Exercise 1: **

Let $A = \{ \langle a, b \rangle : W_a \subseteq W_b \}$. What is the complexity of A in the arithmetical hierarchy? Show that it is complete for its complexity.

Solution 1:

$$A = \{ \langle a, b \rangle : \forall n (n \notin W_a \lor n \in W_b) \}$$

Since $n \notin W_a$ is Π_1^0 and $n \in W_b$ is Σ_1^0 , the overall formula is Π_2^0 . Let us show that A is Π_2^0 -complete. Let a be such that $W_a = \mathbb{N}$. Then $Tot = \{b : \langle a, b \rangle \in A\}$, so Tot is many-one reducible to A. Since Tot is Π_2^0 -complete, then A is Π_2^0 -complete.

Exercise 2: **

Let A be a non-c.e. set. Use the finite extension method to prove that there exists a set B which is hyperimmune relative to A, and such that A is not B-c.e.

Solution 2:

We want to satisfy the following requirements for every $e \in \mathbb{N}$:

- \mathcal{R}_e : $\exists x \Phi_e^A(x) \uparrow \lor \exists x \Phi_e^A(x) < p_B(x)$.
- $\mathcal{S}_e: W_e^B \neq A.$

If all the \mathcal{R} -requirements are satisfied, then B is A-hyperimmune. If all the \mathcal{S} -requirements are satisfied, then A is not B-c.e.

Satisfying \mathcal{R}_e . Assume σ_n is defined. If Φ_e^A is partial, then simply take $\sigma_{n+1} = \sigma_n$. Otherwise, let $\sigma_{n+1} = \sigma_n 0000 \dots 0001$ where we add $\Phi_e^A(|\sigma_n|) + 1$ 0's in the string. This way, $p_B(|\sigma_n|) > \Phi_e^A(|\sigma_n|)$.

Satisfying S_e . Assume σ_n is defined. We have three cases:

- Case 1: there is some $k \notin A$ and some $\tau \succeq \sigma_n$ such that $k \in W_e^{\tau}$. Then let $\sigma_{n+1} = \tau$.
- Case 2: there is some $k \in A$ such that for every $\tau \succeq \sigma_n, k \notin W_e^{\tau}$. Then let $\sigma_{n+1} = \sigma_n$.
- Case 3: none of the cases above hold. Then $A = \{k : \exists \tau \succeq \sigma_n k \in W_e^{\tau}\}$ so A is c.e, contradiction.

Exercise 3: ***

Let A be a non-c.e. set. Prove that every non-empty Π_1^0 class C has a member X such that A is not X-c.e.

Solution 3:

We build an infinite decreasing sequence of non-empty Π^0_1 classes

$$\mathcal{C} = \mathcal{C}_0 \supseteq \mathcal{C}_1 \supseteq \mathcal{C}_2 \supseteq \dots$$

such that for every e, and every $X \in \mathcal{C}_{e+1}$, $W_e^X \neq A$. If we succeed, then for every $X \in \bigcap_n \mathcal{C}_n$, A is not X-c.e. Since an infinite decreasing sequence of compacts is compact, $\bigcap_n \mathcal{C}_n \neq \emptyset$, so pick any $X \in \mathcal{C}_{e+1}$, $W_e^X \neq A$.

Construction: Assume C_e is defined. We have three cases:

- Case 1: there is some $n \notin A$ such that for every $X \in \mathcal{C}_e, n \in W_e^X$. Then let $\mathcal{C}_{e+1} = \mathcal{C}_e$.
- Case 2: there is some $n \in A$ and some $X \in C_e$ such that $n \notin W_e^X$. Then let $C_{e+1} = \{X \in C_e : n \notin W_e^X\}$
- Case 3: none of the cases above hold. Then $A = \{n : \forall X \in \mathcal{C}_e n \in W_e^X\}$ so A is c.e, contradiction.

