CR11 - Graded exercise sheet - Week 3

Exercise 3.1: /10

Build a c.e. infinite tree $T \subseteq 2^{<\mathbb{N}}$ such that every path computes \emptyset^{\prime}.

Solution 3.1:

Consider the following c.e. set :

$$
T=\left\{\sigma \in 2^{<\mathbb{N}}: \exists k>|\sigma| \forall e<|\sigma| \Phi_{e}(e)[k] \downarrow \leftrightarrow \sigma(e)=1\right\}
$$

Let us show that T is a tree, that is, T is closed by prefix. Let $\sigma \in T$ and $\tau \prec \sigma$. Let k witness that $\sigma \in T$. Then k witness that $\tau \in T$.

Let us now show that \emptyset^{\prime} is the unique path of T. Therefore every path of T computes \emptyset^{\prime}. Let $P \in[T]$. Let $e \in \mathbb{N}$. Suppose first $\Phi_{e}(e) \uparrow$. Let $\sigma \prec P$ be longer than e. Then for every $k>|\sigma|, \Phi_{e}(e)[k] \uparrow$, so $\sigma(e)=0$, hence $P(e)=0$. Suppose now $\Phi_{e}(e) \downarrow$. Let $\sigma \prec P$ be such that $\Phi_{e}(e)[|\sigma|] \downarrow$. Then for every $k>\mid \sigma, \Phi_{e}(e)[k] \downarrow$, so $\sigma(e)=1$, so $P(e)=1$. Therefore $P(e)=1$ iff $\Phi_{e}(e) \downarrow$. Therefore there is at most one path through T. One can easily see that \emptyset^{\prime} is a path through T.

A path P in a tree $T \subseteq 2^{<\mathbb{N}}$ is isolated if there is some initial segment $\sigma \prec P$ such that $[\sigma] \cap[T]=\{P\}$. In other words, P is isolated if there is some initial segment $\sigma \prec P$ such that for every $\tau \prec P$ with $|\sigma| \leq|\tau|$, exactly one of $\tau 0$ and $\tau 1$ has an infinite subtree below it. A path which is not isolated is a limit point.

Exercise 3.2: /10
Let $T \subseteq 2^{<\mathbb{N}}$ be a computable tree such that $[T]$ has exactly one limit point P. Show that $P \leq_{T} \emptyset^{\prime \prime}$. Hint: try to define a $\emptyset^{\prime \prime}$-computable infinite subtree $S \subseteq T$ which removed all the isolated paths of T, so that P becomes an isolated path of S.

Solution 3.2:

A string σ is valid if there is an extension $\tau \succeq \sigma$ such that the subtrees below $\tau 0$ and $\tau 1$ are infinite in T. In other words, a string σ is valid if $[\sigma] \cap[T]$ contains at least 2 elements. Note that the predicate "the subtree below τi is infinite" is Π_{1}^{0}, since it means that for every length ℓ greater than $|\tau|$, there is a node ρ of length ℓ extending τi and in T. Thus, being a valid string is Σ_{2}^{0}.

Let S be the set of valid strings. Note that if σ is valid, its prefixes are valid, and that $\sigma \in T$, so S is a Σ_{2}^{0} subtree of T.

Let us show that $[S]$ contains no isolated point of $[T]$. Indeed, if X is an isolated point of T, there is some $\sigma \prec X$ such that $[\sigma] \cap[T]$ is a singleton, hence σ is not valid, so $\sigma \notin S$.

Let us now show that P, the unique limit point of T, is in S. Indeed, for every $\sigma \prec P$, since P is not an isolated point, $[\sigma] \cap[T]$ is not a singleton. Since $P \in[\sigma] \cap[T]$, then $[\sigma] \cap[T]$ must contain at least 2 elements, so σ is valid, hence $\sigma \in S$. So any initial segment of P is in S, so $P \in[S]$.

Since $[S] \subseteq[T]$ and any element of T is either a limit point, or an isolated point, $[S]=\{P\}$. It follows that P is an isolated path of S. By relativizing to $\emptyset^{\prime \prime}$, the proposition that for every computable tree, every isolated path is computable, P is $\emptyset^{\prime \prime}$-computable.

