CR11 - Graded exercise sheet - Week 4

A function $f: \mathbb{N} \rightarrow\{0,1\}$ is DNC_{2} if for every $e \in \mathbb{N}, f(e) \neq \Phi_{e}(e)$. A function $f: \mathbb{N} \rightarrow\{0,1\}$ is $\operatorname{DNC}_{2}(X)$ if for every $e \in \mathbb{N}, f(e) \neq \Phi_{e}^{X}(e)$.

Exercise 4.1: /5

Show that if f is $\mathrm{DNC}_{2}(X)$, then $f \geq_{T} X$.

Solution 4.1:

To decide whether $n \in X$, construct an oracle machine Φ_{e}^{X} such that on every input x, $\Phi_{e}^{X}(e) \downarrow=1-X(n)$. Then $f(e) \neq \Phi_{e}^{X}(e)$, so $f(e)=X(n)$. Note that the procedure of transformation of n into e does not require to access the oracle X, since this is purely syntactical manipulation. Thus, only f was used as an oracle, so $X \leq_{T} f$.

Exercise 4.2: /8

Show that if X computes a DNC_{2} function, then X computes a DNC_{2} function f such that $f \equiv_{T} X$.

Solution 4.2:

Thanks to the padding lemma, we can computably find an infinite set $A=\left\{e_{0}<e_{1}<\ldots\right\}$ of codes for the nowhere-defined machine. Beware, this does not mean that A contains all the codes of this machine, but we just need infinitely many of them. By definition of A, this means that a DNC_{2} function can have any value over the domain A. Define $g(x)=f(x)$ if $x \notin A$, and $g\left(e_{n}\right)=X(n)$ otherwise. This is an X-computable procedure since $f \leq_{T} X$. Let us show that g is DNC_{2} : If $x \notin A$, then $g(x)=f(x)=\neq \Phi_{x}(x)$, and if $x \in A, \Phi_{x}(x) \uparrow$, then $g(x) \neq \Phi_{x}(x)$. Last, $X \leq_{T} g$ since $X=\left\{n: g\left(e_{n}\right)=1\right\}$.

A Turing degree \mathbf{d} is minimal if the only degree strictly below it is $\mathbf{0}$, the degree of computable sets.

Exercise 4.3: /7

Show that $\left\{X \oplus Y: X\right.$ is DNC_{2} and Y is $\left.\mathrm{DNC}_{2}(X)\right\}$ is a Π_{1}^{0} class. Deduce that there is no minimal PA degree.

Solution 4.3:

Let $\mathcal{C}=\left\{Z: \forall n R\left(Z \upharpoonright_{n}\right)\right\}$ where R is the following computable predicate:

$$
R(\sigma \oplus \tau) \equiv \forall e<|\sigma| \Phi_{e}(e)[|\sigma|] \not 千 \sigma(e) \wedge \forall e<|\tau| \Phi_{e}^{\sigma}(e)[|\tau|] \not 千 \tau(e)
$$

Here, $\Phi_{e}(e)[s] \nsucceq v$ is a notation for $\Phi_{e}(e)[s] \uparrow \vee \Phi_{e}(e)[s] \downarrow \neq v$.
We need to show that $X \oplus Y \in \mathcal{C}$ iff X is DNC_{2} and Y is $\mathrm{DNC}_{2}(X)$. The verification is left to the reader.

Let P be any set of PA degree. In particular, P computes a member of \mathcal{C}, so P computes a set $X \oplus Y$ such that X is DNC_{2} and Y is $\mathrm{DNC}_{2}(X)$. In other words, Y is of PA degree relative to X, and X is of PA degree. In particular, X is non-computable, and P is non- X computable, so the degree of X is strictly between the degree of P and $\mathbf{0}$.

