1 >T An,
then An+1 can compute T and thus find An+1 � X from the path of Q
which encodes An+1 �X in T .

The way of doing a minimal cover does not change, and the technique
described in Section 1 applies in the same way. The resulting generic set G
will compute each set An, and will be such that anything that is computed
by G and which can compute each set An, can also compute G.

To obtain minimal upper bound in quantity |2N|, one can build a perfect
tree of minimal upper bound by subdividing the construction in two, then
each substructure in two, etc., as in the proof of Theorem 8-5.1.

A countable set of degrees closed under join and with no maximum element
therefore always has two distinct minimal upper bounds. We can therefore
deduce the following corollary.



332 14. Structure of the Turing degrees

Corollary 2.4
A countable set of degrees closed under join and with no maximal element
never has a least upper bound.

Note that for a sequence of sets (An)n2N, the set
L

n2N An (see Defini-
tion 10-3.24) is not in general a minimal upper bound, as shown by the
following elegant result.

Theorem 2.5 (Enderton et Putnam [59], Sacks [198])
There exists a minimal upper bound of (;(n))n2N whose double jump is

in the same Turing degree as that of
L

n
;
(n).

Proof sketch. For a direction, it su�ces to notice that the double jump

of any upper bound of (;(n))n2N allows to compute
L

n
;
(n). Let B be an

upper bound and let f be a computable function such that f(X 0) = X for
any X (see Exercise 4-6.4 for more details on such a function). Using the
double jump of B we look for a functional code e1 such that f(�e1(B)) = ;,
then a functional code e2 such that f(�e2(B)) = �e1(B), etc.

For the other direction, it su�ces to see that the construction of an upper

bound of (;(n))n2N is e↵ective using
L

n
;
(n), and forces at each step a

functional �e to be partial or else total on all the elements of the tree
considered: one thus does not only compute the resulting generic G, but
one can also determine the set of the codes of total functionals on G. The
double jump of G reduces to this set (see Exercise 5-7.2).

To end this section, we answer the question that may have tormented the
reader since the beginning of this chapter: is the structure (D,6) a lattice?
We will see that it is not, and for this we introduce the notion of exact pair.

Definition 2.6. The degrees a,b form a exact pair for a set of de-
grees C ✓ D if a and b each bound all the degrees of C, and if each
degree below both a and b is also bounded by a degree of C. }

Theorem 2.7
Any countable set of degrees C closed under join admits an exact pair.

Proof. Let (an)n2N be a set of Turing degrees closed under join. Let An

be a representative of an. The idea is to construct two sets G0 =
L

n
X0

n

and G1 =
L

n
X1

n
such that each column Xi

n
for i 2 {0, 1} is equal to the

set An, except for a finite number of bits. It is clear that such sets G0, G1

allow us to compute all the An. We must now build them via an adapted



2. Nature of D 333

forcing in such a way that if G0 and G1 compute the same set, then this
set is computable by A0 �A1 � · · ·�Am for a certain m.

Our forcing conditions are made up of triplets (�0,�1, n) where �0,�1 2 2<N

and n 2 N. The parameter n is used to control the possible extensions of
our conditions. We have (�0,�1, n) ⌫ (⌧0, ⌧1,m) for two forcing conditions
if �0 � ⌧0, if �1 � ⌧1, if n 6 m with the restriction that for all hk, ai such
that |�i| 6 hk, ai < |⌧i| for k 6 n, we must have ⌧i(hk, ai) = Ak(a). Given a
set of conditions (�0

0 ,�
0
1 , n0) ⌫ (�1

0 ,�
1
1 , n1) ⌫ (�2

0 ,�
2
1 , n2) ⌫ . . . , the generic

set G0 will be the limit of �0
0 � �

1
0 � �

2
0 � . . . and the generic set G1 will be

the limit of �0
1 � �1

1 � �2
1 � . . . . Note that the restriction on the possible

extensions guarantees that as long as the sequence n0 6 n1 6 n2 6 . . . is
unbounded, each n-th column of Gi will indeed be equal to An except for
a finite number of bits.

For any pair of functionals �e0 ,�e1 , we will force �e0(G0) = �e1(G1) = X
implies X 6T A0� · · ·�An for some n. Note that if G0 and G1 bound the
same degree, there necessarily exist two functionals such that G0 and G1

compute the same set in this degree. Such a construction therefore achieves
our objectives.

Let (�0,�1, n) be a forcing condition and �e0 ,�e1 be two functionals. We
are looking for two strings ⌧0, ⌧1 such that (⌧0, ⌧1, n) is a valid extension
of (�0,�1, n), and such that �e0(⌧0, x) #6= �e1(⌧1, x) # for some x. If this
search is successful, then we take (⌧0, ⌧1, n) as an extension of (�0,�1, n).
Otherwise it means that on all x, the computations �e0(⌧0, x) and �e1(⌧1, x),
when they halt, return the same value for any valid extension (⌧0, ⌧1, n) ⌫
(�0,�1, n).

Note that by definition of what is a valid extension of (�0,�1, n), it is
possible to enumerate them using A0 � · · ·�An. If for all x, there exists a
valid extension (⌧0, ⌧1, n) such that �e0(⌧0, x) # or �e1(⌧1, x) # then we can
compute via A0�· · ·�An the unique element Z thus potentially computable
by any generic G0 via �e0 or any generic G1 via �e1 . Otherwise at least
one of the two computations �e0(G0, x) or �e1(G1, x) will be partial over
a certain x.

So ifG0, G1 are su�ciently generic for this forcing, for any functional �e0 ,�e1

we will have �e0(G0) = �e1(G1) = X implies X 6T A0 � · · · � An for
some n. It follows that G0, G1 is an exact pair for degrees (an)n2N.

