CR11 - Graded exercise sheet - Week 3

Exercise 3.1: /10

Build a c.e. infinite tree $T \subseteq 2^{<\mathbb{N}}$ such that every path computes \emptyset^{\prime}.

A path P in a tree $T \subseteq 2^{<\mathbb{N}}$ is isolated if there is some initial segment $\sigma \prec P$ such that $[\sigma] \cap[T]=\{P\}$. In other words, P is isolated if there is some initial segment $\sigma \prec P$ such that for every $\tau \prec P$ with $|\sigma| \leq|\tau|$, exactly one of $\tau 0$ and $\tau 1$ has an infinite subtree below it. A path which is not isolated is a limit point.

Exercise 3.2: /10
Let $T \subseteq 2^{<\mathbb{N}}$ be a computable tree such that $[T]$ has exactly one limit point P. Show that $P \leq_{T} \emptyset^{\prime \prime}$. Hint: try to define a $\emptyset^{\prime \prime}$-computable infinite subtree $S \subseteq T$ which removed all the isolated paths of T, so that P becomes an isolated path of S.

