CR11 - Graded exercise sheet - Week 2

Exercise 2.1: /10

Let A be a non-c.e. set. Use the finite extension method to prove that there exists a set B which is not A-c.e. and such that A is not B-c.e.

Solution 2.1:

Recall that $W_{e}^{X}=\operatorname{dom} \Phi_{e}^{X}$. We want to satisfy the following requirements for every $e \in \mathbb{N}$:

- $\mathcal{R}_{e}: W_{e}^{A} \neq B$.
- $\mathcal{S}_{e}: W_{e}^{B} \neq A$.

If all the \mathcal{R}-requirements are satisfied, then B is not A-c.e. If all the \mathcal{S}-requirements are satisfied, then A is not B-c.e.

Satisfying \mathcal{R}_{e}. Assume σ_{n} is defined. Let $x=\left|\sigma_{n}\right|$. If $\Phi_{e}^{A}(x) \uparrow$, then take $\sigma_{n+1}=\sigma_{n} 1$. Otherwise, let $\sigma_{n+1}=\sigma_{n} 0$.

Satisfying \mathcal{S}_{e}. Assume σ_{n} is defined. We have three cases:

- Case 1: there is some $k \notin A$ and some $\tau \succeq \sigma_{n}$ such that $k \in W_{e}^{\tau}$. Then let $\sigma_{n+1}=\tau$.
- Case 2: there is some $k \in A$ such that for every $\tau \succeq \sigma_{n}, k \notin W_{e}^{\tau}$. Then let $\sigma_{n+1}=\sigma_{n}$.
- Case 3: none of the cases above hold. Then $A=\left\{k: \exists \tau \succeq \sigma_{n} k \in W_{e}^{\tau}\right\}$ so A is c.e, contradiction.

Recall that $W_{e}=\operatorname{dom} \Phi_{e}$.

Exercise 2.2: /10

Show that Tot $=\left\{e: W_{e}=\mathbb{N}\right\}$ is Π_{2}^{0}-complete.

Solution 2.2:

First, let us show that Tot is Π_{2}^{0}.

$$
\text { Tot }=\left\{e: \forall x \exists t \Phi_{e}(x)[t] \downarrow\right\}
$$

The predicate $P(e, x, t) \equiv \Phi_{e}(x)[t] \downarrow$ being computable, Tot is Π_{2}^{0}.
Let $A=\{x: \forall y \exists z R(x, y, z)\}$ be a Π_{2}^{0} set. Let us show that $A \leq_{m}$ Tot. Let $f: \mathbb{N} \rightarrow \mathbb{N}$ be the computable function which to every n, associates the code $f(n)$ of the function $\Phi_{f(n)}$ defined as follows: On input y, $\Phi_{f(n)}$ searches for some z such that $R(n, y, z)$ holds. If found, $\Phi_{f(n)}(y) \downarrow$, otherwise $\Phi_{f(n)}(y) \uparrow$.

- If $n \in A$, then for every y, there is some z such that $R(n, y, z)$ holds, so $\Phi_{f(n)}$ is total, so $f(n) \in$ Tot.
- If $n \notin A$, then there is some y such that for every $z, R(n, y, z)$ does not hold, so $\Phi_{f(n)}(y) \uparrow$, hence $f(n) \notin$ Tot.