We can now deduce that (D,6) is not a lattice.



334 14. Structure of the Turing degrees

Theorem 2.8 (Kleene et Post [122])
The upper semilattice D is not a lattice. There are in particular de-
grees a,b which do not have a greatest lower bound.

Proof. It su�ces to consider a set of degrees c0 < c1 < c2 < . . . closed
under join. This set of degrees therefore admits an exact pair a,b. Such
an exact pair has no greatest lower bound since any degree under both a
and b is also under a degree cn for some n.

3. Universality of D

We see in this section that (D,6) presents a certain universality, in the
sense that all partial orders can be embedded in D, except those which
cannot claim it for reasons of cardinality.

Definition 3.1. A partial order (A,6) embeds into (D,6) if there is an
injection f : A! D such that a 6 b i↵ f(a) 6 f(b). }

The structure (D,6) therefore contains in it all the partial orders which
are not larger than it. This claim, which will be made precise, is actually a
bit wrong: there is an open question on this subject, which we will mention
shortly. Note that this does not necessarily inform us about the compu-
tational complexity of D. Consider for example the partial computable
order 6R✓ Q2

⇥ Q2 defined by (p1, p2) 6R (q1, q2) if p1 6 q1 and p2 6 q2
for p1, p2, q1, q1 2 Q. It is not very di�cult to show that any countable par-
tial order embeds into (Q2,6R). The construction of an embedding is done
without di�culty, by constructing the injection in a greedy way, element
by element, without ever violating at each finite stage the constraints of an
embedding. The structure (Q2,6R) is not computably complex, but it is
su�ciently rich in terms of possibilities to contain all the partial orders.

We will use several times the existence of sets called computably indepen-
dent.

Definition 3.2. A countable collection of sets (Xn)n2N is computably
independent if Xi ⇥T

L
j 6=i

Xj for all i 2 N. }

The existence of computably independent sets does not present any par-
ticular di�culties, and we can refer to Exercise 10-3.25 to see that if G =L

n
Gn is a 1-generic set, then the sets (Gn)n2N are computably indepen-

dent.



3. Universality of D 335

3.1. Embeddings in D

Let us immediately see what was announced, in the form of a first theorem.

Theorem 3.3 (Sacks [196])
Any countable partial order embeds into the Turing degrees.

Proof. We saw in the introduction of this section that any countable par-
tial order can be embedded in the structure (Q2,6R) defined by (p1, p2) 6R

(q1, q2) if p1 6 q1 and p2 6 q2.

It su�ces then to show that (Q2,6R) embeds into (D,6). Let (Xn)n2N be
a sequence of computably independent sets, and let (an)n2N be an enumer-
ation of the elements of Q2. The embedding f assigns to the element an
the Turing degree of the set

L
am6Ran

Xm. We can easily verify an 6R am
i↵ f(an) 6 f(am).

Sacks subsequently sought to extend his result to larger partial orders.
After all, (D,6) admits |2N| for cardinality. We cannot of course expect
any partial order of cardinality |2N| to be embedded in (D,6): if an element
in a partial order has an uncountable quantity of predecessors, there is no
hope of constructing an embedding of this order to D since each element
of D has only a countable quantity below it. We must therefore respect
this restriction, but are there others? We need here to anticipate a little on
the ordinals which will be introduced in Chapter 27, and in particular on
the ordinal !1, the smallest uncountable infinite ordinal. Sacks obtained
the following results.

Theorem 3.4 (Sacks [194])
Any partial order with one of the following properties can be embedded
in Turing degrees:

1. the order is of cardinality |2N| and each element has a finitely many
predecessors;

2. the order is of cardinality |!1| and each element has at most count-
ably many predecessors;

3. the order is of cardinality |2N|, each element has at most countably
many predecessors, as well as at most !1 successors.

In particular, if we assume the continuum hypothesis, namely |!1| = |2N|,
Sacks’ theorem is optimal: any partial order of cardinality |2N|, and where
each element has at most a countable quantity of predecessors, can embed
into the Turing degrees. But, if we do not assume the continuum hypoth-
esis, the question is still open.



336 14. Structure of the Turing degrees

Question 3.5. Can we embed into (D,6) any partial order of cardinal-
ity |2N| where each element has at most countably many predecessors? ?

If we do not present here the proof of Sacks, we nevertheless see two ingre-
dients, via the notions of chain and anti-chain.

Definition 3.6. A chain is a linearly ordered set of Turing degrees. An
anti-chain is a set of pairwise incomparable Turing degrees. }

Proposition 3.7 (Sacks [196]). .

(1) Each countable chain can be extended in the Turing degrees. In par-
ticular, any maximal chain is of cardinality !1.

(2) Each anti-chain of cardinality less than |2N| can be extended in the Tur-
ing degrees. In particular, any maximal anti-chain is of cardinality |2N|.
?

Proof. .

(1) If the chain has a largest element, we can consider its Turing jump.
Otherwise, we can consider the degree of the Turing join of a represen-
tative of each of its elements.

(2) Let D be the set of minimal degrees. By Corollary 1.6, D is of cardi-
nality |2N|. Let C be an anti-chain of Turing degrees with cardinality
less than |2N|. Each element of C has a most countably many elements
below it. Thus, the downward closure of C has the same cardinality
as C. There must therefore exist an element of d 2 D which is not
computed by any element of C. Since d is a minimal degree, it cannot
bound any element of C. We deduce that C [ {d} is an anti-chain.

3.2. Extension of embeddings of D

The notion of embedding can be considered weak, in particular because it
does not say anything about the relations that the degrees maintain in the
image of an embedding, with the degrees which are not in this image. One
way to overcome this weakness is to consider an already existing embedding
of a structure (C,6) towards Turing degrees, and to try to see to what
extent this embedding can extend to an extension of the partial order on C.
Such a thing is of course not always possible: if elements a0, a1, b 2 C
with a0 < b, a1 < b and a0, a1 incomparable, are sent to degrees a0,a1
and a0 [ a1, then such an embedding cannot be extended to any upper
bound c < b of a0, a1. For this, we introduce the notion of consistent
extension.