Cohesive sets

Let $\vec{R} = R_0, R_1, R_2, \ldots$ be an infinite sequence of sets of integers. An infinite set $C \subseteq \mathbb{N}$ is \vec{R} -cohesive (or cohesive for \vec{R}) if for every $i \in \mathbb{N}, C \subseteq^* R_i$ or $C \subseteq^* \overline{R_i}$. Here, $X \subseteq^* Y$ is a notation to say that X is included in Y up to finitely many elements, that is, $|X \setminus Y| < \infty$.

Exercise 4: *

Show that for every countable sequence of sets $\vec{R} = R_0, R_1, R_2, \ldots$, there exists an infinite \vec{R} -cohesive set.

Solution 4:

We build an infinite sequence of integers $a_0 < a_1 < \ldots$ together with an infinite decreasing sequence of infinite sets $\mathbb{N} = A_0 \supseteq A_1 \supseteq A_2 \supseteq \ldots$ as follows: First, $a_0 = 0$ and $\mathbb{N} = A_0$. Assuming a_n and A_n are defined. Pick $a_{n+1} \in A_n$ such that $a_{n+1} > a_n$. Such element exists since A_n is infinite. Then, if $A_n \cap R_n$ is infinite, let $A_{n+1} = A_n \cap R_n$. Otherwise, let $A_{n+1} = A_n \cap \overline{R}_n$.

Let $C = \{a_0 < a_1 < \dots\}$. We claim that C is \vec{R} -cohesive. Indeed, given n,

$$\{a_{n+1}, a_{n+2}, \dots\} \subseteq A_{n+1}$$

and either $A_{n+1} \subseteq R_n$ or $A_{n+1} \subseteq \overline{R}_n$, so $C \subseteq^* R_n$ or $C \subseteq^* \overline{R}_n$.

Exercise 5: *

Let $\vec{R} = R_0, R_1, \ldots$ be the sequence of all computable sets. Show that no infinite \vec{R} -cohesive set is computable.

Solution 5:

Suppose for the contradiction that $C = \{a_0 < a_1 < ...\}$ is a computable \hat{R} -cohesive set. Then $D = \{a_{2n} : n \in \mathbb{N}\}$ is also computable. In particular, $C \cap D$ and $C \cap \overline{D}$ are both infinite. But since C is cohesive for all the computable sets, $C \subseteq^* D$ or $C \subseteq^* \overline{D}$, contradiction.

Exercise 6: **

Let $\vec{R} = R_0, R_1, \ldots$ be the sequence of all computable sets. Show that every infinite \vec{R} cohesive set is hyperimmune.

Solution 6:

There are multiple ways to prove this, using either the definition of hyperimmunity in terms for c.e. arrays or in terms of functions. Deeply, they are the same. Let C be an infinite \vec{R} -cohesive set.

Let $\{F_{f(n)} : n \in \mathbb{N}\}$ be a c.e. array. Let us show that $C \cap F_{f(n)} = \emptyset$ for some n.

We can define a computable function $g: \mathbb{N} \to \mathbb{N}$ such that (1) for every n, there is some k such that g(n) = f(k), and (2) for every n, $\max F_{g(n)} < \min F_{g(n+1)}$. In other words, $\{F_{g(n)}: n \in \mathbb{N}\}$ is a c.e. sub-array of $\{F_{f(n)}: n \in \mathbb{N}\}$ which is strictly increasing in a strong sense. Then the set $R = \bigcup_n F_{g(2n)}$ is computable. Since C is \vec{R} -cohesive, $C \subseteq^* R$ or $C \subset^* \overline{R}$.

If $C \subseteq^* R$, then for any *n* sufficiently large, $C \cap F_{g(2n+1)} = \emptyset$. If $C \subseteq^* \overline{R}$, then for any *n* sufficiently large, $C \cap F_{g(2n)} = \emptyset$. In both cases, there is some *n* such that $C \cap F_{f(n)} = \emptyset$.

Recall that a sequence of sets R_0, R_1, \ldots is uniformly computable if there is a total computable function $f : \mathbb{N} \to \mathbb{N}$ such that for every $i, \Phi_{f(i)} = R_i$. In other words, a sequence of sets is uniformly computable if there is a total computable function Φ_e such that for every $i, x \in \mathbb{N}, \Phi_e(\langle i, x \rangle) = 1$ iff $x \in R_i$.

