CR06 - Final exam

Exercise 1:

Let $A=\left\{\langle a, b\rangle: W_{a} \subseteq W_{b}\right\}$. What is the complexity of A in the arithmetical hierarchy? Show that it is complete for its complexity.

Solution 1:

$$
A=\left\{\langle a, b\rangle: \forall n\left(n \notin W_{a} \vee n \in W_{b}\right)\right\}
$$

Since $n \notin W_{a}$ is Π_{1}^{0} and $n \in W_{b}$ is Σ_{1}^{0}, the overall formula is Π_{2}^{0}. Let us show that A is Π_{2}^{0}-complete. Let a be such that $W_{a}=\mathbb{N}$. Then $T o t=\{b:\langle a, b\rangle \in A\}$, so $T o t$ is many-one reducible to A. Since $T o t$ is Π_{2}^{0}-complete, then A is Π_{2}^{0}-complete.

Exercise 2: **

Let A be a non-c.e. set. Use the finite extension method to prove that there exists a set B which is hyperimmune relative to A, and such that A is not B-c.e.

Solution 2:

We want to satisfy the following requirements for every $e \in \mathbb{N}$:

- $\mathcal{R}_{e}: \exists x \Phi_{e}^{A}(x) \uparrow \vee \exists x \Phi_{e}^{A}(x)<p_{B}(x)$.
- $\mathcal{S}_{e}: W_{e}^{B} \neq A$.

If all the \mathcal{R}-requirements are satisfied, then B is A-hyperimmune. If all the \mathcal{S}-requirements are satisfied, then A is not B-c.e.

Satisfying \mathcal{R}_{e}. Assume σ_{n} is defined. If Φ_{e}^{A} is partial, then simply take $\sigma_{n+1}=\sigma_{n}$. Otherwise, let $\sigma_{n+1}=\sigma_{n} 0000 \ldots 0001$ where we add $\Phi_{e}^{A}\left(\left|\sigma_{n}\right|\right)+10$'s in the string. This way, $p_{B}\left(\left|\sigma_{n}\right|\right)>\Phi_{e}^{A}\left(\left|\sigma_{n}\right|\right)$.

Satisfying \mathcal{S}_{e}. Assume σ_{n} is defined. We have three cases:

- Case 1: there is some $k \notin A$ and some $\tau \succeq \sigma_{n}$ such that $k \in W_{e}^{\tau}$. Then let $\sigma_{n+1}=\tau$.
- Case 2: there is some $k \in A$ such that for every $\tau \succeq \sigma_{n}, k \notin W_{e}^{\tau}$. Then let $\sigma_{n+1}=\sigma_{n}$.
- Case 3: none of the cases above hold. Then $A=\left\{k: \exists \tau \succeq \sigma_{n} k \in W_{e}^{\tau}\right\}$ so A is c.e, contradiction.

Exercise 3:

Let A be a non-c.e. set. Prove that every non-empty Π_{1}^{0} class \mathcal{C} has a member X such that A is not X-c.e.

Solution 3:

We build an infinite decreasing sequence of non-empty Π_{1}^{0} classes

$$
\mathcal{C}=\mathcal{C}_{0} \supseteq \mathcal{C}_{1} \supseteq \mathcal{C}_{2} \supseteq \ldots
$$

such that for every e, and every $X \in \mathcal{C}_{e+1}, W_{e}^{X} \neq A$. If we succeed, then for every $X \in \bigcap_{n} \mathcal{C}_{n}, A$ is not X-c.e. Since an infinite decreasing sequence of compacts is compact, $\bigcap_{n} \mathcal{C}_{n} \neq \emptyset$, so pick any $X \in \mathcal{C}_{e+1}, W_{e}^{X} \neq A$.

Construction: Assume \mathcal{C}_{e} is defined. We have three cases:

- Case 1: there is some $n \notin A$ such that for every $X \in \mathcal{C}_{e}, n \in W_{e}^{X}$. Then let $\mathcal{C}_{e+1}=\mathcal{C}_{e}$.
- Case 2: there is some $n \in A$ and some $X \in \mathcal{C}_{e}$ such that $n \notin W_{e}^{X}$. Then let $\mathcal{C}_{e+1}=\left\{X \in \mathcal{C}_{e}: n \notin W_{e}^{X}\right\}$
- Case 3: none of the cases above hold. Then $A=\left\{n: \forall X \in \mathcal{C}_{e} n \in W_{e}^{X}\right\}$ so A is c.e, contradiction.

