Given a set $X \subseteq \mathbb{N}$, we denote by $[X]^n$ the collection of subsets of X of size n. A function $f: [\mathbb{N}]^n \to \mathbb{N}$ is k-bounded if for every $i \in \mathbb{N}$, there are at most k different $F \in [\mathbb{N}]$ such that f(F) = i. A finite set $H \subseteq \mathbb{N}$ is a rainbow for f if f restricted to $[H]^n$ is 1-bounded, that is, injective. The Rainbow Ramsey theorem for n-tuples and k-bounded colorings says that for every k-bounded function $f: [\mathbb{N}]^n \to \mathbb{N}$, there is an infinite rainbow.

Exercise 6.1: /4

Give an example of a 2-bounded function $f : [\mathbb{N}]^2 \to \mathbb{N}$ and of a finite rainbow $F \subseteq \mathbb{N}$ which cannot be extended into an infinite rainbow, that is, such that there is not infinite rainbow $H \supseteq F$.

Solution 6.1:

Let $F = \{0, 1\}$, and let $f : [\mathbb{N}]^2 \to \mathbb{N}$ be defined for every $y \ge 2$ by $f(\{0, y\} = f(\{1, y\}) = 2y$, and for every other pair, $f(\{x, y\}) = 2\langle x, y \rangle + 1$. Then F cannot be extended into an infinite rainbow.

Exercise 6.2: /16

Use the previous question to build a computable 2-bounded function $f : [\mathbb{N}]^2 \to \mathbb{N}$ with no infinite computable rainbow.

(Hint: Build a function f which satisfies for every e the following requirement \mathcal{R}_e : "If there are at least 2e+2 many elements x such that $\Phi_e(x) \downarrow = 1$, then Φ_e cannot be extended into an infinite rainbow.")

Solution 6.2:

We will try to satisfy the following requirements for each e: \mathcal{R}_e "If there are at least 2e + 2 many elements x such that $\Phi_e(x) \downarrow = 1$, then Φ_e cannot be extended into an infinite rainbow."

We build the coloring by stages. At stage s, we define $f(\{x, s\})$ for every x < s. At stage 0, f is nowhere defined. At stage s, for each e < s, proceed as follows: If $\Phi_0(x)[s] = 1$ for at least 2 different x < s, then pick x_0, x_1 such that $\Phi_0(x_0)[s] = 1$ and $\Phi_0(x_1)[s] = 1$, pick a fresh color $i \in \mathbb{N}$, and set $f(\{x_0, s\} = f(\{x_1, s\}))$. If $\Phi_1(x)[s] = 1$ for at least 4 different x < s, then pick x_0, x_1 such that $\Phi_1(x_1)[s] = 1$ and $\Phi_1(x_1)[s] = 1$, such that $f(\{x_0, s\})$ and $f(\{x_1, s\})$ is not yet defined. Pick a fresh color $i \in \mathbb{N}$, and set $f(\{x_0, s\} = f(\{x_1, s\}))$. And so on, up to Φ_{s-1} . Then, for any pair $f(\{x, s\})$ which is not yet defined, assign $f(\{x, s\})$ a fresh color, and go to the next stage s + 1.