3. Universality of D 337

Definition 3.8. Let C be an upper semilattice and let D ◆ C. Then, D
is a consistent extension of C if:

(1) for a, b < d with a, b 2 C and d 2 D \ C we have a [ b < d;

(2) no element of D \ C is under an element of C.

Note that since C is an upper semilattice, a [ b 2 C for all a, b 2 C. }

Theorem 3.9 (Kleene et Post [122])
Let C be a finite upper semilattice and let D be a finite consistent
extension of C. Then, any embedding f from (C,6) into (D,6) can be
extended to an embedding of (D,6) into (D,6).

Proof. Let f be an embedding of (C,6) into (D,6). We denote by a the
image of a 2 C by f . Let a 2 D \ C be minimal in D \ C. Since D is a
consistent extension then C can be partitioned into a list of elements (bi)i6n

and (ci)i6m such that b0 [ . . . [ bn < a, such that a is incomparable with
each ci and such that b0 [ . . . [ bn is not above any ci. It su�ces then to
construct a Turing degree a such that b0 [ . . . [ bn < a and such that a
is incomparable with each ci.

By using the fact that b0 [ . . . [ bn is not above any ci, we easily construct
by finite extensions a degree d such that d [ b0 [ . . . [ bn is not above
any ci and such that b0 [ . . . [ bn is not above d. The embedding is then
extended by sending a to d [ b0 [ . . . [ bn. By minimality of the choice
of a the set D�{a} is now a consistent extension of the closure of C [ {a}
in the upper semilattice. We can therefore start again until each element
of D is assigned.

We will see with Lemma 4.2 that the converse of the theorem works: it
needs to be a consistent extension so that any embedding is extendible.
The previous theorem can be extended:

Theorem 3.10 (Sacks [194])
Let C be a countable upper semilattice and let f be an embedding
of (C,6) in (D,6). Let D be a consistent and countable extension
of C. Then, f can be extended by an embedding of (D,6) into (D,6).

3.3. Initial segments of D

Another way to strengthen the study of possible embeddings is to consider
embeddings on initial segments of D



338 14. Structure of the Turing degrees

Definition 3.11. A initial segment of D is a downward-closed set of
degrees. A final segment is an upward-closed set of degrees. }

An embedding on an initial segment gives us complete information on all
the degrees which are below those of the image of the embedding. For
example the construction of a minimal degree indicates to us that the or-
der a < b of two elements a, b can be embedded into an initial segment ofD.
The existence of a minimal degree with a strong minimal cover (see Defini-
tion 1.15) indicates to us that the order a < b < c of three elements a, b, c
can be embedded into an initial segment of D. By elaborating on the con-
struction of minimal degrees, Lachlan and Lebeuf obtained the following
remarkable result.

Theorem 3.12 (Lachlan et Lebeuf [137])
A countable partial order embeds into an initial segment of (D,6) i↵ it
is an upper semilattice with a smallest element.

The proof of Lachlan and Lebeuf is done little by little, the most di�cult
step being to show it for any finite upper semilattice with a smallest el-
ement. This is a non-trivial modification of the construction of minimal
degrees. Consider for example the partial diamond order given by a 6
b1, a 6 b2, b1, b2 6 c and b1, b2 incomparable. We must then construct
two minimal degrees b1,b2, such that b1 [ b2 = c, and such that b1,b2

are the only non-computable degrees found under c. Such a construction is
based on a forcing with computable uniform f-trees, as explained in Sec-
tion 1.1. One can for example build with such a forcing a set X = X0�X1

such that X0 and X1 are incomparable and minimal, and such that every-
thing which is computed by X is either under X0, either under X1, or can
recompute X. The detailed proof can be consulted in [177] or [142].

Note that the theorem of Lachlan and Lebeuf gives a complete characteri-
zation of Turing ideals of the form D(6 a) for a certain degree a (i.e., the
set of elements which are found under a): these are the upper semilattices
which are at most countable, having a smallest and a largest element.

We can push the theorem of Lachlan and Lebeuf a little further:

Theorem 3.13 (Abraham et Shore [2])
A partial order of cardinality !1 is isomorphic to an initial segment
of (D,6) i↵ it is an upper semilattice with a smallest element, and in
which each element has a most countably many predecessors.

In particular if one makes the assumption of the continuum hypothesis,
that completely characterizes exactly the possible initial segments of the



4. First-order theory of D 339

partial order (D,6). If we do not make the assumption of the continuum
hypothesis, then things get complicated:

Theorem 3.14 (Groszek et Slaman [81])
There is a model of ZFC in which there is an uncountable partial order
with a smallest element and for which each element has a finite number of
predecessors, and which be embedded into an initial segment of (D,6).

4. First-order theory of D

We now discuss the complexity of D. The question that interests us is the
following: given a first-order statement which concerns the Turing degrees,
can we decide whether the latter is satisfied or not? The language that
we can use consists only of the relations 6, < or =, but it will be possible
to extend this language to whatever is definable with 6, < or =. For
example 0, the minimal degree, is definable as being the only degree which
satisfies the formula F (x) = 8y x 6 y. We can then for example express
the existence of a minimal degree as follows: 9x (0 < x ^ 8y 6 x (y =
0 _ y = x)). The fact that 0 can be defined by the formula F (x) makes it
possible to get rid of it with an equivalent formula:

9z (F (z) ^ 9x (z < x ^ 8y 6 x (y = z _ y = x))).

