
Higher jump cone avoidance 11
11.1 Context and motivation . 155
11.2 First examples 156
11.3 Pigeonhole principle . . . 157
11.4 Computable ordinals . . 162
11.5 Hyperarithmetic hierarchy 164
11.6 Higher recursion theory . 166
11.7 Transfinite jump control . 169

Prerequisites: Chapters 2, 3 and 9

The conceptual gap from second to iterated jump control is not as significant
as from first to second jump control. Indeed, the main di!culty comes from
dealing with non-continuous functionals, which already occurs at the ω0

2 level.
There is therefore often a natural generalization from second to all the levels
of the arithmetic hierarchy.

New di!culties arise when trying to control the jump at transfinite levels. The
arithmetic hierarchy extends to the hyperarithmetic hierarchy through iterations
along computable ordinals. While the arithmetic hierarchy is indexed by inte-
gers, which are left unchanged when considering relativization to a generic
set, the hyperarithmetic hierarchy is indexed by computable ordinals, which is
a relative notion: the generic set might compute more ordinals, and therefore
might have more levels in its relative hyperarithmetic hierarchy.

11.1 Context and motivation

The study of iterated jump control at the arithmetic and hyperarithmetic levels
has two di"erent motivations, both coming from reverse mathematics.

Arithmetic jump control. At the arithmetic level, arithmetic jump control is an
essential tool in the study of Ramsey-type hierarchies. Consider for instance
the rainbow Ramsey theorem, which is a particular case of the canonical
Ramsey theorem of Erd#s and Rado.

Definition 11.1.1. A coloring 𝐿 : [ℕ]𝑀 → ℕ is 𝑁-bounded if each color
appears at most 𝑁 times, that is, | 𝐿 ↑1(𝑂)| ↓ 𝑁 for every 𝑂 ↔ ℕ. A set 𝑃 ↗ ℕ

is an 𝐿 -rainbow if 𝐿 is injective on [𝑃]𝑀 . The rainbow Ramsey theorem
for 𝑀-tuples and 𝑁-bounds (RRT𝑀

𝑁
) states that every 𝑁-bounded coloring

𝐿 : [ℕ]𝑀 → ℕ admits an infinite 𝐿 -rainbow. ↘

As for Ramsey’s theorem, the rainbow Ramsey theorem forms a hierarchy of
statements based on the size 𝑀 of the tuples. However, while RT𝑀

2 collapses
and is equivalent to ACA0 for 𝑀 ≃ 3, Wang [13] proved that RRT𝑀

2 is strictly
weaker than ACA0 for every 𝑀 ≃ 1. Whether or not the rainbow Ramsey
hierarchy is strict remains open.

Csima and Mileti [80] proved that every computable instance of RRT𝑀

2 admits
a ε0

𝑀
solution, while there exists a computable instance of RRT𝑀

2 with no ω0
𝑀

solution. The most promising approach to separate RRT𝑀

2 from RRT𝑀+1
2 is

using the natural invariant lying at the ϑ0
𝑀

level of the arithmetic hierarchy,
namely, low𝑀ness. By Cholak, Jockusch and Slaman [25] and Wang [88],
every computable instance of RRT𝑀

2 admits a low𝑀 solution for 𝑀 ↔ {2, 3}. The
general case is likely to be solved using arithmetic jump control.

Hyperarithmetic jump control. The duality between computability and definabil-
ity is omnipresent in reverse mathematics. The base theory, RCA0, captures
“computable mathematics”, and its 𝜑-models admit a nice characterization in
terms of Turing ideals. The systems WKL0 and ACA0 also admit computability-
theoretic formulations, in terms of existence of PA degrees and of the halting

156 11 Higher jump cone avoidance

3: The base case is a solution to Exer-
cise 3.3.6.

set, respectively. On the other hand, the two highest systems of the Big Five,
namely, ATR0 and ε1

1-CA0, are better explained in terms of higher recursion
theory, stating the existence of every transfinite iterations of the halting set, and
the existence of Kleene’s O, respectively. Given the importance of arithmetic
jump control in the study of the lower systems of reverse mathematics, one
can reasonably guess that hyperarithmetic jump control will play some role in
the study of principles at the level of ATR0 and ε1

1-CA0.

11.2 First examples

As mentioned, there exists a natural generalization from second jump to arith-
metic jump control, using inductive definitions. We illustrate this using Cohen
forcing.

Theorem 11.2.1 (Feferman [89])
Fix 𝑀 ≃ 1 and let 𝑄 be a non-ϑ0

𝑀
set. For every su!ciently Cohen generic

filter F, 𝑄 is not ϑ0
𝑀
(𝑅F).

P!""#. In order to prove our theorem, we need to define a ω0
𝑀
-preserving

forcing question for ω0
𝑀
-formulas.

Definition 11.2.2. Let 𝜒 ↔ 2<ℕ be a Cohen condition and 𝜓(𝑅) ⇐ ⇒𝑆𝜔(𝑅, 𝑆)
be a ω0

𝑀
formula for 𝑀 ≃ 1.

1. For 𝑀 = 1, let 𝜒 ?⇑𝜓(𝑅) hold if there is some 𝑆 ↔ ℕ and some 𝜕 ⇓ 𝜒
such that 𝜔(𝜕, 𝑆) holds.

2. For 𝑀 > 1, let 𝜒 ?⇑𝜓(𝑅) hold if there is some 𝑆 ↔ ℕ and some 𝜕 ⇓ 𝜒
such that 𝜕 ?⇑𝜔(𝑅, 𝑆).1

1: Here, 𝜔 is a ε0
𝑀↑1-formula. The notation

𝜕 ?⇑𝜔(𝑅, 𝑆) is therefore a shorthand for
𝜕 ?⊋¬𝜔(𝑅, 𝑆), that is, the forcing question
for ε0

𝑀↑1-formulas induced by taking the
negation of the forcing question for ω0

𝑀↑1-
formulas.

↘

A simple induction on the structure of the formulas shows that given a ω0
𝑀
-

formula 𝜓(𝑅), the relation 𝜒 ?⇑𝜓(𝑅) is ω0
𝑀

uniformly in its parameters. The
following lemma shows that the definition of the forcing question meets a strong
version of its specifications.

Lemma 11.2.3. Let 𝜒 ↔ 2<ℕ be a Cohen condition and 𝜓(𝑅) be a ω0
𝑀

formula
for 𝑀 ≃ 1.

1. If 𝜒 ?⇑𝜓(𝑅), then there is an extension 𝜕 ⇓ 𝜒 forcing 𝜓(𝑅).
2. If 𝜒 ?⊋𝜓(𝑅), then 𝜒 forces ¬𝜓(𝑅).2

2: This property states that the forcing ques-
tion for ω0

𝑀
-formulas is ε0

𝑀
-extremal (see

Definition 7.6.5). It follows that su!ciently
Cohen generic sets preserve many compu-
tational properties.

𝜖

P!""#. We prove simultaneously both items inductively on the structure of
the formula 𝜓(𝑅). Say 𝜓(𝑅) ⇐ ⇒𝜔(𝑅, 𝑆) where 𝜔(𝑅, 𝑆) is ε0

𝑀↑1.

Base case: 𝑀 = 1.3 If 𝜒 ?⇑𝜓(𝑅), then, letting 𝜕 ⇓ 𝜒 and 𝑆 ↔ ℕ witness the
definition, for every filter Fcontaining 𝜕, 𝑅F ⇓ 𝜕, hence 𝜔(𝑅F, 𝑆) holds, so
𝜓(𝑅F) holds. It follows that 𝜕 is an extension of 𝜒 forcing 𝜓(𝑅). Conversely, if
𝜒 does not force ¬𝜓(𝑅), then there is a filter Fcontaining 𝜒 such that 𝜓(𝑅F)
holds. Then, by the use property, there is a finite 𝜕 ⇔ 𝑅F and some 𝑆 ↔ ℕ

such that 𝜔(𝜕, 𝑆) holds. Since 𝜒 ⇔ 𝑅F, by taking 𝜕 long enough, one has
𝜒 ⇔ 𝜕, thus 𝜒 ?⇑𝜓(𝑅).
Inductive case: 𝑀 > 1. If 𝜒 ?⇑𝜓(𝑅), then there is some 𝑆 ↔ ℕ and some
𝜕 ⇓ 𝜒 such that 𝜕 ?⇑𝜔(𝑅, 𝑆). By induction hypothesis, there is some 𝜗 ⇓ 𝜕
forcing 𝜔(𝑅, 𝑆). In particular, 𝜗 is an extension of 𝜒 forcing 𝜓(𝑅). If 𝜒 ?⊋𝜓(𝑅),
then for every 𝑆 ↔ ℕ and every 𝜕 ⇓ 𝜒, 𝜕 ?⊋𝜔(𝑅, 𝑆). By induction hypothesis,

11.3 Pigeonhole principle 157

4: By Post’s theorem, the following prop-
erty is ω0

𝑀
, although the translation is not

straightforward:

ϖ𝑅
(𝑀↑1)

𝑇
(𝑆)↖= 𝑈

for every 𝑆 ↔ ℕ and every 𝜕 ⇓ 𝜒, there is some 𝜗 ⇓ 𝜕 forcing ¬𝜔(𝑅, 𝑆). In
other words, for every 𝑆 ↔ ℕ, the set of all 𝜗 forcing ¬𝜔(𝑅, 𝑆) is dense below
𝜒. Thus, for every su!ciently generic filter Fcontaining 𝜒 and for every 𝑆 ↔ ℕ,
there is some 𝜗 ↔ F forcing ¬𝜔(𝑅, 𝑆), hence ↙𝑆¬𝜔(𝑅F, 𝑆) holds. In other
words, 𝜒 forces ¬𝜓(𝑅).

The following diagonalization lemma is a straightforward generalization of
Lemma 3.2.2.

