CR11 - Graded exercise sheet - Week 1

A binary string is a finite sequence $b_{0} b_{1} \ldots b_{k-1}$ of bits $b_{i} \in\{0,1\}$. The concatenation of two strings σ and τ is denoted by $\sigma \tau$. One can code binary strings into integers by multiple ways. For example, the string $b_{0} b_{1} \ldots b_{k-1}$ can be coded by $p_{0}^{b_{0}} p_{1}^{b_{1}} \ldots p_{k-1}^{b_{k-1}}$, where p_{i} is the i th prime number. The actual representation of strings into integers does not matter, as long as the coding is computable. One can then define a set of strings to be computable if the corresponding set of integers is computable.

Exercise 1.1: /4

Given two sets of strings A and B, the concatenation of A and B is the set $A B=\{\sigma \tau: \sigma \in$ A and $\tau \in B\}$. Are the co-c.e. sets of strings closed under concatenation?

Solution 1.1:

By definition of $A B$, a string ρ is in $A B$ iff there is a pair of strings σ, τ such that $\sigma \in A$, $\tau \in B$ and $\rho=\sigma \tau$. By the contrapositive, we can remove ρ from $A B$ iff at some point, for every pair of strings σ, τ such that $\sigma \tau=\rho$, either σ has already left from A, or τ has left from B. Thus there is a computable procedure for enumerating the elements outside of $A B$, so $A B$ is co-c.e.

A partial computable function Φ_{e} is strictly partial if it is not total. In other words, it is strictly partial if $\Phi_{e}(x) \uparrow$ for some $x \in \mathbb{N}$.

Exercise 1.2: /6

Show that the set Part $=\left\{e: \Phi_{e}\right.$ is strictly partial $\}$ is \emptyset^{\prime}-c.e.
Hint: consider the set $A=\left\{(e, x): \forall y \Phi_{e}(x)[y] \uparrow\right\}$.

Solution 1.2:

$$
\text { Part }=\left\{e: \exists x \forall y \Phi_{e}(x)[y] \uparrow\right\}
$$

Consider the following set $A=\left\{(e, x): \forall y \Phi_{e}(x)[y] \uparrow\right\}$. Let us show that $A \leq_{T} \emptyset^{\prime}$.
Consider the total computable function $g: \mathbb{N}^{2} \rightarrow \mathbb{N}$ such that for every e and $x, g(e, x)$ is the code of the program which on any input, searches for some y such that $\Phi_{e}(x)[y] \downarrow$. If found, then the program halts, otherwise, it loops forever. Then $(e, x) \in A$ iff $\forall y \Phi_{e}(x)[y] \uparrow$ iff $\Phi_{g(e, x)}(g(e, x)) \uparrow$ iff $g(e, x) \notin \emptyset^{\prime}$.

Since A is \emptyset^{\prime}-computable, then it is \emptyset^{\prime}-c.e., so by closure of the \emptyset^{\prime}-c.e. sets under projection, Part is \emptyset^{\prime}-c.e.

Recall that a set A is \emptyset^{\prime}-c.e. if it is the domain of a partial \emptyset^{\prime}-computable function.

Exercise 1.3: /10

Show that a set $A \subseteq \mathbb{N}$ is \emptyset^{\prime}-c.e. iff there is a total computable function $f: \mathbb{N} \times \mathbb{N} \rightarrow\{0,1\}$ such that for every $x, x \in A$ iff $\lim _{y} f(x, y)=1$. Note that if $x \notin A$, then the limit $\lim _{y} f(x, y)$ does not necessarily exist.

Solution 1.3:

- Suppose first that $A \subseteq \mathbb{N}$ is \emptyset^{\prime}-c.e. Let e be such that $A=\operatorname{dom} \Phi_{e}^{\emptyset^{\prime}}$. Let $\emptyset^{\prime}[0], \emptyset^{\prime}[1], \ldots$ be a c.e. approximation of \emptyset^{\prime}. Define $f(x, y)=1$ iff $\Phi_{e}^{\emptyset^{\prime}[y]}(x)[y] \downarrow$ and $\Phi_{e}^{\emptyset^{\prime}[y+1]}(x)[y+1] \downarrow$ with the same use.
- if $x \in A$, then $\Phi_{e}^{\emptyset^{\prime}}(x) \downarrow$. Let σ be the use of this computation, and let t be such that σ is a prefix of $\emptyset^{\prime}[t]$. Then for every $y>t, f(x, y)=1$, hence $\lim _{y} f(x, y)=1$.
- if $\lim _{y} f(x, y)=1$, there there is some threshold t such that for every $y>t$, $\Phi_{e}^{\emptyset^{\prime}[y]}(x)[y] \downarrow$ and $\Phi_{e}^{\emptyset^{\prime}[y+1]}(x)[y+1] \downarrow$ with the same use. It follows that the use of the computation is a true initial segment of \emptyset^{\prime}, and therefore that $\Phi_{e}^{\emptyset^{\prime \prime}}(x) \downarrow$, so $x \in A$.
- Suppose now that there is a total computable function $f: \mathbb{N} \times \mathbb{N} \rightarrow\{0,1\}$ such that for every $x, x \in A$ iff $\lim _{y} f(x, y)=1$. Then $A=\{x: \exists t \forall y>t f(x, y)=1\}$. Consider the set $B=\{(x, t): \forall y>t f(x, y)=1\}$. Let us show that $B \leq_{T} \emptyset^{\prime}$.
Consider the total computable function $g: \mathbb{N}^{2} \rightarrow \mathbb{N}$ such that for every e and x, $g(e, x)$ is the code of the program which on any input, searches for some $y>t$ such that $f(x, y) \neq 1$. If found, then the program halts, otherwise, it loops forever. Then $(e, x) \in B$ iff $\forall y>t f(x, y)=1$ iff $\Phi_{g(e, x)}(g(e, x)) \uparrow$ iff $g(e, x) \notin \emptyset^{\prime}$.
Since B is \emptyset^{\prime}-computable, then it is \emptyset^{\prime}-c.e., so by closure of the \emptyset^{\prime}-c.e. sets under projection, A is \emptyset^{\prime}-c.e.