It is of course longer, and we will therefore allow ourselves these language
extensions. We will use in particular the function with two arguments [
which gives us the join of two degrees, and which is also definable by the
formula

F (x,y, z) = x 6 z ^ y 6 z ^ 8a ((x 6 a ^ y 6 a)! z 6 a).

We easily verify that for all a,b 2 D, the degree a [ b is the unique
degree z such that F (a,b, z).

Now let’s come back to our question: given a statement about Turing
degrees, can we decide whether the latter is true or false? The question
is a priori of great complexity if we approach it directly: a statement of
the type 9a amounts to a statement of the type “does there exist a set X
such that”. This is a second-order quantification, that is to say, relating
not to integers, but to sets of integers. This kind of quantification will be
discussed in detail in Part IV. The statements with quantifications on the
integers being already undecidable, it is a safe bet that this is also the case
for statements on Turing degrees. We can nevertheless show that if the
formula is of the type 89 or of the type 98, we can then decide whether it
is true or false. This constitutes our first theorem on the subject:



340 14. Structure of the Turing degrees

Theorem 4.1 (Lerman [142] (théorème 4.4) et Shore [207])
The ⇧0

2 theory of (D,6), i.e., the set of ⇧0
2 statements true in (D,6),

is decidable.

To prove the previous theorem, it is essentially enough to see that the
converse of Theorem 3.9 is true:

Lemma 4.2. Let C be a finite upper semilattice and let D be a finite
extension of C. Then, D is a consistent extension i↵ any embedding f
of (C,6) into (D,6) can be extended to an embedding of (D,6) into (D,6
). ?

Proof. Theorem 3.9 gives us a direction of the lemma. Suppose now
that D is not a consistent extension of C. If an element of d 2 D is such
that a, b 6 d but a [ b ⇥ d, it su�ces to consider an embedding which
associates a [ b with a [ b. It will then be impossible to extend such an
embedding to D. Suppose now that a degree of D is below a degree of C.
By Theorem 3.12, there exists an embedding of C on an initial segment
of D. Here again, such an embedding cannot be extended to a degree
lower than a degree of C.

We now have the necessary ingredient to show Theorem 4.1:

Proof of Theorem 4.1. Consider a statement of the form

8c1, . . . , 8cn 9d1, . . . , dm F (c1, . . . , cn, d1, . . . , dm),

where F is a Boolean combination of atomic formulas. Let C be the finite
set of the possible models of upper semilattices generated by ci and com-
patible with the conditions given by F . If C is empty, then the formula
is not satisfied without even considering the part of F mentioning the di.
Otherwise, for all the models of C, we check if this model can be completed
in a way compatible with the conditions given by F , and in such a way that
the di are a consistent extension. If this is the case the formula is true,
otherwise it is false.

This is the limit of what is decidable. Lachlan [134] showed that the ⇧0
3 the-

ory was no longer so.

Theorem 4.3 (Schmerl (see Corollary 4.6 of [142]))
The ⇧0

3 theory of (D,6) is undecidable.

How complex is the theory of (D,6)? Can it be decided, for example,
using the Turing jump, or even using the disjoint union of all the finite it-
erations of the Turing jump? We will see that it is not the case: the theory



4. First-order theory of D 341

of (D,6) is of maximal complexity. What do we mean by this? Con-
sider T2, the second-order theory of (N,⇥,+, 0, 1), i.e., the set of second-
order formulas which are true in N. Recall that a second-order formula is
of the form 8X 9Y . . . F (X,Y, . . . ) where the variables X,Y, . . . are sets
of integers, and where F is a first-order formula, parameterized by these
sets.

The theory T2 is therefore the set of second-order formulas which are true
in N. If we have access to T2, we can know if a formula of the first-order
theory of (D,6) is true: the quantifications 9a and 8a can be replaced
by quantifications on the elements of 2N and using Theorem 9-3.4 rela-
tivized to the parameters of the second-order, which allows to transform a
⌃0

n
(X,Y, . . . ) predicate into a ⌃n formula of arithmetic, we can transform

a formula of the first-order F of (D,6) into an equivalent second-order
formula F ⇤ of (N,⇥,+, 0, 1). Simpson showed that the reverse was also
true: through ingenious coding, it is possible to transform a formula of
second-order arithmetic into an equivalent formula of (D,6).

Let us insist, before going further, on the extreme complexity of T2. We
will study in Part IV all the details of the complexity of T2 restricted to
⇧1

1 formulas, that is to say restricted to formulas within which the second-
order quantifications are all universal. We will see that this theory already
has a considerably high Turing degree compared to ;0 or even all finite
iterations of ;0. This Turing degree is nevertheless well defined and it is
absolute in the sense that the truth value of a ⇧1

1 formula will be the same
in the transitive models of set theory sharing the same computable ordinals
( see Part IV for a formal definition). From the level of ⇧1

2 complexity of the
formulas, this meaning becomes more vague. The truth value of this kind
of formula will however remain unchanged in all the transitive models of
Set Theor,y which this time share not only the same computable ordinals,
but the same countable ordinals. Subject to accepting the absoluteness
of countable ordinals, the truth of the ⇧1

2 formulas is also absolute. The
Turing degree of the ⇧1

2 level of T2 is itself higher than all the Turing
degrees discussed in this book (it is in a way the supremum of all the
⇧1

1 singletons, of which we will see the definition in Section 30-4). The
truth value of a ⇧1

3 formula may di↵er between two ZFC models which
share the same ordinals, and the meaning that there is to say, that such
a formula is true or false vanishes here a little more. As for the Turing
degree of the ⇧1

3 theory of T2, from where we are, that is to say the world
of computable things, from which we observe the structure of the universe,
even the best telescopes do not allow us to see it: it is simply too far away
from us.