Lemma 11.2.4. For every Cohen condition 𝜒 ↔ 2<ℕ and every Turing index 𝑇,
there is an extension 𝜕 ⇓ 𝜒 forcing ϖ𝑅

(𝑀↑1)
𝑇

ϱ 𝑄. 𝜖

P!""#. Consider the following set4

𝑉 = {(𝑆 , 𝑈) ↔ ℕ ∝ 2 : 𝜒 ?⇑ϖ𝑅
(𝑀↑1)

𝑇
(𝑆)↖= 𝑈}

Since the forcing question is ω0
𝑀
-preserving, the set 𝑉 is ω0

𝑀
. There are three

cases:

⫅̸ Case 1: (𝑆 , 1↑ 𝑄(𝑆)) ↔ 𝑉 for some 𝑆 ↔ ℕ. By Lemma 11.2.3(1), there
is an extension 𝜕 ⇓ 𝜒 forcing ϖ𝑅

(𝑀↑1)
𝑇

(𝑆)↖= 1 ↑ 𝑄(𝑆).
⫅̸ Case 2: (𝑆 , 𝑄(𝑆)) ς 𝑉 for some 𝑆 ↔ ℕ. By Lemma 11.2.3(2), there is

an extension 𝜕 ⇓ 𝜒 forcing ϖ𝑅
(𝑀↑1)

𝑇
(𝑆)′ or ϖ𝑅

(𝑀↑1)
𝑇

(𝑆)↖ϱ 𝑄(𝑆).
⫅̸ Case 3: None of Case 1 and Case 2 holds. Then 𝑉 is a ω0

𝑀
graph of

the characteristic function of 𝑄, hence 𝑄 is ϑ0
𝑀
. This contradicts our

hypothesis.

We are now ready to prove Theorem 11.2.1. Let Fbe a su!ciently generic
filter for Cohen forcing, and let 𝑅F =

⋃
F. By genericity of F, 𝑅F is an infinite

binary sequence, and by Lemma 11.2.4, 𝑄 ⫆̸𝑊 𝑅
(𝑀↑1)
F

, in other words 𝑄 is not
ϑ0
𝑀
(𝑅). This completes the proof of Theorem 11.2.1.

Exercise 11.2.5. Let (ℙ,↓) be a notion of forcing with aω0
𝑀
-preserving forcing

question. Show that for every non-ϑ0
𝑀

set 𝑄 and every su!ciently generic
filter F, 𝑄 is not ϑ0

𝑀
(𝑅F). 𝜖

Exercise 11.2.6 (Wang [82]). Let (ℙ,↓) be the primitive recursive Jockusch-
Soare forcing, that is, ℙ is the set of all infinite primitive recursive binary trees
𝑊 ↗ 2<ℕ , partially ordered by inclusion.

1. Adapt the proof of Theorem 9.4.1 to design a ω0
𝑀
-preserving forcing

question for ω0
𝑀
-formulas.

2. Deduce that for every non-ϑ0
𝑀

set 𝑄 and every su!ciently generic ℙ-
filter F, 𝑄 is not ϑ0

𝑀
(𝑅F). 𝜖

11.3 Pigeonhole principle

Although the conceptual gap from second-jump to higher jump control is much
smaller than from first to second-jump control, the generalization sometimes re-
quires some non-trivial adaptation. The pigeonhole principle is a good example
of a statement with a reasonably simple first-jump control (Theorem 3.4.5), with

158 11 Higher jump cone avoidance

6: Note that U
M𝑋

𝑌𝑋

= ∞UM𝑋

𝑍𝑋

∈ by
Lemma 9.6.23 and by M𝑋 -cohesiveness of
the class U

M𝑋

𝑍𝑋

.

7: This notion of forcing is very similar to the
one of Theorem 9.7.1, with M𝑀↑1 playing
the role of the ideal N.

a second-jump control requiring the development of a whole new machinery
(Theorem 9.7.1), and whose generalization to higher jump control still contains
some subtleties.5

5: In order to understand this section, it is
mandatory to be completely familiar with the
material of Chapter 9.

Theorem 11.3.1 (Monin and Patey [29])
Fix 𝑀 ≃ 1 and let 𝑄 be a non-ϑ0

𝑀
set. For every set 𝑎, there is an infinite

subset 𝑃 ↗ 𝑎 or 𝑃 ↗ 𝑎 such that 𝑄 is not ϑ0
𝑀
(𝑃).

P!""#. The case 𝑀 = 1 is Theorem 3.4.5 and the case 𝑀 = 2 is Theo-
rem 9.7.1. We therefore assume that 𝑀 ≃ 3, although one could prove all
cases simultaneously with more case analysis within the definitions and the
proof. Fix 𝑄 and 𝑎. As in the previous cases, we shall construct two sets
𝑅0 ↗ 𝑎 and 𝑅1 ↗ 𝑎 using a disjunctive notion of forcing. For simplicity, let
𝑎0 = 𝑎 and 𝑎1 = 𝑎.

Hierarchy of Scott ideals. By multiple applications of the low basis theorem
(Theorem 4.4.6) and Theorem 4.3.2, there exists a sequence of sets 𝑏0 , . . . ,𝑏𝑀↑2
such that for every 𝑋 < 𝑀 ↑ 1,

1. 𝑏𝑋 is of low degree over ∋(𝑋);
2. 𝑏𝑋 is a code for a Scott ideal M𝑋 containing ∋(𝑋).

By the cone avoidance basis theorem (Theorem 3.2.6) relativized to ∋(𝑀↑1) and
Theorem 4.3.2, there is a code 𝑏𝑀↑1 for a Scott ideal M𝑀↑1 containing ∋(𝑀↑1)

such that 𝑄 ⫆̸𝑊 𝑏𝑀↑1. Note that for every 𝑋 < 𝑀 ↑ 1, 𝑏△
𝑋
↔ M𝑋+1.

Hierarchy of partition regular classes. We construct a sequence 𝑍0 , . . . ,𝑍𝑀↑2
such that for every 𝑋 < 𝑀 ↑ 1,

1. U
M𝑋

𝑍𝑋

is an M𝑋 -cohesive large class;
2. U

M𝑋+1
𝑍𝑋+1

↗ ∞UM𝑋

𝑍𝑋

∈ if 𝑋 < 𝑀 ↑ 2.

First, by Proposition 9.6.24, M1 contains a set 𝑍0 ↗ ℕ2 such that U
M0
𝑍0

is
an M0-cohesive class. Suppose 𝑍𝑋 is defined and belongs to M𝑋+1, with
𝑋 < 𝑀↑2. By Proposition 9.6.18, there is an (𝑏△

𝑋
▽𝑍𝑋)△-computable set 𝑌𝑋 ̸

𝑍𝑋 such that UM𝑋

𝑌𝑋

is M𝑋 -minimal.6 In particular, 𝑌𝑋 is 𝑏
△
𝑋+1-computable, so

𝑌𝑋 ↔ M𝑋+2. Furthermore, since 𝑏𝑋 ↔ M𝑋+1 and 𝑏𝑋+1 is a Scott code, there is
a computable function 𝐿 : ℕ → ℕ such that for every 𝑇 ↔ ℕ, 𝐿 (𝑇) is an 𝑏𝑋+1-
code and 𝑇 is an 𝑏𝑋 -code of the same set. Let 𝑐𝑋+1 = {(𝑑 , 𝐿 (𝑇)) : (𝑑 , 𝑇) ↔ 𝑌𝑋}.
Then U

M𝑋+1
𝑐𝑋+1

= U
M𝑋

𝑌𝑋

and 𝑐𝑋+1 ↔ M𝑋+2. By Proposition 9.6.24, M𝑋+2 contains
a set 𝑍𝑋+1 ̸ 𝑐𝑋+1 such that UM𝑋+1

𝑍𝑋+1
is M𝑋+1-cohesive. In particular,

U
M𝑋+1
𝑍𝑋+1

↗ U
M𝑋+1
𝑐𝑋+1

= U
M𝑋

𝑌𝑋

= ∞UM𝑋

𝑍𝑋

∈

Notion of forcing. The notion of forcing is a variant of Mathias forcing whose
conditions are triples (𝜒0 , 𝜒1 ,𝑒), where7

1. (𝜒𝑓 ,𝑒) is a Mathias condition for each 𝑓 < 2 ;
2. 𝜒𝑓 ↗ 𝑎𝑓 ; 𝑒 ↔ ∞UM𝑀↑2

𝑍𝑀↑2
∈ ;

3. 𝑒 ↔ M𝑀↑1.

The interpretation [𝜒0 , 𝜒1 ,𝑒] of a condition (𝜒0 , 𝜒1 ,𝑒), the notion of exten-
sion, the definition of a valid part of a condition are exactly the same as
in Theorem 9.7.1. The following lemma also holds, with the same proof as
Lemma 9.7.3. Therefore, for every su!ciently generic filter Fwith valid part 𝑓,
𝑅F,𝑓 is infinite and belongs to ∞UM𝑀↑2

𝑍𝑀↑2
∈.

11.3 Pigeonhole principle 159

Lemma 11.3.2. Let 𝑔 = (𝜒0 , 𝜒1 ,𝑒) be a condition with valid part 𝑓 and let
V̸ ∞UM𝑀↑2

𝑍𝑀↑2
∈ be a large ω0

1(M𝑀↑2) class. There is an extension (𝜕0 , 𝜕1 ,𝑕)
of 𝑔 such that [𝜕𝑓] ↗ V. 𝜖

Forcing question at lower levels. In the proof of Theorem 9.7.1, we defined
a non-disjunctive ε0

2(N) forcing question for ω0
1-formulas and a disjunctive

ω0
1(N) forcing question for ω0

2-formulas. The generalization to Theorem 11.3.1
goes as follows: the non-disjunctive forcing question will be extended to every
ω0
𝑋
-formula, for 𝑋 ↔ {1, . . . , 𝑀 ↑ 1}, yielding a ε0

1(M𝑋) forcing question for ω0
𝑋
-

formulas, and one will keep the same disjunctive ω0
1(M𝑀↑1) forcing question

for ω0
𝑀
-formulas.