Cohesive sets

Let $\vec{R}=R_{0}, R_{1}, R_{2}, \ldots$ be an infinite sequence of sets of integers. An infinite set $C \subseteq \mathbb{N}$ is \vec{R}-cohesive (or cohesive for \vec{R}) if for every $i \in \mathbb{N}, C \subseteq^{*} R_{i}$ or $C \subseteq^{*} \bar{R}_{i}$. Here, $X \subseteq^{*} Y$ is a notation to say that X is included in Y up to finitely many elements, that is, $|X \backslash Y|<\infty$.

Exercise 4: *

Show that for every countable sequence of sets $\vec{R}=R_{0}, R_{1}, R_{2}, \ldots$, there exists an infinite \vec{R}-cohesive set.

Solution 4:

We build an infinite sequence of integers $a_{0}<a_{1}<\ldots$ together with an infinite decreasing sequence of infinite sets $\mathbb{N}=A_{0} \supseteq A_{1} \supseteq A_{2} \supseteq \ldots$ as follows: First, $a_{0}=0$ and $\mathbb{N}=A_{0}$. Assuming a_{n} and A_{n} are defined. Pick $a_{n+1} \in A_{n}$ such that $a_{n+1}>a_{n}$. Such element exists since A_{n} is infinite. Then, if $A_{n} \cap R_{n}$ is infinite, let $A_{n+1}=A_{n} \cap R_{n}$. Otherwise, let $A_{n+1}=A_{n} \cap \bar{R}_{n}$.

Let $C=\left\{a_{0}<a_{1}<\ldots\right\}$. We claim that C is \vec{R}-cohesive. Indeed, given n,

$$
\left\{a_{n+1}, a_{n+2}, \ldots\right\} \subseteq A_{n+1}
$$

and either $A_{n+1} \subseteq R_{n}$ or $A_{n+1} \subseteq \bar{R}_{n}$, so $C \subseteq^{*} R_{n}$ or $C \subseteq^{*} \bar{R}_{n}$.

Exercise 5: *

Let $\vec{R}=R_{0}, R_{1}, \ldots$ be the sequence of all computable sets. Show that no infinite \vec{R}-cohesive set is computable.

Solution 5:

Suppose for the contradiction that $C=\left\{a_{0}<a_{1}<\ldots\right\}$ is a computable \vec{R}-cohesive set. Then $D=\left\{a_{2 n}: n \in \mathbb{N}\right\}$ is also computable. In particular, $C \cap D$ and $C \cap \bar{D}$ are both infinite. But since C is cohesive for all the computable sets, $C \subseteq^{*} D$ or $C \subseteq^{*} \bar{D}$, contradiction.

Exercise 6:

Let $\vec{R}=R_{0}, R_{1}, \ldots$ be the sequence of all computable sets. Show that every infinite \vec{R} cohesive set is hyperimmune.

Solution 6:

There are multiple ways to prove this, using either the definition of hyperimmunity in terms for c.e. arrays or in terms of functions. Deeply, they are the same. Let C be an infinite \vec{R}-cohesive set.

Let $\left\{F_{f(n)}: n \in \mathbb{N}\right\}$ be a c.e. array. Let us show that $C \cap F_{f(n)}=\emptyset$ for some n.
We can define a computable function $g: \mathbb{N} \rightarrow \mathbb{N}$ such that (1) for every n, there is some k such that $g(n)=f(k)$, and (2) for every $n, \max F_{g(n)}<\min F_{g(n+1)}$. In other words, $\left\{F_{g(n)}: n \in \mathbb{N}\right\}$ is a c.e. sub-array of $\left\{F_{f(n)}: n \in \mathbb{N}\right\}$ which is strictly increasing in a strong sense. Then the set $R=\bigcup_{n} F_{g(2 n)}$ is computable. Since C is \vec{R}-cohesive, $C \subseteq \subseteq^{*} R$ or $C \subseteq^{*} \bar{R}$.

If $C \subseteq^{*} R$, then for any n sufficiently large, $C \cap F_{g(2 n+1)}=\emptyset$. If $C \subseteq^{*} \bar{R}$, then for any n sufficiently large, $C \cap F_{g(2 n)}=\emptyset$. In both cases, there is some n such that $C \cap F_{f(n)}=\emptyset$.

Recall that a sequence of sets R_{0}, R_{1}, \ldots is uniformly computable if there is a total computable function $f: \mathbb{N} \rightarrow \mathbb{N}$ such that for every $i, \Phi_{f(i)}=R_{i}$. In other words, a sequence of sets is uniformly computable if there is a total computable function Φ_{e} such that for every $i, x \in \mathbb{N}, \Phi_{e}(\langle i, x\rangle)=1$ iff $x \in R_{i}$.