Here then is the complexity of the theory of Turing degrees! We deliver
here the modern proof of Simpson’s theorem, which di↵ers from that which



342 14. Structure of the Turing degrees

was originally produced, and which presents its own interest. Simpson’s
proof follows from the following theorem.

Theorem 4.4 (Slaman et Woodin [214])
Let R ✓ D

n for n 2 N be a countable set of n-tuples of Turing de-
grees. Then, R is definable in (D,6) with a finite number of param-
eters. Formally, there is a formula F (x1, . . . , xn, y1, . . . , ym) and pa-
rameters p1, . . . ,pm 2 D such that (a1, . . . ,an) 2 D i↵ F (a1, . . . ,an,
p1, . . . ,pm) is true in (D,6).

Let us see immediately how to use Theorem 4.4 to show Simpson’s theorem:
it su�ces to code a standard model of arithmetics in the Turing degrees.

Theorem 4.5 (Simpson [209])
The first-order theory of the Turing degrees is many-one equivalent to
that of second-order arithmetic.

Proof. We have already seen in the previous paragraphs how to trans-
form a statement of (D,6) into an equivalent statement of second-order
arithmetic. Now let’s see how to do the reverse.

The idea is to code a standard model of (N,+,⇥, 0, 1) in the Turing degrees.
Such a model will be coded by a finite set of parameters coding a set N of
Turing degrees which represent N, with a specific degree representing 0 and
another representing 1. The relations + and ⇥ are also coded by a finite
set of parameters.

It is possible to create a formula of D which checks whether a finite set
of parameters encodes well the standard model of arithmetic: it is simply
necessary to check the axioms of Robinson arithmetic (see Section 9-2.3),
which are in finite number, and then check that any subset of the model
has a smallest element. We can refer to Theorem 9-3.13 to see that these
conditions are necessary and su�cient to verify that we are indeed dealing
with the standard model of integers. The universal quantification “any
subset of the model has a smallest element” can be replaced by a universal
quantification on the Turing degrees used as parameters to encode subsets
of N (our set of degrees which represents N).

Given a formula F of second-order arithmetic, we can finally transform it
into an equivalent formula F ⇤ in D, by replacing the quantifications on
the sets by quantifications on the parameters encoding these sets. The
second-order formula of arithmetic will therefore be interpreted in D by
the formula: there are parameters encoding a standard model of arithmetic,
such that F ⇤ is verified in this model.



4. First-order theory of D 343

Now let’s move on to the Slaman and Woodin coding. The following lemma
constitutes the di�cult part of the proof. It is based on a forcing which
may seem relatively simple in principle, but the execution of which is subtle
and requires a lot of trickery to be completed.

Lemma 4.6 (Slaman et Woodin [214]). Any countable anti-chain in
the Turing degrees is definable with three parameters. ?

Proof. Let (an)n2N be an anti-chain in the uring degrees and let b be an
upper bound of this anti-chain. We are going to define two degrees g0,g1

such that for any degree y 6 b not bounding any ai then g0 [ y and g1 [ y
have a greatest lower bound and this greatest lower bound is y. In other
words, any degree both below g0 [ y and below g1 [ y must also be
below y. Conversely there will exist for every i a degree both below g0 [ ai
and below g1 [ ai which will not be below ai. It follows that each ai will
be a minimal element satisfying the formula

F (x) = x 6 b ^ 9c (c ⇥ x ^ c 6 g0 [ x ^ c 6 g1 [ x).

In particular, the degrees ai will be exactly the degrees x satisfying the
formula F (x) ^ 8y 6 x ¬F (y). The fact that the ai form an anti-chain is
used only to define them as minimal solutions of F , but no longer occurs
thereafter.

We will use for the construction of g0 and g1 the following fact: every
Turing degree contains a set X computable in any infinite subset of X.
We can see it as follows: given any set Y we define X as being the set of
prefixes � � Y , via an encoding of the finite strings by integers.

Let B be a representative of b. Let An be a representative of an computable
in any of its infinite subsets. We will define two sets G0, G1 such that for
all i, there exists C 66T Ai such that C 6T G0 � Ai and C 6T G1 � Ai,
and such that for all Y 6T B and all D such that D 6T G0�Y and D 6T

G1 � Y , then Y >T D or Y >T Aj for some j.

We proceed via a forcing which presents similarities with that of Theo-
rem 2.7. Let P be the set of conditions of the form (�0,�1, n) for �0,�1 2
2<N with |�0| = |�1| and n 2 N. The integer n is used to restrict the
possible extensions, the string �0 is used for the first generic G0 and the
string �1 for the second generic G1. As in the proof of Theorem 2.7, we can
see G0 and G1 as being constructed by columns. The integer n indicates
that the construction will henceforth be restricted on the first n columns:
for a column k 6 n, if a /2 Ak then there is no restriction for the bit hk, ai
of the two generics. If on the other hand a 2 Ak, then the bit hk, ai of the
two generics must be identical (without necessarily being equal to Ak(a)).
Formally we have (�0,�1, n) ⌫ (⌧0, ⌧1,m) if �0 � ⌧0, if �1 � ⌧1, if n 6 m,



344 14. Structure of the Turing degrees

and if moreover the following condition is satisfied: for all k 6 n, then for
all a 2 Ak such that |�i| 6 hk, ai < |⌧i|, the values ⌧0(hk, ai) and ⌧1(hk, ai)
must be the same.

Consider two su�ciently generic sets G0, G1 for this forcing. For each An

and for a 2 An su�ciently large, we will have G0(hn, ai) = G1(hn, ai), by
definition of what is a valid extension in this forcing. In particular, the
sets Xn

0 , X
n

1 ✓ An defined by Xn

i
(a) = 0 if a /2 An and Xn

i
(a) = Gi(hn, ai)

otherwise are the same except for a finite number of bits and are therefore
both computed by G0 �An and G1 �An.