Definition 11.3.3. Given a string 𝜒 ↔ 2<ℕ and a ω0
1 formula 𝜓(𝑅), define

𝜒 ?⇑𝜓(𝑅) to hold if the following class is large:8
8: Note that for ω0

𝑋
-formulas, we consider

largeness with respect to U
M

𝑋↑1
𝑍
𝑋↑1

. The ad-
vantage is that it yields a better definitional
complexity than using U

M
𝑀↑1

𝑍
𝑀↑1

, but it re-
quires to have some compatibility between
U
M

𝑋↑1
𝑍
𝑋↑1

and U
M

𝑀↑1
𝑍
𝑀↑1

. This was the purpose
of the construction of 𝑍0 , . . . ,𝑍𝑀↑2.

U
M0
𝑍0

↦ {𝑖 : ⇒𝜗 ↗ 𝑖 𝜓(𝜒 ∀ 𝜗)}

Given a string 𝜒 ↔ 2<ℕ and a ω0
𝑋
-formula 𝜓(𝑅) ⇐ ⇒𝑆𝜔(𝑅, 𝑆) for 𝑋 ↔

{2, . . . , 𝑀 ↑ 1}, define 𝜒 ?⇑𝜓(𝑅) to hold if the following class is large:9

9: As usual, 𝜔 is ε0
𝑋↑1, so 𝜒∀𝜗 ?⇑𝜔(𝑅, 𝑆)

is a shorthand for 𝜒 ∀ 𝜗 ?⊋¬𝜔(𝑅, 𝑆).
U

M𝑋↑1
𝑍𝑋↑1

↦ {𝑖 : ⇒𝜗 ↗ 𝑖 ⇒𝑆 𝜒 ∀ 𝜗 ?⇑𝜔(𝑅, 𝑆)}

By induction over the complexity of the formulas and using Lemma 9.6.14,
one can prove that for ω0

𝑋
-formulas, the relation 𝜒 ?⇑𝜓(𝑅) is ε0

1(𝑍𝑋↑1 ▽
𝑏

△
𝑋↑1) uniformly in 𝜒 and 𝜓. Since 𝑏

△
𝑋↑1 ,𝑍𝑋↑1 ↔ M𝑋 , the relation is ε0

1(M𝑋).
Before proving the validity of Definition 11.3.3, one first needs to focus on
the forcing relation for ε0

𝑋
-formulas, for 𝑋 ↔ {2, . . . , 𝑀}. Recall that in the

proof of Theorem 9.7.1, we defined a custom syntactic forcing relation for
ε0

2-formulas, implying the semantic forcing relation only on the valid parts. It
becomes more convenient to define a syntactic relation at every level, both for
ω0
𝑋

and ε0
𝑋
-formulas.

Definition 11.3.4. Let 𝑔 = (𝜒0 , 𝜒1 ,𝑒) be a condition and 𝑓 < 2 be a part.
We define the relation ⫋ for ω0

𝑋
and ε0

𝑋
-formulas for 𝑋 ↔ {1, . . . , 𝑀} induc-

tively as follows. For a ϑ0
0-formula 𝜔(𝑅, 𝑆),

1. 𝑔 ⫋ ⇒𝑆𝜔(𝑅𝑓 , 𝑆) if 𝜔(𝜒𝑓 , 𝑆) holds for some 𝑓 < 2;
2. 𝑔 ⫋ ↙𝑆¬𝜔(𝑅𝑓 , 𝑆) if (↙𝜗 ↗ 𝑒)(↙𝑆)¬𝜔(𝜒𝑓 ∀ 𝜗, 𝑆).

For a ε0
𝑋↑1-formula 𝜔(𝑅, 𝑆) with 𝑋 ↔ {2, . . . , 𝑀}

1. 𝑔 ⫋ ⇒𝑆𝜔(𝑅𝑓 , 𝑆) if 𝑔 ⫋ 𝜔(𝑅𝑓 , 𝑆) for some 𝑆 ↔ ℕ;
2. 𝑔 ⫋ ↙𝑆¬𝜔(𝑅𝑓 , 𝑆) if (↙𝜗 ↗ 𝑒)(↙𝑆)𝜒𝑓 ∀ 𝜗 ?⇑¬𝜔(𝑅𝑓 , 𝑆). ↘

The first property that one expects of a forcing relation is that it is stable under
condition extension. This is left as an exercise.

Exercise 11.3.5. Let 𝑔 and 𝑗 be two conditions, and 𝑓 < 2. Show that for
every 𝑋 ↔ {1, . . . , 𝑀} and every ω0

𝑋
and ε0

𝑋
-formula 𝜓(𝑅), if 𝑔 ⫋ 𝜓(𝑅𝑓) and

𝑗 ↓ 𝑔, then 𝑗 ⫋ 𝜓(𝑅𝑓).10 10: Note that the closure under extension
of the syntactic question also holds if the
side is not valid.

𝜖

There is an interplay between the syntactic forcing relation and the forcing
questions. Indeed, the proof that the syntactic forcing relation for ε0

𝑋
-formulas

implies the semantic ones uses the validity of the forcing question for lower

160 11 Higher jump cone avoidance

levels, while the proof of validity of the forcing question involves the syntactic
forcing relation at the same level. We therefore start with the proof of validity
of Definition 11.3.3, which is a straightforward generalization of Lemma 9.7.5
and is left as an exercise.

Exercise 11.3.6. Let 𝑔 = (𝜒0 , 𝜒1 ,𝑒) be a condition with valid part 𝑓 and
𝜓(𝑅) be a ω0

𝑋
-formula for 𝑋 ↔ {1, . . . , 𝑀 ↑ 1}. Prove that

1. if 𝜒𝑓 ?⇑𝜓(𝑅), then there is an extension 𝑗 of 𝑔 such that 𝑗 ⫋ 𝜓(𝑅𝑓) ;
2. if 𝜒𝑓 ?⊋𝜓(𝑅), then there is an extension 𝑗 of 𝑔 such that 𝑗 ⫋ ¬𝜓(𝑅𝑓).

𝜖

The following trivial lemma shows that if a ε0
𝑋
-formula is syntactically forced

on a valid part, then progress can be made on forcing the ε0
𝑋
-formula.

Lemma 11.3.7. Let 𝑔 = (𝜒0 , 𝜒1 ,𝑒) be a condition with valid part 𝑓 and
𝜓(𝑅) ⇐ ↙𝑆𝜔(𝑅, 𝑆) be a ε0

𝑋
-formula for some 𝑋 ↔ {2, . . . , 𝑀}. If 𝑔 ⫋ 𝜓(𝑅𝑓),

then for every 𝑆 ↔ ℕ, there is an extension 𝑗 ↓ 𝑔 such that 𝑗 ⫋ 𝜔(𝑅𝑓 , 𝑆). 𝜖

P!""#. Fix 𝑆 ↔ ℕ. Since 𝑔 ⫋ 𝜓(𝑅𝑓), then in particular, for 𝜗 = ∋, 𝜒𝑓 ?⇑𝜔(𝑅, 𝑆).
By Exercise 11.3.6, there is an extension 𝑗 of 𝑔 such that 𝑗 ⫋ 𝜔(𝑅𝑓 , 𝑆).

We are now ready to prove that the syntactic forcing relation implies the se-
mantic one on valid sides.

Lemma 11.3.8. Let 𝑔 be a condition, 𝑓 < 2 be a side and 𝜓(𝑅) be a ω0
𝑋

or
ε0

𝑋
-formula for some 𝑋 ↔ {1, . . . , 𝑀}. If 𝑔 ⫋ 𝜓(𝑅𝑓), then 𝜓(𝑅F,𝑓) holds for

every su!ciently generic filter Fcontaining 𝑔 and whose side 𝑓 is valid.1111: Recall that a side 𝑓 < 2 is valid in a
filter F if the side is valid for every 𝑔 ↔ F.
Every filter has at least a valid side.

𝜖

P!""#. By induction over the complexity of the formula 𝜓. The case 𝑋 = 1 is
easy and 𝜓(𝑅F,𝑓) even holds for every filter Fcontaining 𝑔, with no regard
to genericity or to validity of the side. Suppose 𝑋 ≃ 2. If 𝜓(𝑅) ⇐ ⇒𝑆𝜔(𝑅, 𝑆)
for some ε0

𝑋↑1-formula 𝜔, then by definition, there is some 𝑆 ↔ ℕ such
that 𝑔 ⫋ 𝜔(𝑅𝑓 , 𝑆), so by induction hypothesis, 𝜔(𝑅F,𝑓 , 𝑆) holds for every
su!ciently generic filter Fcontaining 𝑔 and whose side 𝑓 is valid. In particular,
𝜓(𝑅F,𝑓) holds for every such filter F. If 𝜓(𝑅) ⇐ ↙𝑆¬𝜔(𝑅, 𝑆) for some ε0

𝑋↑1-
formula 𝜔, then we claim that for every 𝑆 ↔ ℕ, the following class D𝑆 is dense
below 𝑔:

D𝑆 = {𝑗 : side 𝑓 of 𝑗 is not valid ∃ 𝑗 ⫋ ¬𝜔(𝑅𝑓 , 𝑆)}

Indeed, fix 𝑆 ↔ ℕ and let 𝑘 = (𝜕0 , 𝜕1 ,𝑕) be an extension of 𝑔. If side 𝑓 of 𝑘 is not
valid, then 𝑘 ↔ D𝑆 , in which case we are done. Otherwise, by Exercise 11.3.5,
𝑘 ⫋ 𝜓(𝑅𝑓), so, unfolding the definition, for 𝜗 = ∋, 𝜕𝑓 ?⇑¬𝜔(𝑅𝑓 , 𝑆), so by
Exercise 11.3.6, there is an extension 𝑗 ↓ 𝑘 such that 𝑗 ⫋ ¬𝜔(𝑅𝑓 , 𝑆), in
which case 𝑗 ↔ D𝑆 . Thus, D𝑆 is dense below 𝑔.

