Exercise 2.1: /10

Let A be a non-c.e. set. Use the finite extension method to prove that there exists a set B which is not A-c.e. and such that A is not B-c.e.

Solution 2.1:

Recall that $W_e^X = \operatorname{dom} \Phi_e^X$. We want to satisfy the following requirements for every $e \in \mathbb{N}$:

- \mathcal{R}_e : $W_e^A \neq B$.
- $\mathcal{S}_e: W_e^B \neq A.$

If all the \mathcal{R} -requirements are satisfied, then B is not A-c.e. If all the \mathcal{S} -requirements are satisfied, then A is not B-c.e.

Satisfying \mathcal{R}_e . Assume σ_n is defined. Let $x = |\sigma_n|$. If $\Phi_e^A(x) \uparrow$, then take $\sigma_{n+1} = \sigma_n 1$. Otherwise, let $\sigma_{n+1} = \sigma_n 0$.

Satisfying S_e . Assume σ_n is defined. We have three cases:

- Case 1: there is some $k \notin A$ and some $\tau \succeq \sigma_n$ such that $k \in W_e^{\tau}$. Then let $\sigma_{n+1} = \tau$.
- Case 2: there is some $k \in A$ such that for every $\tau \succeq \sigma_n, k \notin W_e^{\tau}$. Then let $\sigma_{n+1} = \sigma_n$.
- Case 3: none of the cases above hold. Then $A = \{k : \exists \tau \succeq \sigma_n k \in W_e^{\tau}\}$ so A is c.e, contradiction.

Recall that $W_e = \operatorname{dom} \Phi_e$.

Exercise 2.2: /10

Show that $Tot = \{e : W_e = \mathbb{N}\}$ is Π_2^0 -complete.

Solution 2.2:

First, let us show that Tot is Π_2^0 .

$$\mathsf{Tot} = \{ e : \forall x \exists t \Phi_e(x)[t] \downarrow \}$$

The predicate $P(e, x, t) \equiv \Phi_e(x)[t] \downarrow$ being computable, Tot is Π_2^0 .

Let $A = \{x : \forall y \exists z R(x, y, z)\}$ be a Π_2^0 set. Let us show that $A \leq_m$ Tot. Let $f : \mathbb{N} \to \mathbb{N}$ be the computable function which to every n, associates the code f(n) of the function $\Phi_{f(n)}$ defined as follows: On input y, $\Phi_{f(n)}$ searches for some z such that R(n, y, z) holds. If found, $\Phi_{f(n)}(y) \downarrow$, otherwise $\Phi_{f(n)}(y) \uparrow$.

- If n ∈ A, then for every y, there is some z such that R(n, y, z) holds, so Φ_{f(n)} is total, so f(n) ∈ Tot.
- If $n \notin A$, then there is some y such that for every z, R(n, y, z) does not hold, so $\Phi_{f(n)}(y) \uparrow$, hence $f(n) \notin \text{Tot.}$