Let us show that if G0, G1 are su�ciently generic, then no An can compute
the setsXn

0 , X
n

1 thus defined. Given a condition h�0,�1, ni, we can take any
extension for the side �0 —this then forces some bits of the extension for the
other side. By considering the fact that there are necessarily infinite subsets
of An not computable in An, we can necessarily find an extension ⌧0 ⌫ �0
such that for a given functional �e, �e(An) never produces the restriction
of ⌧0 which will be used to make it a prefix of X0

n
— either because �e(An)

will be partial, or because it will produce a string incompatible with the
prefix of X0

n
thus forced. Since X1

n
matches X0

n
except over a finite number

of bits, then An will not compute X1
n
either. This gives us the first part

of what we are trying to show: for any An there exists a computable set
in G0 �An and in G1 �An, but not in An.

It remains to show that for any Y 6T B such that Y does not compute
any An, if G0 � Y and G1 � Y compute the same set C, then Y >T C.
Let p = (�0,�1, n) be a condition and let �e0 ,�e1 be a pair of functionals.
We first separate the chain �0 from our condition p. If there exists x
and ⌧0 ⌫ �0 such that for all ⇢0 ⌫ ⌧0 we have �e0(Y � ⇢0, x) ", then
we consider a string ⌧1 such that (⌧0, ⌧1, n) forms a valid extension, for
which we will have forced the partiality of �e0(Y � G0). Suppose now
that for all x and for all ⌧0 ⌫ �0 there exists ⇢0 ⌫ ⌧0 such that �e0(Y �
⇢0, x) #. Suppose first that there exists an extension ⌧ ⌫ �0 such that
for any extension ⇢0, ⇢1 ⌫ ⌧ and for all x we have �e0(Y � ⇢0, x) #= a
and �e0(Y �⇢1, x) #= b implies a = b. Then, we can only produce a unique
set via �e0(Y �G0) for any generic G0, and this set is then computable in Y .
We therefore force �e0(Y � G0) to compute something which is already
computable in Y . Suppose finally that for all ⌧ ⌫ �0 there exists ⇢0, ⇢1 ⌫ ⌧
and x such that �e0(Y � ⇢0, x) #6= �e0(Y � ⇢1, x) #. We then use the
following lemma.

Lemma 4.7. For all ⌧ ⌫ � there are x and two extensions ⇢0, ⇢1 ⌫ ⌧ which
di↵er on only one bit and such that

�e0(Y � ⇢0, x) #= a 6= �e0(Y � ⇢1, x) #= b.



4. First-order theory of D 345

Proof. It su�ces for that to find two extensions of ⌧ of the same size
and incompatible on a certain x. Let i0, . . . , ik be the bits on which these
extensions di↵er. We invert the i0 bit in the first extension and expand it to
get an a0 value for x. If a0 6= a we are done. Otherwise we in turn reverse i1
in this new extension, which we extend further to obtain a value a1, and
so on. If each value a1 = a2 = · · · = ak�1 then ak�1 6= b, and our string
now di↵ers by only one bit from the one that produced b.

Using the lemma, we compute with the help of Y a sequence of triples (⌧0,m,
⌧1,m, im, xm)m2N with im < im+1 such that each ⌧0,m, ⌧1,m di↵er on exactly
the bit im and are incompatible on xn. The sequence of bits (im)m2N is
an infinite Y -computable sequence. Recall that our forcing condition is of
the form (�0,�1, n). If there exists im such that im = hk, ai for k > m,
then for any extension ⌧ 0 of �1 such that h⌧0,m, ⌧ 0, ni is a valid extension,
then h⌧1,m, ⌧ 0, ni forms also one, because there is no constraint on the im
bit. We can therefore find an extension of ⌧ 0 of �1 which forces a value
for xn (assuming that we cannot force the partiality on that side), and
we take the extension ⌧0,m or ⌧1,m of �0 which forces a di↵erent value.
We therefore force �e0(Y � G0) and �e0(Y � G1) to be di↵erent. If at
present there does not exist im = hk, ai for k > m, then by the pigeonhole
principle, there must exist a certain k 6 m for which an infinity of im
is of the form hk, ai. Also it is not possible to have Ak(a) = 1 for each
of these im, because we would then have an infinite Y -computable subset
of Ak, or by hypothesis all infinite subset of Ak computes Ak, and Y does
not compute Ak. There must therefore exist ⌧0,m, ⌧1,m and im = hk, ai such
that Ak(a) = 0. Again, any extension ⌧ 0 of �1 that is compatible with ⌧0,m
will also be compatible with ⌧1,m, because there is no constraint on the
bit im. We can then find an extension ⌧ 0 of �1 which forces a value on xm

— unless we can force partiality on that side — and choose an extension
from ⌧0,m and ⌧1,m which forces another value on xm. This concludes the
proof.

And there you go. The proof of the previous lemma was not without
di�culty, but we are now almost out of the woods. Finally, we show that
any countable subset of Dn can be encoded in the Turing degrees.

Proof of Theorem 4.4. In what follows, the capitalized variables de-
note sets or sequences of Turing degrees. Let R ✓ D

n be a countable set
of n-tuples. Let b be an upper bound on the set of degrees concerned by R
(i.e. on the union of the projections of R on each coordinate). Let (xi)i2N

be a list of all the degrees below b. Note that b is only an upper bound
and therefore that some xi may not be degrees of R.



346 14. Structure of the Turing degrees

We then find an anti-chain (ck
i
)k6n,i2N such that B = (ck

i
[ xi)k6n,i2N

forms a set of computably independent degrees (we can easily show that
such an anti-chain exists, by finite extensions). For k 6 n fixed, let Ck =
(ck

i
)i2N. We finally define

S = {c1
i1
[ xi1 [ . . . [ cn

in
[ xin : (xi1 , . . . ,xin) 2 R}.