From now on, unless specified, we fix an infinite sequence of uniformly computable sets $\vec{R}=R_{0}, R_{1}, R_{2}, \ldots$ Given a string $\sigma \in 2^{<\mathbb{N}}$, we write

$$
\vec{R}_{\sigma}=\bigcap_{\sigma(i)=0} \bar{R}_{i} \bigcap_{\sigma(i)=1} R_{i} \quad \text { and } \quad T_{\vec{R}}=\left\{\sigma \in 2^{<\mathbb{N}}: \vec{R}_{\sigma} \text { is infinite }\right\}
$$

Exercise 7: **

Show that $T_{\vec{R}}$ is an infinite tree and that any path through $T_{\vec{R}}$ computes an \vec{R}-cohesive infinite set.

Solution 7:

This is an effective variation of the construction of Exercise 4. Let P be an infinite path through $T_{\vec{R}}$.

We build an infinite P-sequence of integers $a_{0}<a_{1}<\ldots$ as follows: First, $a_{0}=0$. Assuming a_{n} is defined, pick $a_{n+1} \in \vec{R}_{\sigma}$ larger than a_{n}, where σ is the initial segment of P of length $n+1$. Such an element exists since \vec{R}_{σ} is infinite, as P is a path through $T_{\vec{R}}$.

Let $C=\left\{a_{0}<a_{1}<\ldots\right\}$. We claim that C is \vec{R}-cohesive. Indeed, given n,

$$
\left\{a_{n+1}, a_{n+2}, \ldots\right\} \subseteq \vec{R}_{\sigma}
$$

, where σ is the initial segment of P of length $n+1$. By definition of \vec{R}_{σ}, either $\sigma(n)=0$ and $\vec{R}_{\sigma} \subseteq \bar{R}_{n}$, or $\sigma(n)=1$ and $\vec{R}_{\sigma} \subseteq R_{n}$. In both cases $C \subseteq^{*} R_{n}$ or $C \subseteq^{*} \bar{R}_{n}$.

Exercise 8: *

Show that any PA degree relative to \emptyset^{\prime} computes an infinite \vec{R}-cohesive set.

Solution 8:

Let us show that $T_{\vec{R}}$ is \emptyset^{\prime}-co-c.e. Indeed, the predicate " \vec{R}_{σ} is infinite" is uniformly Π_{2}^{0}, so $T_{\vec{R}}$ is Π_{2}^{0}, hence \emptyset^{\prime}-co-c.e.

We have seen that for every co-c.e. tree T, there is a computable tree S such that $[S]=[T]$. By relativization, there is a \emptyset^{\prime}-computable tree $S \subseteq 2^{<\mathbb{N}}$ such that $[S]=\left[T_{\vec{R}}\right]$.

Let P be a PA degree relative to \emptyset^{\prime}. In particular, P computes an infinite path through S, hence through $T_{\vec{R}}$, so by the previous question, P computes an infinite \vec{R}-cohesive set.

Exercise 9:

Show that a set X computes an infinite \vec{R}-cohesive set iff X^{\prime} computes a path through $T_{\vec{R}}$.

Solution 9:

Suppose X computes an infinite \vec{R}-cohesive set C. Let $T=\left\{\sigma \in 2^{<\mathbb{N}}: C \subseteq^{*} \vec{R}_{\sigma}\right\}$. Note that for every n, there is exactly one $\sigma \in T$ of length n. Moreover, T is closed by prefix, and $T \subseteq T_{\vec{R}}$, so T is the set of initial segments of a path P through $T_{\vec{R}}$. Last, T is C^{\prime} computable, since for every n, it suffices to search for some σ of length n and some $k \in \mathbb{N}$ such that $\forall x \in C\left(x>k \rightarrow x \in \vec{R}_{\sigma}\right)$. Then P is C^{\prime}-computable.

Suppose now X^{\prime} computes a path P through $T_{\vec{R}}$. By Shoenfield's limit lemma, there is a $\Delta_{2}^{0}(X)$ approximation of P, that is, a uniformly X-computable sequence of sets P_{0}, P_{1}, \ldots such that for every $x, \lim _{y} P_{y}(x)=P(x)$. We construct a sequence of integers $a_{0}<a_{1}<\ldots$ as follows. First, $a_{0}=0$. Assuming a_{n} is defined, search for some $t>n$ and some $a_{n+1} \in \vec{R}_{\sigma}$ greater than a_{n} such that $\sigma=P_{t} \upharpoonright_{n+1}$. Such element must be found, since for any sufficiently large $t, P_{t} \upharpoonright_{n+1}=P \upharpoonright_{n+1}$, and then \vec{R}_{σ} is infinite. Let $C=\left\{a_{0}, a_{1}, \ldots\right\}$.

