Exercise 3.1: /10

Build a *c.e.* infinite tree $T \subseteq 2^{<\mathbb{N}}$ such that every path computes \emptyset' .

Solution 3.1:

Consider the following c.e. set :

$$T = \{ \sigma \in 2^{<\mathbb{N}} : \exists k > |\sigma| \forall e < |\sigma| \Phi_e(e)[k] \downarrow \leftrightarrow \sigma(e) = 1 \}$$

Let us show that T is a tree, that is, T is closed by prefix. Let $\sigma \in T$ and $\tau \prec \sigma$. Let k witness that $\sigma \in T$. Then k witness that $\tau \in T$.

Let us now show that \emptyset' is the unique path of T. Therefore every path of T computes \emptyset' . Let $P \in [T]$. Let $e \in \mathbb{N}$. Suppose first $\Phi_e(e) \uparrow$. Let $\sigma \prec P$ be longer than e. Then for every $k > |\sigma|, \Phi_e(e)[k] \uparrow$, so $\sigma(e) = 0$, hence P(e) = 0. Suppose now $\Phi_e(e) \downarrow$. Let $\sigma \prec P$ be such that $\Phi_e(e)[|\sigma|] \downarrow$. Then for every $k > |\sigma, \Phi_e(e)[k] \downarrow$, so $\sigma(e) = 1$, so P(e) = 1. Therefore P(e) = 1 iff $\Phi_e(e) \downarrow$. Therefore there is at most one path through T. One can easily see that \emptyset' is a path through T.

A path P in a tree $T \subseteq 2^{<\mathbb{N}}$ is *isolated* if there is some initial segment $\sigma \prec P$ such that $[\sigma] \cap [T] = \{P\}$. In other words, P is isolated if there is some initial segment $\sigma \prec P$ such that for every $\tau \prec P$ with $|\sigma| \leq |\tau|$, exactly one of $\tau 0$ and $\tau 1$ has an infinite subtree below it. A path which is not isolated is a *limit point*.

Exercise 3.2: /10

Let $T \subseteq 2^{\leq \mathbb{N}}$ be a computable tree such that [T] has exactly one limit point P. Show that $P \leq_T \emptyset''$. Hint: try to define a \emptyset'' -computable infinite subtree $S \subseteq T$ which removed all the isolated paths of T, so that P becomes an isolated path of S.

Solution 3.2:

A string σ is *valid* if there is an extension $\tau \succeq \sigma$ such that the subtrees below $\tau 0$ and $\tau 1$ are infinite in T. In other words, a string σ is valid if $[\sigma] \cap [T]$ contains at least 2 elements. Note that the predicate "the subtree below τi is infinite" is Π_1^0 , since it means that for every length ℓ greater than $|\tau|$, there is a node ρ of length ℓ extending τi and in T. Thus, being a valid string is Σ_2^0 .

Let S be the set of valid strings. Note that if σ is valid, its prefixes are valid, and that $\sigma \in T$, so S is a Σ_2^0 subtree of T.

Let us show that [S] contains no isolated point of [T]. Indeed, if X is an isolated point of T, there is some $\sigma \prec X$ such that $[\sigma] \cap [T]$ is a singleton, hence σ is not valid, so $\sigma \notin S$.

Let us now show that P, the unique limit point of T, is in S. Indeed, for every $\sigma \prec P$, since P is not an isolated point, $[\sigma] \cap [T]$ is not a singleton. Since $P \in [\sigma] \cap [T]$, then $[\sigma] \cap [T]$ must contain at least 2 elements, so σ is valid, hence $\sigma \in S$. So any initial segment of P is in S, so $P \in [S]$.

Since $[S] \subseteq [T]$ and any element of T is either a limit point, or an isolated point, $[S] = \{P\}$. It follows that P is an isolated path of S. By relativizing to \emptyset'' , the proposition that for every computable tree, every isolated path is computable, P is \emptyset'' -computable.