Let Fbe a su!ciently generic filter containing 𝑔 and whose side 𝑓 is valid.
Since D𝑆 is dense below 𝑔 for every 𝑆 ↔ ℕ, F↦ D𝑆 ϱ ∋ for every 𝑆 ↔
ℕ. Moreover, since side 𝑓 is valid in F, then for 𝑗 ↔ F↦ D𝑆 , we have
𝑗 ⫋ ¬𝜔(𝑅𝑓 , 𝑆). By induction hypothesis, ¬𝜔(𝑅F,𝑓 , 𝑆) holds, and this for
every 𝑆 ↔ ℕ, so 𝜓(𝑅F,𝑓 , 𝑆) holds.

Forcing question on top level. The design of the forcing question for ω0
𝑀

formulas is exactly the one of Theorem 9.7.1. It consists of defining two forcing

11.3 Pigeonhole principle 161

questions: a disjunctive one which works if both sides of the condition are valid,
and in case one side is invalid, one designs a degenerate non-disjunctive forc-
ing question exploiting the failure of validity. We define both forcing questions
and leave their proofs as exercises.

Definition 11.3.9. Given a condition 𝑔 = (𝜒0 , 𝜒1 ,𝑒) and a pair of ω0
𝑀

for-
mulas 𝜓0(𝑅) and 𝜓1(𝑅), with 𝜓𝑓(𝑅) ⇐ ⇒𝑆𝜔𝑓(𝑅, 𝑆), define 𝑔 ?⇑𝜓0(𝑅0) ∃
𝜓1(𝑅1) to hold if for every 2-partition 𝑖0 ∀ 𝑖1 = 𝑒, there is some 𝑓 < 2,
some 𝑆 ↔ ℕ and some 𝜗 ↗ 𝑖𝑓 such that 𝜒𝑓 ∀ 𝜗 ?⇑𝜔𝑓(𝑅, 𝑆). ↘

Exercise 11.3.10. Let 𝑔 = (𝜒0 , 𝜒1 ,𝑒) be a condition with both valid parts
and 𝜓0(𝑅), 𝜓1(𝑅) be two ω0

𝑀
-formulas. Prove that

1. if 𝑔 ?⇑𝜓0(𝑅0) ∃ 𝜓1(𝑅1), then there is an extension 𝑗 of 𝑔 such that
𝑗 ⫋ 𝜓(𝑅𝑓) for some 𝑓 < 2;

2. if 𝑔 ?⊋𝜓0(𝑅0) ∃ 𝜓1(𝑅1), then there is an extension 𝑗 of 𝑔 such that
𝑗 ⫋ ¬𝜓(𝑅𝑓) for some 𝑓 < 2. 𝜖

A witness of invalidity of part 𝑓 of a condition 𝑔 = (𝜒0 , 𝜒1 ,𝑒) is a ω0
1(M𝑀↑2)

large class V̸ ∞UM𝑀↑2
𝑍𝑀↑2

∈ such that 𝑒 ↦ 𝑎𝑓 ς V.

Definition 11.3.11. Let 𝑔 = (𝜒0 , 𝜒1 ,𝑒) be a condition with witness of inva-
lidity Von part 1 ↑ 𝑓, and let 𝜓(𝑅) ⇐ ⇒𝑆𝜔(𝑅, 𝑆) be a ω0

𝑀
formula. Define

𝑔 ?⇑V𝜓(𝑅𝑓) to hold if for every 2-partition 𝑖0¬𝑖1 = 𝑒 such that 𝑖1↑𝑓 ς V,
there is some 𝑆 ↔ ℕ and some 𝜗 ↗ 𝑖𝑓 such that 𝜒𝑓 ∀ 𝜗 ?⇑𝜔𝑓(𝑅, 𝑆). ↘

Exercise 11.3.12. Let 𝑔 = (𝜒0 , 𝜒1 ,𝑒) be a condition with witness of invalidity
Von part 1 ↑ 𝑓, and let 𝜓(𝑅) be a ω0

𝑀
formula. Prove that

1. if 𝑔 ?⇑V𝜓(𝑅𝑓), then there is an extension of 𝑔 forcing 𝜓(𝑅𝑓);
2. if 𝑔 ?⊋V𝜓(𝑅𝑓), then there is an extension 𝑗 ↓ 𝑔 such that 𝑗 ⫋ ¬𝜓(𝑅𝑓).

𝜖

By compactness, both forcing questions for ω0
𝑀
-formulas are ω0

1(M𝑀↑1). We
are now ready to prove Theorem 11.3.1.

Suppose first there is a condition 𝑔 with some invalid part 1 ↑ 𝑓. Let Fbe a
su!ciently generic filter containing 𝑔 and let 𝑅𝑓 = 𝑅F,𝑓 . Then part 𝑓 is valid in F.
By Lemma 11.3.7, the syntactic forcing relation implies the semantic forcing
relation on part 𝑓. By Exercise 11.3.12 and by adapting Theorem 9.3.5, for

every Turing functional ϖ𝑇 , there is some condition 𝑗 ↔ F forcing ϖ
𝑅
(𝑀↑1)
𝑓

𝑇
ϱ 𝑄,

so 𝑄 is not ϑ0
𝑀
(𝑅𝑓).

Suppose now that for every condition, both parts are valid. Let Fbe a su!-
ciently generic filter, and let 𝑅𝑓 = 𝑅F,𝑓 for 𝑓 < 2. By Lemma 11.3.7, the syntac-
tic forcing relation implies the semantic forcing relation on both parts. By Exer-
cise 11.3.10 and by adapting Exercise 11.2.5, for every pair of Turing functionals

ϖ𝑇0 ,ϖ𝑇1 , there is some condition 𝑗 ↔ F forcing ϖ
𝑅
(𝑀↑1)
0

𝑇0 ϱ 𝑄 ∃ ϖ
𝑅
(𝑀↑1)
1

𝑇1 ϱ 𝑄.
By a pairing argument, there is some 𝑓 < 2 such that 𝑄 is not ϑ0

𝑀
(𝑅𝑓). This

completes the proof of Theorem 11.3.1.

162 11 Higher jump cone avoidance

11.4 Computable ordinals

In order to extend iterated jump control to transfinite levels, one first needs to
develop a theory of computable ordinals. There are often two approaches to
define a mathematical structure : the axiomatic approach (top-down) and the
constructive one (bottom-up). For instance, an ordinal can either be defined
as the order type of a well-order, or using von Neumann definition, as the set
of its smaller ordinals. We shall see that the e"ective counterparts of these
definitions coincide, yielding a robust notion of computable ordinal.12

12: We assume the reader has some famil-
iarity with the classical theory of ordinals.

Definition 11.4.1. An ordinal 𝜘 is computable if it is finite or it is the order-
type of a computable1313: Actually, one could have replaced “com-

putable” by “polynomial-time computable”,
“arithmetic”, or even “hyperarithmetic”, this
would have yielded exactly the same class
of ordinals, even-though the equivalence is
highly non-trivial.

well-order on ℕ. ↘

First, note from the above definition that every computable ordinal is witnessed
by the program of a computable well-order. There are therefore only countably
many ordinals. We first show that one can replace “computable” by “c.e.” in
the above definition of a computable ordinal.

Lemma 11.4.2. Let <𝑙 be a c.e. total order on ℕ. Then <𝑙 is computable.𝜖

P!""#. By totality of <𝑙, (𝑑 , 𝑚) ς<𝑙 i" 𝑑 = 𝑚 or (𝑚 , 𝑑) ↔<𝑙. Thus, <𝑙 is both
c.e. and co-c.e., hence is computable.

We shall now prove that the computable ordinals form an initial segment of the
ordinals.

Lemma 11.4.3. Let <𝑙 be a c.e. total order on an infinite set 𝑎 ↗ ℕ. Then
there is a c.e. total order <𝑛 on ℕ with the same order type as <𝑙. 𝜖

P!""#. First, note that 𝑎 is c.e., since 𝑎 = {𝑑 ↔ ℕ : ⇒𝑚((𝑑 , 𝑚) ↔<𝑙

∃(𝑚 , 𝑑) ↔<𝑙)} by totality of <𝑙. Thus, there is a computable bijection 𝐿 :
ℕ → 𝑎. Then, <𝑛= {(𝐿 ↑1(𝑑), 𝐿 ↑1(𝑚) : (𝑑 , 𝑚) ↔<𝑙}.

Suppose now that 𝜘 is a computable ordinal, as witnessed by a computable
well-order <𝑙 on ℕ, and let 𝜙 < 𝜘. Then either 𝜙 is finite, in which case it
is computable by definition, or 𝜙 is the order type of <𝑙 restricted to {𝑚 ↔
ℕ : 𝑚 <𝑙 𝑑} for some 𝑑 ↔ ℕ with infinitely many predecessors. Then by
Lemma 11.4.3 and Lemma 11.4.2, 𝜙 is the order type of a computable well-
order on ℕ, thus is a computable ordinal. Since the computable ordinals form a
countable initial segment of the ordinals, then there is a least non-computable
ordinal.

Definition 11.4.4. Let 𝜑𝑂𝑁

1 denote the least non-computable ordinal.1414: “ck” stands for “Church Kleene”, who
introduced the concept in [90].

↘

The representation of a computable ordinal using well-orders is not the most
e"ective, in that given a computable well-order <𝑙 on ℕ and some 𝑑 ↔ ℕ, one
cannot computably decide wether 𝑑 is a successor element or a limit. We now
give an alternative and more constructive definition of the computable ordinals,
which can be seen as an e"ective counterpart of von Neumann definition.