From now on, unless specified, we fix an infinite sequence of uniformly computable sets $\vec{R} = R_0, R_1, R_2, \ldots$ Given a string $\sigma \in 2^{<\mathbb{N}}$, we write

$$\vec{R}_{\sigma} = \bigcap_{\sigma(i)=0} \overline{R}_i \bigcap_{\sigma(i)=1} R_i \quad \text{and} \quad T_{\vec{R}} = \{ \sigma \in 2^{<\mathbb{N}} : \vec{R}_{\sigma} \text{ is infinite } \}$$

Exercise 7: **

Show that $T_{\vec{R}}$ is an infinite tree and that any path through $T_{\vec{R}}$ computes an \vec{R} -cohesive infinite set.

Solution 7:

This is an effective variation of the construction of Exercise 4. Let P be an infinite path through $T_{\vec{R}}$.

We build an infinite *P*-sequence of integers $a_0 < a_1 < \ldots$ as follows: First, $a_0 = 0$. Assuming a_n is defined, pick $a_{n+1} \in \vec{R}_{\sigma}$ larger than a_n , where σ is the initial segment of *P* of length n + 1. Such an element exists since \vec{R}_{σ} is infinite, as *P* is a path through $T_{\vec{R}}$.

Let $C = \{a_0 < a_1 < ...\}$. We claim that C is \vec{R} -cohesive. Indeed, given n,

$$\{a_{n+1}, a_{n+2}, \dots\} \subseteq \vec{R}_{\sigma}$$

, where σ is the initial segment of P of length n + 1. By definition of \vec{R}_{σ} , either $\sigma(n) = 0$ and $\vec{R}_{\sigma} \subseteq \overline{R}_n$, or $\sigma(n) = 1$ and $\vec{R}_{\sigma} \subseteq R_n$. In both cases $C \subseteq^* R_n$ or $C \subseteq^* \overline{R}_n$.

Exercise 8: *

Show that any PA degree relative to \emptyset' computes an infinite *R*-cohesive set.

Solution 8:

Let us show that $T_{\vec{R}}$ is \emptyset' -co-c.e. Indeed, the predicate " \vec{R}_{σ} is infinite" is uniformly Π_2^0 , so $T_{\vec{R}}$ is Π_2^0 , hence \emptyset' -co-c.e.

We have seen that for every co-c.e. tree T, there is a computable tree S such that [S] = [T]. By relativization, there is a \emptyset' -computable tree $S \subseteq 2^{<\mathbb{N}}$ such that $[S] = [T_{\vec{R}}]$.

Let P be a PA degree relative to \emptyset' . In particular, P computes an infinite path through S, hence through $T_{\vec{R}}$, so by the previous question, P computes an infinite \vec{R} -cohesive set.

Exercise 9: ***

Show that a set X computes an infinite \vec{R} -cohesive set iff X' computes a path through $T_{\vec{R}}$.

Solution 9:

Suppose X computes an infinite \vec{R} -cohesive set C. Let $T = \{\sigma \in 2^{<\mathbb{N}} : C \subseteq^* \vec{R}_\sigma\}$. Note that for every n, there is exactly one $\sigma \in T$ of length n. Moreover, T is closed by prefix, and $T \subseteq T_{\vec{R}}$, so T is the set of initial segments of a path P through $T_{\vec{R}}$. Last, T is C'-computable, since for every n, it suffices to search for some σ of length n and some $k \in \mathbb{N}$ such that $\forall x \in C \ (x > k \to x \in \vec{R}_{\sigma})$. Then P is C'-computable.

Suppose now X' computes a path P through $T_{\vec{R}}$. By Shoenfield's limit lemma, there is a $\Delta_2^0(X)$ approximation of P, that is, a uniformly X-computable sequence of sets P_0, P_1, \ldots such that for every x, $\lim_y P_y(x) = P(x)$. We construct a sequence of integers $a_0 < a_1 < \ldots$ as follows. First, $a_0 = 0$. Assuming a_n is defined, search for some t > n and some $a_{n+1} \in \vec{R}_{\sigma}$ greater than a_n such that $\sigma = P_t \upharpoonright_{n+1}$. Such element must be found, since for any sufficiently large t, $P_t \upharpoonright_{n+1} = P \upharpoonright_{n+1}$, and then \vec{R}_{σ} is infinite. Let $C = \{a_0, a_1, \ldots\}$.