Note that as B is computably independent, for an element a 2 S, there
exists an n-tuple of degrees b1, . . . ,bn 2 B, unique except for the order,
such that a = b1 [ . . . [ bn. Moreover, the computational independence
of B also guarantees that for b1 there exists a unique i 6 n such that b1 =
ci
m
[ xm for a certain m, and this m is also unique. The same goes

for b2, b3, . . . , which allows to define R as follows: (x1, . . . ,xn) 2 R if

x1 6 b^· · ·^xn 6 b^9y1 2 C1 . . . 9yn 2 Cn (x1 [y1)[ . . . [ (xn [yn) 2 S.

As each Ci and as S are anti-chains, they are definable according to Lemma 4.6.
Such a formula is therefore definable in the Turing degrees.

Slaman and Woodin used their coding technique as a starting point for a
complex study of the rigidity of the Turing degrees. A structure is said to
be rigid if it does not admit any automorphism other than identity, that
is to say in the case of degrees, of bijections f : D ! D such that a 6
b $ f(a) 6 f(b). For example, the structure (R,+⇥,6) of the real
numbers is a rigid structure. Given an automorphism f : R ! R we must
have f(0) + f(1) = f(1) and therefore f(0) = 0, then f(1) = f(1) ⇥ f(1)
and therefore f(1) = 1. Using f(n + 1) = f(n) + 1 we show that f is
necessarily the identity on N, and we show the same thing on Q by playing
with the multiplication. To finish, by using the order and the fact that Q
is dense in R we then show that f is necessarily the identity on R.

Can we do something similar in the Turing degrees or can we “swap” two
degrees a and b, and extend this swap consistently into an automorphism
over D ? The question remains open for the moment, even if Slaman and
Woodin have considerably reduced the possibilities:

Theorem 4.8 (Slaman et Woodin [215])
Any automorphism over Turing degrees is the identity over D(> 000).

Slaman and Woodin use this result to show in the same article that the
double jump function is definable in the Turing degrees. This result will
be extended later by Shore and Slaman:



5. Structure of the c.e. degrees 347

Theorem 4.9 (Shore et Slaman [208])
The Turing jump is definable in the Turing degrees, without parameters.

This result can then in turn be used to show that any automorphism over
the Turing degrees is the identity over D(> 00). The following question
remains open, however.

Question 4.10. Is there an automorphism other than identity on the Tur-
ing degrees? ?

5. Structure of the c.e. degrees

Another important area of research in Turing degrees is to restrict their
study to a well-chosen subset. In this vein, the study of the structure (R,6)
of the c.e. degrees is certainly the most developed. We make here a quick
summary of the main results concerning them.

Let’s start right away with Sacks’ impressive density theorem, which shows
itself at the end of what is certainly one of the most complex infinite injury
priority constructions:

Theorem 5.1 (Sacks (1964))
The order (R,6) is dense: given c.e. sets A <T B, there exists a c.e.
set C such that A <T C <T B.

The structure of the c.e. degrees therefore appears to be quite di↵erent
from that of the Turing degrees. There are still some similarities: one
thus verifies without problem that any pair of elements admits an upper
bound, the set A � B being c.e. if A and B are both c.e. Just like in the
Turing degrees, we can show —by working out on the construction of two
incomparable degrees — that there exists a countable set of computably
independent c.e. degrees [169]. As for the Turing degrees, we can deduce
that any countable partial order embeds into the c.e. degrees, which shows,
as Sacks noticed, that the ⇧0

1 theory of the c.e. degrees is decidable.

Theorem 5.2 (Sacks [196])
The ⇧0

1 theory of the c.e. degrees is decidable.

Given an existential formula on the c.e. degrees, it su�ces to check whether
it is compatible with the axioms of a partial order. If so, it is true, otherwise
it is false.



348 14. Structure of the Turing degrees

As with Turing degrees, the question of embedding is not really satisfactory
in itself. A more interesting question is that of lattice embedding, such
that the least upper bounds are sent to the least upper bounds, and the
greatest lower bounds to the greatest lower bounds. The lattice embeddings
mentioned henceforth will be considered as satisfying this constraint. The
existence of a minimal pair of c.e. degrees shows for example that the
diamond lattice generated by incomparable c0, c1 (that is to say with c0 \
c1 < c0, c1 < c0 [ c1) can be embedded in this way in Turing degrees, the
greatest lower bound being the degree 0.

The construction of a minimal pair of c.e. degrees (see Theorem 13-5.2)
has been exploited to show much stronger results. A lattice is said to be
distributive if a \ (b [ c) = (a [ b) \ (a [ c).

Theorem 5.3 (Thomason [232] Lachlan and Lerman)
Any countable distributive lattice embeds into the c.e. degrees

Regarding non-distributive lattices, some can embed into the c.e. degrees [135]
and others can’t [138]. No characterization is known to date.

We have seen that the theory of Turing degrees is of maximum complexity,
the same goes for that of the c.e. degrees, which has the same complexity
as the theory consisting of the true formulas of first-order arithmetic. The
first result in this direction was obtained by Harrington and Shelah [87]
who showed that the first-order theory of the c.e. degrees was undecidable.
The proof was then simplified and improved by Harrington and Slaman,
then by Nies, Shore and Slaman [175], who proved the following theorem.

Theorem 5.4 (Nies, Shore et Slaman [175])
We can e↵ectively transform a statement F of first-order arithmetic into
a statement F ⇤ on the c.e. degrees, such that F is true in (N,+,⇥, 0, 1)
i↵ F ⇤ is true in (R,6).