Definition 11.4.5 (Kleene’s O). Let <O be the least partial order on ℕ such
that 1 <O 2, satisfying the following closures:15

15: The choice of 2𝑚 to code the successor
of 𝑚 and 3 · 5𝑇 to code for a limit ordinal with
cofinal sequence ϖ𝑇 is arbitrary. The only
requirement is to have a unique notation to
be able to deconstruct the inductive defini-
tion and distinguish the successor and limit
cases. For instance, one could have defined
3𝑇+1 instead of 3 · 5𝑇 .

(1) If 𝑑 <O 𝑚 then 𝑑 <O 2𝑚
(2) For every total function ϖ𝑇 : ℕ → ℕ, if ↙𝑀(ϖ𝑇(𝑀) <O ϖ𝑇(𝑀 + 1)),

11.4 Computable ordinals 163

19: As noted Chong and Liu [91], not ev-
ery path can be extended into a maximal
path. Indeed, with poor choices at the 𝜑-
branching levels, one might obtain only 𝜑2

for instance.

then for every 𝑀 ↔ ℕ, ϖ𝑇(𝑀) <O 3 · 5𝑇 .

Let O be the domain of <O.16 16: The sets <O and O are both ε1
1-

complete.
↘

The above definition might seem quite cryptic, and deserves some explanation.
Each element 𝑑 of O can be evaluated into a computable ordinal |𝑑| , by
transfinite induction17

17: In order to be allowed to use transfinite
induction, one must actually first check that
<O is a well-founded partial ordering. One
can define an natural enumeration of <O by
transfinite induction on the ordinals, such
that if 𝑑 <O 𝑚 and 𝑚 <O 𝑂, then 𝑑 <O 𝑚 is
enumerated at an earlier stage than 𝑚 <O 𝑂.
It follows that any infinite decreasing <O-
sequence would yield an infinite decreasing
sequence of ordinals.

as follows: First, |1| = #. If 2𝑑 ↔ O, then |2𝑑 | = |𝑑| + $.
Last, if 3 · 5𝑇 ↔ O, then |3 · 5𝑇 | = sup

𝑀
|𝜚𝑇(𝑀)| . To avoid confusion, we write

#, $, . . . for the finite ordinals and keep the standard font 0, 1, . . . for their
codes.18

18: One must be careful in distinguishing
the constructible code 1 from the ordinal $.
Indeed, the code 1 denotes the ordinal #.

Definition 11.4.6. An ordinal 𝜘 is constructible if 𝜘 = |𝑑| for some 𝑑 ↔ O.↘

The main advantage of constructible ordinals is that one can directly know from
a code 𝑑 whether it codes for #, for a successor ordinal, or is a limit ordinal. In
the latter case, one can even e"ectively find a cofinal sequence of codes.

Exercise 11.4.7. Show that the constructible ordinals are downward-closed.𝜖

Every finite ordinal 𝑀 admits a unique code in O, namely, the 𝑀-fold power
of two. The ordinal 𝜑, on the other hand, admits infinitely many codes in O,
since there exist countably many computable strictly increasing sequences of
finite ordinals. More generally, the limit step introduces infinitely many codes,
and one can thus see O as a tree, which is 𝜑-branching at limit steps. A
maximal path19 through this tree is a linearly ordered subset of O which is
downward-closed, and cofinal in 𝜑𝑂𝑁

1 .

Exercise 11.4.8. Show that for every 𝑑 ↔ O, the set {𝑚 ↔ O : 𝑚 <O 𝑑} is
uniformly c.e. and linearly ordered.20 20: Although <O is ε1

1, the restriction of the
order to {𝑚 ↔ O : 𝑚 <O 𝑑} is uniformly c.e.
in 𝑑.

𝜖

The same way Turing-invariant operators on sets induce operations on the
Turing degrees, one can study the e"ectivity of operations on ordinals by
defining functions over their codes. The following exercise shows that ordinal
addition is computable.

Exercise 11.4.9. Let +O : ℕ2 → ℕ be total computable function defined by
𝑑 +O 1 = 𝑑, 𝑑 +O 2𝑚 = 2𝑑+O𝑚 , 𝑑 +O 3 · 5𝑇 = 3 · 5 𝐿 (𝑇 ,𝑑), where 𝐿 (𝑇 , 𝑑) is the
code of a function21

21: Note that this definition involves
Kleene’s fixpoint theorem, as the definition
of 𝐿 uses +O. Also note that 𝑑 ↓O 𝑑 +O 𝑚

but not necessarily 𝑚 ↓O 𝑑 +O 𝑚 because
of the limit case.

such that ϖ
𝐿 (𝑇 ,𝑑)(𝑀) = 𝑑 +Oϖ𝑇(𝑀), and 𝑑 +O 𝑚 = 1 if 𝑚 is

not in any of those forms. Show that for every 𝑑 , 𝑚 ↔ O, |𝑑| + |𝑚| = |𝑑 +O 𝑚| .𝜖

Given a non-empty c.e. set of codes of constructible ordinals, its supremum is
again constructible, but not uniformly computable. One can however uniformly
compute an upper bound:

Lemma 11.4.10 (Sacks [92]). There is a total computable function 𝐿 : ℕ →
ℕ such that if 𝑜𝑇 ↗ O, then 𝐿 (𝑇) ↔ O and sup

𝑑↔𝑜𝑇

|𝑑| ↓ | 𝐿 (𝑇)| .22

22: Note that we do not require <O to be
total on 𝑜𝑇 . In other words, the inequality
holds for ordinals, one does not satisfy 𝑑 <O

𝐿 (𝑇) for every 𝑑 ↔ 𝑜𝑇 .𝜖

P!""#. One can without loss of generality assume that 𝑜𝑇 is infinite, by
enumerating all the constructible codes of finite ordinals. For every 𝑇 ↔ ℕ, let
𝐿 (𝑇) = 3 ·5𝑑 where ϖ𝑑(𝑀) returns the finite ordinal sum (using Exercise 11.4.9)
of the 𝑀 first distinct elements enumerated in 𝑜𝑇 , di"erent from 1 (the code
of #). One therefore has ϖ𝑑(𝑀) <O ϖ𝑑(𝑀+1) for every 𝑀 ↔ ℕ, hence 3·5𝑑 ↔ O.
Moreover, by construction, sup

𝑑↔𝑜𝑇

|𝑑| ↓ sup
𝑀
|ϖ𝑑(𝑀)| = |3 · 5𝑑 | = | 𝐿 (𝑇)| .

164 11 Higher jump cone avoidance

24: It seems at first sight that this is just a
complicated reformulation of a simple notion.
However, the topological considerations are
very useful to understand why Post theo-
rem holds for the arithmetic hierarchy, but
not for classes over 2ℕ . Indeed, since the
Borel hierarchy collapses over the discrete
topology, every Borel set is open, hence is
e"ectively open relative to an appropriate
oracle, while the Borel hierarchy is strict on
the Cantor space, hence some ε0

2 classes
are not ε0

1(𝑎) for any oracle 𝑎.

We shall now prove that the constructible ordinals coincide with the computable
ones. Following the intuition, a code for a constructible ordinal carries more
information than a computable well-order, in that one can computably transform
a code 𝑑 ↔ O into a program for a computable well-order of order type |𝑑| ,
while the reverse translation is not computable.

Theorem 11.4.11 (Kleene, Markwald)
Computable and constructible ordinals coincide.

P!""#. Let 𝑑 ↔ O be a code for a constructible ordinal 𝜘. If 𝜘 < 𝜑, then
it is computable by definition. If 𝜘 is infinite, then the relation <O restricted
to {𝑚 ↔ O : 𝑚 <O 𝑑} is c.e. By Lemma 11.4.3 and Lemma 11.4.2, there is a
computable order over ℕ with the same order type, thus 𝜘 is computable.

Suppose now that 𝜘 is a computable ordinal. If 𝜘 < 𝜑, then the 𝜘-fold power
of 2 yields a constructible code for 𝜘, hence hence 𝜘 is constructible. If 𝜘 is
infinite, then there is a computable well-order <𝑙 on ℕ of order type 𝜘. Let
𝐿 : ℕ → ℕ be the function of Lemma 11.4.10, and let 𝑝 : ℕ → ℕ be the
total computable function which on 𝑑 computes the code 𝑇𝑑 of the c.e. set
𝑜𝑇𝑑

= {𝑝(𝑚) : 𝑚 <𝑙 𝑑}, and outputs 𝐿 (𝑇𝑑). One can prove by induction over 𝑑
that 𝑝(𝑑) ↔ ℕ and | 𝑝(𝑑)| is at least the order type of <𝑙 restricted to the
elements below 𝑑. Let 𝑜𝑇 = {𝑝(𝑑) : 𝑑 ↔ ℕ}, then | 𝐿 (𝑇)| ≃ sup

𝑑
| 𝑝(𝑑)| , so

| 𝐿 (𝑇)| is at least the order type of <𝑙.23

23: One could be tempted to rather con-
sider 3 · 5𝑓 where ϖ𝑓(𝑑) = 𝑝(𝑑). However,
although |𝑝(𝑑)| < |𝑝(𝑑 + 1)| , one does not
have in general 𝑝(𝑑) <O 𝑝(𝑑+1), thus 3 ·5𝑓
is not a valid constructible code.

11.5 Hyperarithmetic hierarchy

The arithmetic hierarchy corresponds to the finite levels of the e"ective coun-
terpart to the Borel hierarchy over ℕ, equipped with the discrete topology.24

We now generalize the arithmetic hierarchy to transfinite levels, and prove
the corresponding generalization of Post theorem, namely, every level of the
hierarchy is e"ectively open relative to the appropriate iteration of the halting
set.

