CR11 - Graded exercise sheet - Week 6

Given a set $X \subseteq \mathbb{N}$, we denote by $[X]^{n}$ the collection of subsets of X of size n. A function $f:[\mathbb{N}]^{n} \rightarrow \mathbb{N}$ is k-bounded if for every $i \in \mathbb{N}$, there are at most k different $F \in[\mathbb{N}]$ such that $f(F)=i$. A finite set $H \subseteq \mathbb{N}$ is a rainbow for f if f restricted to $[H]^{n}$ is 1 -bounded, that is, injective. The Rainbow Ramsey theorem for n-tuples and k-bounded colorings says that for every k-bounded function $f:[\mathbb{N}]^{n} \rightarrow \mathbb{N}$, there is an infinite rainbow.

Exercise 6.1: /4

Give an example of a 2-bounded function $f:[\mathbb{N}]^{2} \rightarrow \mathbb{N}$ and of a finite rainbow $F \subseteq \mathbb{N}$ which cannot be extended into an infinite rainbow, that is, such that there is not infinite rainbow $H \supseteq F$.

Solution 6.1:

Let $F=\{0,1\}$, and let $f:[\mathbb{N}]^{2} \rightarrow \mathbb{N}$ be defined for every $y \geq 2$ by $f(\{0, y\}=f(\{1, y\})=2 y$, and for every other pair, $f(\{x, y\})=2\langle x, y\rangle+1$. Then F cannot be extended into an infinite rainbow.

Exercise 6.2: /16

Use the previous question to build a computable 2-bounded function $f:[\mathbb{N}]^{2} \rightarrow \mathbb{N}$ with no infinite computable rainbow.
(Hint: Build a function f which satisfies for every e the following requirement \mathcal{R}_{e} : "If there are at least $2 e+2$ many elements x such that $\Phi_{e}(x) \downarrow=1$, then Φ_{e} cannot be extended into an infinite rainbow.")

Solution 6.2:

We will try to satisfy the following requirements for each $e: \mathcal{R}_{e}$ "If there are at least $2 e+2$ many elements x such that $\Phi_{e}(x) \downarrow=1$, then Φ_{e} cannot be extended into an infinite rainbow."

We build the coloring by stages. At stage s, we define $f(\{x, s\})$ for every $x<s$. At stage $0, f$ is nowhere defined. At stage s, for each $e<s$, proceed as follows: If $\Phi_{0}(x)[s]=1$ for at least 2 different $x<s$, then pick x_{0}, x_{1} such that $\Phi_{0}\left(x_{0}\right)[s]=1$ and $\Phi_{0}\left(x_{1}\right)[s]=1$, pick a fresh color $i \in \mathbb{N}$, and set $f\left(\left\{x_{0}, s\right\}=f\left(\left\{x_{1}, s\right\}\right)\right.$. If $\Phi_{1}(x)[s]=1$ for at least 4 different $x<s$, then pick x_{0}, x_{1} such that $\Phi_{1}\left(x_{1}\right)[s]=1$ and $\Phi_{1}\left(x_{1}\right)[s]=1$, such that $f\left(\left\{x_{0}, s\right\}\right.$ and $f\left(\left\{x_{1}, s\right\}\right)$ is not yet defined. Pick a fresh color $i \in \mathbb{N}$, and set $f\left(\left\{x_{0}, s\right\}=f\left(\left\{x_{1}, s\right\}\right)\right.$. And so on, up to Φ_{s-1}. Then, for any pair $f(\{x, s\})$ which is not yet defined, assign $f(\{x, s\})$ a fresh color, and go to the next stage $s+1$.