Finally, Lempp, Nies and Slaman [141] showed that the ⇧0
3 theory of the c.e.

degrees was already undecidable, which leaves open the following question:

Question 5.5. Is the ⇧0
2 theory of the c.e. degrees decidable? ?


	Preamble
	Acknowledgements
	Introduction
	What is a computable function?
	What are the non-computable functions?
	Motivation
	Overview of computability theory

	Cantor's infinity
	Equipotence and subpotence
	Cantor–Bernstein's theorem
	Countable sets
	Cantor's diagonal argument
	Non-computable reals
	Cantor space

	I Classical Computability Theory
	Foundations of computability
	Computable functions
	Computable sets
	Universal program
	SMN theorem
	Padding lemma
	Kleene's fixed point theorem
	Computably enumerable sets

	Turing degrees
	Finite strings
	Computation with oracle
	Relativization of proofs
	Use property
	Turing degrees
	Turing jump
	Limit computability
	Finite extensions method
	Low degrees
	High degrees

	Arithmetic hierarchy
	Elementary properties
	Arithmetic hierarchy and computability
	Relativization to an oracle
	Many-one degrees
	Post's theorem
	Rice's theorem
	Arithmetic codes

	Church-Turing thesis
	The Entscheidungsproblem and the quest for the Grail
	Church-Turing thesis
	Detailed study of recursive functions

	Immunity and function growth
	Immune sets
	DNC functions
	Arslanov completeness criterion
	Hyperimmune functions
	Computably dominated degrees
	Martin's domination theorem
	High or DNC degrees

	01 classes and PA degrees
	Binary trees
	Topology on Cantor space
	01 classes
	Basis theorems
	Basis for perfect 01 classes
	PA degrees
	Finitely-branching trees

	Formal interlude
	A little history: the crisis of foundations
	First-order logic
	Incompleteness theorems of Gödel
	ZFC system

	Cohen forcing
	Formulas of second-order arithmetic
	01/01 forcing
	Effective genericity
	0n/0n forcing
	Arbitrarily generic sets

	Effective forcing
	Fundamentals of forcing
	Forcing relation
	Forcing with trees
	Computational complexity and forcing question

	Quest for natural degrees
	Three emblematic undecidable problems
	Natural Turing degrees
	Mass problems

	Priority method and c.e. degrees
	C.e. degrees
	Permitting method
	01 priority method (finite injury)
	02 priority method
	02 priority method (infinite injury)

	Structure of the Turing degrees
	Minimal degrees
	Nature of D
	Universality of D
	First-order theory of D
	Structure of the c.e. degrees


	II Algorithmic Randomness
	Introduction
	Kolmogorov complexity and random numbers
	Kolmogorov complexity
	Random numbers in the sense of Chaitin/Levin
	Characterization of prefix-free complexity
	K-trivial sets

	Borel classses, measure and computability
	A little history
	First intuitions about algorithmic randomness
	Borel classes
	Lebesgue measure

	Martin-Löf randomness
	Intuitions and definitions
	The Martin-Löf and Chaitin/Levin randoms coincide
	Randomness and Turing degrees
	Randomness and DNC degree

	Other randomness notions
	Weak-2 randomess
	Relativization of randomness
	2-randomness
	Incomplete random

	The K-trivials
	Lowness and bases for randomness
	Golden run
	Characterization of the c.e. K-trivials
	New proof that K-trivial implies low-for-K


	III Reverse Mathematics
	Introduction
	Quest for optimal axioms
	Comparison of theorems

	Second-order arithmetic
	`3́9`42`"̇613A``45`47`"603AZ2 language
	`3́9`42`"̇613A``45`47`"603AZ2 theory
	Semantics of second-order arithmetic
	Formalizing analysis in `3́9`42`"̇613A``45`47`"603AZ2
	RCA0 and computable mathematics
	ACA0 and the arithmetic hierarchy
	WKL0 and the compactness argument
	More powerful systems

	Induction and conservation
	RCA0-provably computable functions
	Weak PA subsystems
	Induction hierarchies
	Primitive recursive functions and RCA0
	Bounded comprehension scheme
	Conservation theorems
	Hilbert program

	Computable reductions
	-reduction
	Computational reduction
	Weihrauch reduction
	Reduction games
	Strong reductions

	Ramsey's theorem
	Overview
	Ramsey's theorem in the arithmetic hierarchy
	Infinite pigeonhole principle
	Ramsey's theorem for pairs


	IV Higher Computability Theory
	Introduction
	Motivation
	Panorama of higher computability
	Correspondence with classical computability theory

	Transfinite numbers
	Motivation: computable iterations of the jump
	Ordinals
	Induction and transfinite recurrence
	Countable and uncountable ordinals
	Effective ordinals
	Relativization

	Hyperarithmetic sets
	Kleene hierarchy
	02 singletons
	Relativization
	Effective Borel hierarchy

	Beyond hyperarithmetic
	A little history: the Moscow school
	Second-order quantifications
	The 11 sets and the well-orders
	Analogies between 11 sets and c.e. sets
	Kleene/Souslin equivalence theorem
	Other boundedness theorems
	Hyperarithmetic reduction

	11 and 11 classes
	Canonical representation of 11 classes
	Basis theorems for 11 classes
	The continuum hypothesis for 11 classes
	Some emblematic 11 classes
	Study of a very special 11 class
	11 singletons

	The systems ATR0 and 11-CA0
	Definitions
	ATR0 and 11-CA0 in higher computability
	HYP is not a model of ATR0
	Non-standard ordinal codes
	Separation between ATR0 and 11-CA0

	Higher randomness
	Overview of the different classes
	11-randomness
	11-Martin-Löf randomness
	11-randomness

	Exercise solutions
	Bibliography
	Notations
	Notations
	Index
	Index