Although the arithmetic hierarchy is usually defined in terms of alternations of
quantifiers, the generalization to transfinite levels which require to use infinitary
e"ective conjunctions and disjunctions to handle the limit cases. One therefore
rather defines the hyperarithmetic hierarchy in terms of codes.

Definition 11.5.1. The hyperarithmetic codes are defined by induction over
the computable ordinals2525: One could actually define the notion of

ω0
𝜘-code for arbitrary ordinals. However, an

easy induction along the ordinals shows that
every ω0

𝜘-code is ω0
𝜙 for some 𝜙 < 𝜑𝑂𝑁

1 ,
hence the hierarchy does not go beyond the
computable ordinals.

26

26: Because ω0
𝜘-codes do not distinguish

the successor case from the limit case, one
cannot uniformly compute a constructible
code 𝑑 ↔ O from a ω0

|𝑑| -code.

.

1. A ω0
1-code of a set 𝑎 is a pair ∞0, 𝑇∈ such that 𝑜𝑇 = 𝑎.

2. A ε0
𝜘-code of a set 𝑎 is a pair ∞1, 𝑇∈, where 𝑇 is a ω0

𝜘-code of the
set ℕ \ 𝑎.

3. A ω0
𝜘-code of a set 𝑎 =

⋃
𝑀
𝑎𝑀 is a pair ∞2, 𝑇∈ where𝑜𝑇 is non-empty,

and enumerates ε0
𝜙𝑀

-codes of sets 𝑎𝑀 such that sup
𝑀
(𝜙𝑀 + $) = 𝜘.

↘

A set 𝑎 is ω0
𝜘 (resp. ε0

𝜘) if it admits a ω0
𝜘-code (resp. a ε0

𝜘-code). A set 𝑎
is ϑ0

𝜘 if it is both ω0
𝜘 and ε0

𝜘. An easy induction shows that the finite levels
correspond to the arithmetic hierarchy.

11.5 Hyperarithmetic hierarchy 165

28: One could for instance define ∋(𝜑)
as

⊕
𝑀 ∋(𝑀), but also as

⊕
𝑀 ∋(2𝑀), among

many possibilities.
29: Since constructible codes are integers,
it would be confusing to write ∋(𝑑) for an |𝑑|-
iteration of the Turing jump. One therefore
traditionally uses the notation 𝑃𝑑 , standing
for “hyperarithmetic”.

Exercise 11.5.2. Show that the ω0
𝜘 sets are closed under e"ective countable

unions and finite intersections. Moreover, those closure are uniform in ω0
𝜘-

codes. 𝜖

Exercise 11.5.3. Show that if 𝑎 is either ω0
𝜘 or ε0

𝜘, then 𝑎 is ϑ0
𝜘+$ uniformly

in a ω0
𝜘 or a ε0

𝜘-code of 𝑎. 𝜖

The following lemma requires a bit more work, thus is fully proven.

Lemma 11.5.4. If 𝑎 isϑ0
𝜘 and 𝑞 isω0

1(𝑎), then 𝑞 isω0
𝜘 uniformly in aϑ0

𝜘-code
of 𝑎 and a c.e. index of 𝑞.27 27: A ϑ0

𝜘-code is nothing but a pair of a
ω0
𝜘-code and a ε0

𝜘-code.
𝜖

P!""#. Say 𝑞 = 𝑜
𝑎

𝑇
. Then 𝑞 = {𝑀 : ⇒𝜒 (𝑀 ↔ 𝑜

𝜒
𝑇
∅ ↙𝑓 < |𝜒| ((𝜒(𝑓) =

0 ∅ 𝑓 ς 𝑎) ∃ (𝜒(𝑓) = 1 ∅ 𝑓 ↔ 𝑎))}. By induction on 𝜘, given 𝜒 ↔ 2<ℕ and
𝑓 < 2, one can uniformly compute a ω0

𝜘-code of a set 𝑎𝜒,𝑓 such that 𝑎𝜒,𝑓 = ℕ

if 𝜒(𝑓) = 𝑎(𝑓) and 𝑎𝜒,𝑓 = ∋ otherwise. Then 𝑞 =
⋃

𝜒(𝑜𝜒
𝑇
↦⋂

𝑓<|𝜒| 𝑎𝜒,𝑓). By
Exercise 11.5.2, 𝑞 is ω0

𝜘.

The following exercise is proven by a simple induction over codes, and will be
useful later.

Exercise 11.5.5. Let 𝐿 : ℕ → ℕ be a total computable function and 𝑎 be a
ω0
𝜘-set. Show that 𝐿 [𝑎] = { 𝐿 (𝑀) : 𝑀 ↔ 𝑎} is ω0

𝜘 uniformly in a ω0
𝜘-code of 𝑎

and a c.e. index of 𝐿 . 𝜖

We now define transfinite iterations of the Turing jump to state the generalized
Post theorem. In the limit case, one naturally wants to join a cofinal sequence of
previous iterations. This raises some canonicity issues, as there exist infinitely
many cofinal sequences already at the level of 𝜑, and they yield di"erent sets28.
We will therefore iterate the jump along constructible codes of ordinals.29

Definition 11.5.6. For every 𝑑 ↔ O, let 𝑃𝑑 be defined inductively as follows.

1. 𝑃1 = ∋
2. 𝑃2𝑑 = 𝑃

△
𝑑

3. 𝑃3·5𝑇 =
⊕

𝑀
𝑃ϖ𝑇 (𝑀). ↘

By Spector [93], if 𝑑 and 𝑚 are two constructible codes for an ordinal 𝜘, then
𝑃𝑑 ⇐𝑊 𝑃𝑚 . Therefore, this hierarchy defines iterations of the Turing jump over
the Turing degrees, and one can write 0(𝜘) for the 𝜘-iterate of the Turing jump.
The following proposition might be surprising at first, as the transfinite iterations
are shifted with respect to the finite levels.

Proposition 11.5.7. For every constructible code 𝑑 ↔ Owith |𝑑| ≃ 𝜑, 𝑃𝑑 is
ϑ0
|𝑑| uniformly in 𝑑. 𝜖

P!""#. By induction along O starting with |𝑑| = 𝜑.

Suppose first 𝑑 = 2𝑚 codes of a successor ordinal. Then, by induction hypoth-
esis, 𝑃𝑚 is ϑ0

|𝑚| uniformly in 𝑚. By Lemma 11.5.4, 𝑃𝑑 = 𝑃
△
𝑚

is ω0
|𝑚| uniformly

in 𝑚, so by Exercise 11.5.3, 𝑃𝑑 is ϑ0
|𝑑| uniformly in 𝑑.

Suppose now 𝑑 = 3 · 5𝑇 codes for a limit ordinal. Here, for every 𝑀, we have
two cases: either ϖ𝑇(𝑀) is a constructible code of a finite ordinal, in which

166 11 Higher jump cone avoidance

case Post’s theorem yields that 𝑃ϖ𝑇 (𝑀) is ω0
|ϖ𝑇 (𝑀)|+$ uniformly in 𝑀 and 𝑇,

or ϖ𝑇(𝑀) is a constructible code of an infinite ordinal. In the latter case, by
induction hypothesis, 𝑃ϖ𝑇 (𝑀) is ϑ0

|ϖ𝑇 (𝑀)| uniformly in 𝑀 and 𝑇, in which case by
Exercise 11.5.3 it is again ω0

|ϖ𝑇 (𝑀)|+$ uniformly in 𝑀 and 𝑇. Note that one can
computably decide in which case we are, since being a constructible code of
a finite ordinal is decidable. Thus, we can assume in both cases that 𝑃ϖ𝑇 (𝑀) is
ω0
|ϖ𝑇 (𝑀)|+$ uniformly in 𝑀 and 𝑇.

By Exercise 11.5.5, for each 𝑀, the set 𝑞𝑀 = {∞𝑟 , 𝑀∈ : 𝑟 ↔ 𝑃ϖ𝑇 (𝑀)} is
ω0
|ϖ𝑇 (𝑀)|+$ uniformly in 𝑀 and 𝑇. Then 𝑃𝑑 =

⋃
𝑀
𝑞𝑀 is ω0

|𝜘| uniformly in 𝑑. By

Exercise 11.5.3, 𝑃ϖ𝑇 (𝑀) is ω0
|ϖ𝑇 (𝑀)|+% uniformly in 𝑀 and 𝑇. By Exercise 11.5.5,

for each 𝑀, the set 𝑄𝑀 = {∞𝑟 , 𝑀∈ : 𝑟 ↔ 𝑃ϖ𝑇 (𝑀)} is ω0
|ϖ𝑇 (𝑀)|+% uniformly in 𝑀

and 𝑇. Thus, 𝑃𝑑 =
⋃

𝑀
𝑄𝑀 is ω0

|𝜘| uniformly in 𝑑. It follows that 𝑃𝑑 is ϑ0
|𝜘|

uniformly in 𝑑.

Corollary 11.5.8
For every constructible code 𝑑 ↔ O,

1. if |𝑑| < 𝜑, then 𝑃𝑑 is ω0
|𝑑| uniformly in 𝑑;

2. if |𝑑| ≃ 𝜑, then 𝑃2𝑑 is ω0
|𝑑| uniformly in 𝑑.

P!""#. The first case holds by Post’s theorem. The second case is immediate
by Proposition 11.5.7 and Lemma 11.5.4.

The bound is actually tight, and one can prove with some extra work that 𝑃2𝑑

is ω0
|𝑑| -complete when |𝑑| ≃ 𝜑. Together with Post’s theorem, this yields the

following generalized Post theorem:

Theorem 11.5.9 (Monin and Patey [3])
Fix some 𝑑 ↔ O.

