A binary string is a finite sequence $b_0b_1 \dots b_{k-1}$ of bits $b_i \in \{0, 1\}$. The concatenation of two strings σ and τ is denoted by $\sigma\tau$. One can code binary strings into integers by multiple ways. For example, the string $b_0b_1 \dots b_{k-1}$ can be coded by $p_0^{b_0}p_1^{b_1} \dots p_{k-1}^{b_{k-1}}$, where p_i is the *i*th prime number. The actual representation of strings into integers does not matter, as long as the coding is computable. One can then define a set of strings to be computable if the corresponding set of integers is computable.

Exercise 1.1: /4

Given two sets of strings A and B, the *concatenation* of A and B is the set $AB = \{\sigma\tau : \sigma \in A \text{ and } \tau \in B\}$. Are the co-c.e. sets of strings closed under concatenation?

Solution 1.1:

By definition of AB, a string ρ is in AB iff there is a pair of strings σ, τ such that $\sigma \in A$, $\tau \in B$ and $\rho = \sigma \tau$. By the contrapositive, we can remove ρ from AB iff at some point, for every pair of strings σ, τ such that $\sigma \tau = \rho$, either σ has already left from A, or τ has left from B. Thus there is a computable procedure for enumerating the elements outside of AB, so AB is co-c.e.

A partial computable function Φ_e is *strictly partial* if it is not total. In other words, it is strictly partial if $\Phi_e(x) \uparrow$ for some $x \in \mathbb{N}$.

Exercise 1.2: /6

Show that the set $\mathsf{Part} = \{e : \Phi_e \text{ is strictly partial }\}$ is \emptyset' -c.e. Hint: consider the set $A = \{(e, x) : \forall y \Phi_e(x)[y] \uparrow\}$.

Solution 1.2:

$$\mathsf{Part} = \{e : \exists x \forall y \Phi_e(x)[y] \uparrow \}$$

Consider the following set $A = \{(e, x) : \forall y \Phi_e(x)[y] \uparrow\}$. Let us show that $A \leq_T \emptyset'$.

Consider the total computable function $g: \mathbb{N}^2 \to \mathbb{N}$ such that for every e and x, g(e, x) is the code of the program which on any input, searches for some y such that $\Phi_e(x)[y] \downarrow$. If found, then the program halts, otherwise, it loops forever. Then $(e, x) \in A$ iff $\forall y \Phi_e(x)[y] \uparrow$ iff $\Phi_{g(e,x)}(g(e,x)) \uparrow$ iff $g(e,x) \notin \emptyset'$.

Since A is \emptyset' -computable, then it is \emptyset' -c.e., so by closure of the \emptyset' -c.e. sets under projection, Part is \emptyset' -c.e.

Recall that a set A is \emptyset' -c.e. if it is the domain of a partial \emptyset' -computable function.

Exercise 1.3: /10

Show that a set $A \subseteq \mathbb{N}$ is \emptyset' -c.e. iff there is a total computable function $f : \mathbb{N} \times \mathbb{N} \to \{0, 1\}$ such that for every $x, x \in A$ iff $\lim_y f(x, y) = 1$. Note that if $x \notin A$, then the limit $\lim_y f(x, y)$ does not necessarily exist.

Solution 1.3:

- Suppose first that $A \subseteq \mathbb{N}$ is \emptyset' -c.e. Let e be such that $A = \operatorname{dom} \Phi_e^{\emptyset'}$. Let $\emptyset'[0], \emptyset'[1], \dots$ be a c.e. approximation of \emptyset' . Define f(x, y) = 1 iff $\Phi_e^{\emptyset'[y]}(x)[y] \downarrow$ and $\Phi_e^{\emptyset'[y+1]}(x)[y+1] \downarrow$ with the same use.
 - if $x \in A$, then $\Phi_e^{\emptyset'}(x) \downarrow$. Let σ be the use of this computation, and let t be such that σ is a prefix of $\emptyset'[t]$. Then for every y > t, f(x, y) = 1, hence $\lim_y f(x, y) = 1$.
 - if $\lim_{y} f(x,y) = 1$, there there is some threshold t such that for every y > t, $\Phi_e^{\emptyset'[y]}(x)[y] \downarrow$ and $\Phi_e^{\emptyset'[y+1]}(x)[y+1] \downarrow$ with the same use. It follows that the use of the computation is a true initial segment of \emptyset' , and therefore that $\Phi_e^{\emptyset'}(x) \downarrow$, so $x \in A$.
- Suppose now that there is a total computable function $f : \mathbb{N} \times \mathbb{N} \to \{0, 1\}$ such that for every $x, x \in A$ iff $\lim_{y} f(x, y) = 1$. Then $A = \{x : \exists t \forall y > t f(x, y) = 1\}$. Consider the set $B = \{(x, t) : \forall y > t f(x, y) = 1\}$. Let us show that $B \leq_T \emptyset'$.

Consider the total computable function $g : \mathbb{N}^2 \to \mathbb{N}$ such that for every e and x, g(e, x) is the code of the program which on any input, searches for some y > t such that $f(x, y) \neq 1$. If found, then the program halts, otherwise, it loops forever. Then $(e, x) \in B$ iff $\forall y > tf(x, y) = 1$ iff $\Phi_{g(e,x)}(g(e, x)) \uparrow$ iff $g(e, x) \notin \emptyset'$.

Since B is \emptyset' -computable, then it is \emptyset' -c.e., so by closure of the \emptyset' -c.e. sets under projection, A is \emptyset' -c.e.