We claim that $C \subseteq^{*} \vec{R}_{\tau}$ for every $\tau \prec P$. Fix $\tau \prec P$ of length k. Let t_{0} be such that for every $t>t_{0}, P_{t} \upharpoonright_{k}=P \upharpoonright_{k}$. Then for every $n>t_{0}, a_{n+1} \in \vec{R}_{\sigma}$ for some σ and $t>n$ such that $\sigma=P_{t} \upharpoonright_{n+1}$. Since $t>n>t_{0}$, then $P_{t} \upharpoonright_{k}=P \upharpoonright_{k}=\tau$, so $\tau \prec \sigma$. It follows that $a_{n+1} \in \vec{R}_{\sigma} \subseteq \vec{R}_{\tau}$.

Exercise 10: *

Show that if there is no computable \vec{R}-cohesive set, then there is no low \vec{R}-cohesive set. Hint: use the previous questions.

Solution 10:

Suppose C is a low \vec{R}-cohesive set. Then by Exercise $9, C^{\prime}$ computes a path through $T_{\vec{R}}$. Since C is low, then $C^{\prime} \equiv_{T} \emptyset^{\prime}$, so $T_{\vec{R}}$ has a \emptyset^{\prime}-computable path, so still by Exercise 9 , there is a computable infinite \vec{R}-cohesive set.

Exercise 11: **

Show that there is a uniformly computable sequence of sets $\vec{R}=R_{0}, R_{1}, R_{2}, \ldots$ such that [$T_{\vec{R}}$] contains only DNC_{2} functions relative to \emptyset^{\prime}.

Solution 11:

For every n, and x, let $R_{n}(x)=1-i$ if $\Phi_{n}^{\theta_{x}^{\prime}}(n)[x] \downarrow=i$, and $R_{n}(x)$ is the parity of x otherwise. Here, \emptyset_{x}^{\prime} is the approximation of the halting set at time x.

We claim that every $f \in\left[T_{\vec{R}}\right]$ is DNC_{2}. Indeed, suppose that $\Phi_{n}^{Q^{\prime \prime}}(n) \downarrow=i$ for some $i<2$. Let s_{0} be the length of the oracle used for this computation. Let s_{1} be sufficiently large such that $\emptyset_{s_{1}}^{\prime} \upharpoonright_{s_{0}}=\emptyset^{\prime} \upharpoonright_{s_{0}}$, and let $s_{2}>s_{1}$ be larger than the time of computation of $\Phi_{n}^{\Phi^{\prime \prime}}(n) \downarrow$. Then for every $x>s_{2}, \Phi_{n}^{\emptyset_{x}^{\prime}}(n)[x] \downarrow=\Phi_{n}^{\emptyset_{n}^{\prime}}(n)=i$.

Thus, for every string σ of length larger than n, if R_{σ} is infinite, then $\sigma(n)=1-i$. It follows that for every path $f \in\left[T_{\vec{R}}\right], f(n)=1-i$, so $f(n) \neq \Phi_{n}^{థ^{\prime}}(n)$.

Exercise 12: *

Show that there exists a uniformly computable sequence of sets $\vec{R}=R_{0}, R_{1}, R_{2}, \ldots$ such that computing an infinite \vec{R}-cohesive set is maximally difficult, in the sense that for every uniformly computable sequence of sets $\vec{S}=S_{0}, S_{1}, S_{2}, \ldots$, every infinite \vec{R}-cohesive set computes an infinite \vec{S}-cohesive set. Hint: just combine the previous questions.

Solution 12:

By Exercise 11, there is a uniformly computable sequence of sets \vec{R} such that $\left[T_{\vec{R}}\right]$ contains only DNC_{2} functions relative to \emptyset^{\prime}. We claim that computing an infinite \vec{R}-cohesive is maximally difficult. Let \vec{s} be a uniformly computable sequence of sets and let C be an \vec{R}-cohesive set. By Exercise $9, C^{\prime}$ computes a member of $\left[T_{\vec{R}}\right]$, hence C^{\prime} is of PA degree relative to \emptyset^{\prime}. In particular, C^{\prime} computes a member of $\left[T_{\vec{S}}\right]$, so by Exercise $9, C$ computes an infinite \vec{S}-cohesive set.