1. If |𝑑| < 𝜑, then the set 𝑃𝑑 is ω0
|𝑑| -complete uniformly in 𝑑.

2. If |𝑑| ≃ 𝜑, then the set 𝑃2𝑑 is ω0
|𝑑| -complete uniformly in 𝑑.

11.6 Higher recursion theory

Beyond the definition of a robust notion of computable ordinal, and the exten-
sion of the arithmetic hierarchy to transfinite levels, there is a whole theory
generalizing computability theory along computable ordinals, called higher
recursion theory. Its development goes far beyond the scope of this book. We
however state some of its main concepts and theorems, which will be useful
for transfinite jump control. One might refer to Sacks [92], Chong and Yu [91]
or to Monin and Patey [3] for an introduction to higher recursion theory.

11.6.1 Hyperarithmetic reduction

Many natural properties on sets induce operations or relations over sets by
considering their relativized form. The most basic example is the notion of

11.6 Higher recursion theory 167

32: By Kleene’s normal form theorem, 𝜓
can even be taken ε0

1.

33: A function 𝑝 dominates 𝐿 if 𝑝(𝑆) ≃
𝐿 (𝑆) for every 𝑆. Some authors define it as
𝑝(𝑆) ≃ 𝐿 (𝑆) for all but finitely many 𝑆. This
di"erence does not matter in this context.

Turing machine, whose relativization yields the Turing reduction. One can also
relativize the arithmetic hierarchy, yielding the arithmetic reduction by letting 𝑒

be arithmetically reducible to 𝑕 if 𝑒 is ω0
𝑀
(𝑒) for some 𝑀 ↔ ℕ. Similarly, one

can naturally define the notion of 𝑕-computable ordinal, with 𝜑𝑕

1 denoting the
least non-𝑕-computable ordinal. The ε1

1(𝑕) set O𝑕 of 𝑕-constructible codes
is defined accordingly, with all c.e. operators replaced by 𝑕-c.e. operators.30

30: If 𝑑 ↔ O
𝑒 ↦ O

𝑕 , the interpretation |𝑑|𝑕
of a 𝑕-constructible code might di"er from
its interpretation |𝑑|𝑒 . For convenience, we
might assume that for every 𝑑 ↔ O↦ O

𝑕 ,
|𝑑| = |𝑑|𝑕 .

We shall see that most sets 𝑕 satisfy 𝜑𝑕

1 =
𝜑𝑂𝑁

1 . In other words, it is an “anomaly” to
compute non-computable ordinals. How-
ever, even if 𝜑𝑕

1 = 𝜑𝑂𝑁

1 , computable ordi-
nals will have in general more codes in O

𝑕

than in O.

One then defines ω0
𝜘(𝑕) classes for 𝜘 < 𝜑𝑕

1 and the sets 𝑃
𝑕

𝑑
for 𝑑 ↔ O

𝑕 . All
the theorems of the previous sections are uniform in 𝑕. In particular, 𝑃𝑕

2𝑑 is
uniformly ω0

|𝑑|𝑕 if |𝑑|𝑕 ≃ 𝜑.

Definition 11.6.1. A set 𝑒 is hyperarithmetically reducible31 31: It is very important to note that 𝑑 ↔ O
𝑕

and not simply 𝑑 ↔ O. Indeed, 𝑕 might com-
pute some non-computable ordinals.

to a set 𝑕 (writ-
ten 𝑒 ↓𝑠 𝑕) if it is ω0

𝜘(𝑕) for some 𝜘 < 𝜑𝑕

1 , or equivalently if there is

some 𝑑 ↔ O
𝑕 and 𝑇 ↔ ℕ such that 𝑒 = ϖ𝑃

𝑕

𝑑

𝑇
. ↘

The hyperarithmetic reduction is a very robust notion, in that it admits various
characterizations of very di"erent nature. A set 𝑒 ↗ ℕ is ω1

1(𝑕) if it can
be written of the form {𝑀 ↔ ℕ : ⇒𝑒𝜓(𝑒 ,𝑕 , 𝑀)}, where 𝜓 is an arithmetic
formula.32 A set 𝑒 is ε1

1(𝑕) if its complement is ω1
1(𝑕), and ϑ1

1(𝑕) if it is both
ω1

1(𝑕) and ε1
1(𝑕). A 𝑕-modulus of a set 𝑒 is a function 𝐿 : ℕ → ℕ such

that for every 𝑝 : ℕ → ℕ dominating33
𝐿 , 𝑝 ▽ 𝑕 ≃𝑊 𝑒. Last, a set 𝑒 is

𝑒-computably encodable if for every infinite set 𝑎 ↗ ℕ, there is an infinite
subset 𝑞 ↗ 𝑎 such that 𝑞 ▽ 𝑕 ≃𝑊 𝑒. The following theorem shows that all
these definitions coincide.

Theorem 11.6.2 (Groszek and Slaman [94], Solovay [17], Kleene [95])
Let 𝑒 and 𝑕 be two sets. The following are equivalent:

1. 𝑒 ↓𝑠 𝑕;
2. 𝑒 is ϑ1

1(𝑕);
3. 𝑒 admits a 𝑕-modulus;
4. 𝑒 is 𝑕-computably encodable.

There exists a whole correspondence34

34: This correspondence is imperfect, in
particular because the true higher counter-
part of the integers is 𝜑𝑂𝑁

1 . It follows that
there is a better correspondence between
classical computability theory and metare-
cursion theory, a theory which studies the
subsets of 𝜑𝑂𝑁

1 from a computational view-
point. See Sacks [92] for an introduction to
both theories.

between classical computability theory
and higher recursion theory. In this correspondence, the ε1

1 sets play the role
of higher c.e. sets, the hyperarithmetic sets are both the higher finite and higher
computable sets, and Kleene’s O is the higher halting set.

The following theorem is known as the ω1
1 majoration theorem.

Theorem 11.6.3 (Spector [93])
Let 𝑒 ↗ O be a ω1

1 set. Then sup
𝑑↔𝑒 |𝑑| < 𝜑𝑂𝑁

1 .35
35: This theorem is actually uniform in the
following sense: one can computably find
a constructible code 𝑚 ↔ O such that
sup

𝑑↔𝑒 |𝑑| ↓ |𝑚| from a ω1
1-code of 𝑒.

Corollary 11.6.4
Let 𝐿 : ℕ → O be a total ε1

1-function.36 36: A function is ε1
1 if its graph is ε1

1.Then sup
𝑀
| 𝐿 (𝑀)| < 𝜑𝑂𝑁

1 .

P!""#. The graph 𝑅𝐿 of 𝐿 can be written of the form {(𝑆 , 𝑡) : ↙𝑒ϖ𝑒

𝑇
(𝑆 , 𝑡)↖}.

Since 𝐿 is total, 𝑅𝐿 = {(𝑆 , 𝑡) : ↙𝑢⇒𝑒(𝑢 ϱ 𝑡 → ϖ𝑒

𝑇
(𝑆 , 𝑢)′}, which is a ω1

1
set, so 𝐿 is ϑ1

1. In particular, the range of 𝐿 is a ω1
1 subset of O, so by the ω1

1
majoration theorem, sup

𝑀
| 𝐿 (𝑀)| < 𝜑𝑂𝑁

1 .

168 11 Higher jump cone avoidance

11.6.2 Hyperjump operator

As mentioned, Kleene’s O is the higher counterpart of the halting set. The rela-
tivization of the halting set induces an operation on the Turing degrees called
the Turing jump. Similarly, the map 𝑒 ℜ→ O

𝑒 is compatible with the hyperarith-
metic reduction, and therefore induces an operation on the hyperarithmetic
degrees, called the hyperjump.

Recall that given two sets 𝑒 ,𝑕, 𝑒 ↓𝑊 𝑕 i" 𝑒
△ ↓𝑟 𝑕

△. The following theorem
states its higher counterpart.

Theorem 11.6.5 (Sacks [92])
Fix two sets 𝑒 ,𝑕. Then 𝑒 ↓𝑠 𝑕 i" O

𝑒 ↓𝑟 O
𝑕 .

P!""#. Suppose first 𝑒 ↓𝑠 𝑕. Then 𝑒 is ϑ1
1(𝑕) by Theorem 11.6.2, but

since O
𝑒 is ε1

1(𝑒), then O
𝑒 is ε1

1(𝑕).37
37: This is true in general: if 𝑒 is ε1

1(𝑕)
and 𝑕 is ϑ1

1(𝑖), then 𝑒 is ε1
1(𝑖). Since O

𝑕 is ε1
1(𝑕)-complete for the

many-one reduction38

38: The proof that O is ε1
1-complete for the

many-one reduction relativizes in a strong
way: for every set𝑕 and every ε1

1(𝑕) set 𝑒,
there is a computable function 𝐿 : ℕ → ℕ
such that 𝑒 = {𝑀 : 𝐿 (𝑀) ↔ O

𝑕}.

, O𝑒 ↓𝑟 O
𝑕 .

Suppose now O
𝑒 ↓𝑟 O

𝑕 . Since 𝑒 and 𝑒 are ε1
1(𝑒), then 𝑒 ↓𝑟 O

𝑒 and
𝑒 ↓𝑟 O

𝑒 . It follows by transitivity of the many-one reduction that 𝑒 ↓𝑟 O
𝑕

and 𝑒 ↓𝑟 O
𝑕 . Since O

𝑕 is ε1
1(𝑕), both 𝑒 and 𝑒 are ε1

1(𝑕), so 𝑒 is ϑ1
1(𝑕),

hence 𝑒 ↓𝑠 𝑕 by Theorem 11.6.2.

One deduces from the previous theorem that the hyperjump operator is a
hyperdegree-theoretic operation. The following theorem states in a relativized
form that the notion of computable ordinal is robust, in that any hyperarithmetic
ordinal is computable.

Theorem 11.6.6 (Spector [93])
Fix two sets 𝑒 ,𝑕. If 𝑒 ↓𝑠 𝑕, then 𝜑𝑒

1 ↓ 𝜑𝑕

1 .