We claim that $C \subseteq^* \vec{R}_{\tau}$ for every $\tau \prec P$. Fix $\tau \prec P$ of length k. Let t_0 be such that for every $t > t_0$, $P_t \upharpoonright_k = P \upharpoonright_k$. Then for every $n > t_0$, $a_{n+1} \in \vec{R}_{\sigma}$ for some σ and t > nsuch that $\sigma = P_t \upharpoonright_{n+1}$. Since $t > n > t_0$, then $P_t \upharpoonright_k = P \upharpoonright_k = \tau$, so $\tau \prec \sigma$. It follows that $a_{n+1} \in \vec{R}_{\sigma} \subseteq \vec{R}_{\tau}$.

Exercise 10: *

Show that if there is no computable \vec{R} -cohesive set, then there is no low \vec{R} -cohesive set. Hint: use the previous questions.

Solution 10:

Suppose C is a low \vec{R} -cohesive set. Then by Exercise 9, C' computes a path through $T_{\vec{R}}$. Since C is low, then $C' \equiv_T \emptyset'$, so $T_{\vec{R}}$ has a \emptyset' -computable path, so still by Exercise 9, there is a computable infinite \vec{R} -cohesive set.

Exercise 11: **

Show that there is a uniformly computable sequence of sets $\vec{R} = R_0, R_1, R_2, \ldots$ such that $[T_{\vec{R}}]$ contains only DNC₂ functions relative to \emptyset' .

Solution 11:

For every *n*, and *x*, let $R_n(x) = 1 - i$ if $\Phi_n^{\emptyset'_x}(n)[x] \downarrow = i$, and $R_n(x)$ is the parity of *x* otherwise. Here, \emptyset'_x is the approximation of the halting set at time *x*.

We claim that every $f \in [T_{\vec{R}}]$ is DNC₂. Indeed, suppose that $\Phi_n^{\emptyset'}(n) \downarrow = i$ for some i < 2. Let s_0 be the length of the oracle used for this computation. Let s_1 be sufficiently large such that $\emptyset'_{s_1} \upharpoonright_{s_0} = \emptyset' \upharpoonright_{s_0}$, and let $s_2 > s_1$ be larger than the time of computation of $\Phi_n^{\emptyset'}(n) \downarrow$. Then for every $x > s_2$, $\Phi_n^{\emptyset'_x}(n)[x] \downarrow = \Phi_n^{\emptyset'_n}(n) = i$.

Thus, for every string σ of length larger than n, if R_{σ} is infinite, then $\sigma(n) = 1 - i$. It follows that for every path $f \in [T_{\vec{R}}], f(n) = 1 - i$, so $f(n) \neq \Phi_n^{\emptyset'}(n)$.

Exercise 12: *

Show that there exists a uniformly computable sequence of sets $\vec{R} = R_0, R_1, R_2, \ldots$ such that computing an infinite \vec{R} -cohesive set is maximally difficult, in the sense that for every uniformly computable sequence of sets $\vec{S} = S_0, S_1, S_2, \ldots$, every infinite \vec{R} -cohesive set computes an infinite \vec{S} -cohesive set. Hint: just combine the previous questions.

Solution 12:

By Exercise 11, there is a uniformly computable sequence of sets \vec{R} such that $[T_{\vec{R}}]$ contains only DNC₂ functions relative to \emptyset' . We claim that computing an infinite \vec{R} -cohesive is maximally difficult. Let \vec{s} be a uniformly computable sequence of sets and let C be an \vec{R} -cohesive set. By Exercise 9, C' computes a member of $[T_{\vec{R}}]$, hence C' is of PA degree relative to \emptyset' . In particular, C' computes a member of $[T_{\vec{S}}]$, so by Exercise 9, C computes an infinite \vec{S} -cohesive set.