P!""#. Let 𝐿 : ℕ → ℕ be the partial 𝑕-computable function witnessing the
uniformity of the ω1

1 majoration theorem relativized to 𝑕 (Theorem 11.6.3), that
is, if 𝑎 ↗ O

𝑕 is a ω1
1(𝑕) set with ω1

1(𝑕)-code 𝑂, then 𝐿 (𝑂) ↔ O
𝑕 is such that

sup
𝑑↔𝑎 |𝑑|𝑕 ↓ | 𝐿 (𝑂)|𝑕 .

We prove, by transfinite induction over the 𝑒-constructible codes, the existence
of a partial 𝑕-computable function 𝑝 : ℕ → ℕ such that for every 𝑑 ↔ O

𝑒 ,
𝑝(𝑑) ↔ O

𝑕 and |𝑑|𝑒 ↓ |𝑝(𝑑)|𝑕 . Let 𝑑 ↔ O
𝑒 .

Suppose first 𝑑 = 1 codes for #. Letting 𝑝(𝑑) = 1, we have |𝑑|𝑒 = | 𝑝(𝑑)|𝑕 .

Suppose now 𝑑 = 2𝑚 codes for a successor ordinal. Then by induction hy-
pothesis, 𝑝(𝑚) ↔ O

𝑕 and |𝑚|𝑒 ↓ |𝑝(𝑚)|𝑕 . Letting 𝑝(𝑑) = 2𝑝(𝑚), we have
|𝑑|𝑒 = |𝑚|𝑒 + $ ↓ |𝑝(𝑚)|𝑕 + $ = |𝑝(𝑑)|𝑕 .

Suppose last 𝑑 = 3 · 5𝑇 codes for a limit ordinal. Then for every 𝑀, by induction
hypothesis, 𝑝(ϖ𝑒

𝑇
(𝑀)) ↔ O

𝑕 and |ϖ𝑒

𝑇
(𝑀)|𝑒 ↓ |𝑝(ϖ𝑒

𝑇
(𝑀))|𝑕 . Since 𝑒 isϑ1

1(𝑕),
the set 𝑎 = {𝑝(ϖ𝑒

𝑇
(𝑀)) : 𝑀 ↔ ℕ} ↗ O

𝑕 is ω1
1(𝑕). Furthermore, a ω1

1(𝑕)-
code 𝑂 of 𝑎 can be found uniformly in 𝑇. Let 𝑝(𝑑) = 𝐿 (𝑂).

Last, the following theorem relates the hypercomputation of Kleene’s O to
the computation of a non-computable ordinal. It implies in particular that the
hyperjump is strictly increasing in the hyperdegrees.

11.7 Transfinite jump control 169

Theorem 11.6.7 (Spector [93])
Let 𝑒 be a set. Then 𝑒 ≃𝑠 O i" 𝜑𝑒

1 > 𝜑𝑂𝑁

1 .39

39: This statement relativizes as follows:
let 𝑒 ,𝑕 be sets such that 𝑒 ≃

𝑠
𝑕. Then

𝑒 ≃
𝑠
O
𝑕 i" 𝜑𝑒

1 > 𝜑𝑕

1 . In particular, the
hypothesis 𝑒 ≃

𝑠
𝑕 is necessary for the

equivalence to hold.

11.6.3 Classes of reals

One can define an e"ective Borel hierarchy for the Cantor space as one did
for the discrete topology on ℕ. This yields the notions of ω0

𝜘 and ε0
𝜘 classes

of reals for every 𝜘 < 𝜑𝑂𝑁

1 . The notions of ω0
𝜘-code and ε0

𝜘-code for classes
are defined accordingly.

Many previous theorems about the arithmetic hierarchy relativize uniformly
in the oracle. They enable to give canonical representations of the e"ective
Borel hierarchy using iterations of the halting set. Recall that every ω0

𝑁
class of

reals is of the form {𝑒 : 𝑀 ↔ 𝑒
(𝑁)} for some 𝑀 ↔ ℕ. The generalization to the

transfinite levels yields the following theorem.

Theorem 11.6.8 (Monin and Patey [3])
Fix some 𝑑 ↔ O such that |𝑑| ≃ 𝜑. A class A ↗ 2ℕ is ω0

|𝑑| i" there is
some 𝑀 ↔ ℕ such that A= {𝑒 : 𝑀 ↔ 𝑃

𝑒

2𝑑}.40
40: Note again the shift in indices between
the finite levels and the transfinite levels.

Given a set 𝑕 and 𝜙 < 𝜑𝑕

1 , we let O𝑕

<𝜙 = {𝑑 ↔ O : |𝑑|𝑕 < 𝜙}. Among the
classes of reals, we shall be particularly interested in the following family of
classes:

Theorem 11.6.9 (Spector [93])
For every 𝑀 ↔ ℕ and 𝑑 ↔ O, the class {𝑒 : 𝑀 ↔ O

𝑒

<|𝑑| } is ω0
|𝑑|+$ uniformly

in 𝑀 and 𝑑.

11.7 Transfinite jump control

Transfinite jump control involves di"erent sets of techniques, depending on
whether one wants to control a fixed level in the hyperarithmetic hierarchy,
or the hyperjump itself. Indeed, 𝜘-jump control for a fixed level 𝜘 < 𝜑𝑂𝑁

1 is
achieved by designing a ω0

𝜘-preserving forcing question for ω0
𝜘-classes, while

hyperjump control furthermore requires to consider 𝑅-computable ordinals
𝜘 < 𝜑𝑅

1 , where 𝑅 is the generic set being built. This section is therefore
divided into two parts, each focusing on one problematic.

11.7.1 𝜘-jump control

As usual, we illustrate the technique with the simplest notion of forcing, namely,
Cohen forcing, and with 𝜘-jump cone avoidance.

Theorem 11.7.1 (Feferman [89])
Fix a non-zero 𝜘 < 𝜑𝑂𝑁

1 and let 𝑄 be a non-ϑ0
𝜘 set. For every su!ciently

Cohen generic filter F, 𝑄 is not ϑ0
𝜘(𝑅F).

170 11 Higher jump cone avoidance

P!""#. This proof is a generalization of Theorem 11.2.1 to transfinite levels.
Contrary to finite levels which can be represented by arithmetic formulas,
defining a notion of ω0

𝜘-formula for 𝜘 ≃ 𝜑 would require to work with some
e"ective infinitary logic, with e"ective countable disjunctions and intersections.
It is therefore more convenient to define the forcing relation in terms of classes.

Definition 11.7.2. Let 𝜒 ↔ 2<ℕ be a Cohen condition, and B ↗ 2ℕ be a
ω0
𝜘 class for 𝜘 < 𝜑𝑂𝑁

1 .41
41: The notation 𝜒 ?⇑B is a shorthand for
𝜒 ?⇑𝑅 ↔ B. At finite levels, B can be writ-
ten as {𝑒 ↔ 2ℕ : 𝜓(𝑒)} for some ω0

𝑀
-

formula 𝜓 and 𝜒 ?⇑B i" 𝜒 ?⇑𝜓(𝑅). 1. For 𝜘 = $, let 𝜒 ?⇑B hold if there is some 𝜕 ⇓ 𝜒 such that [𝜕] ↗ B.
2. For 𝜘 > $, B is of the form

⋃
𝑀
B𝜙𝑀 where B𝜙𝑀 is ε0

𝜙𝑀
. Let 𝜒 ?⇑B

hold if there is some 𝜕 ⇓ 𝜒 and some 𝑀 ↔ ℕ such that 𝜕 ?⇑B𝜙𝑀 .4242: The class B𝜙𝑀 is ε0
𝜙𝑀

, and the forc-
ing question for ε-formulas is induced from
the one for ω-formulas. Thus, 𝜕 ?⇑B𝜙𝑀 is a
shorthand for 𝜕 ?⊋(2ℕ \ B𝜙𝑀)

↘

We start by proving that the forcing question for ω0
𝜘-classes is ω0

𝜘-preserving
uniformly in its parameters, for 𝜘 < 𝜑𝑂𝑁

1 .

Lemma 11.7.3. For every non-zero 𝜘 < 𝜑𝑂𝑁

1 , every ω0
𝜘 class B ↗ 2ℕ and

every Cohen condition 𝜒 ↔ 2<ℕ . The relation 𝜒 ?⇑B is ω0
𝜘 uniformly in 𝜒 and

a ω0
𝜘-code 𝑂 of B. 𝜖

P!""#. By induction over 𝜘. For 𝜘 = $, 𝑂 = ∞0, 𝑇∈ and B=
⋃

𝜕↔𝑜𝑇
[𝜕]. Thus,

𝜒 ?⇑B i" there is some 𝜕 ↔ 𝑜𝑇 such that [𝜒]↦ [𝜕] ϱ ∋, which is a ω0
1 relation

uniformly in 𝜒 and ∞0, 𝑇∈.
For 𝜘 > $, 𝑂 = ∞2, 𝑇∈ and B =

⋃
𝑀
B𝑀 where B𝑀 is a ε0

𝜙𝑀
class of ε0

𝜙𝑀
-

code 𝑂𝑀 ↔ 𝑜𝑇 . Then 𝜒 ?⇑B i" there is some 𝑀 ↔ ℕ and some 𝜕 ⇓ 𝜒 such
that 𝜕 ?⊋(2ℕ \ B𝑀). By induction hypothesis, the relation 𝜕 ?⇑(2ℕ \ B𝑀) is
ω0
𝜙𝑀

uniformly in a ω0
𝜙𝑀

-code of (2ℕ \ B𝑀), thus 𝜕 ?⇑B𝑀 is ε0
𝜙𝑀

uniformly in a
ε0

𝜙𝑀
-code of B𝑀 . Thus, the overall relation is ω0

sup
𝑀
(𝜙𝑀+$), hence is ω0

𝜘.

The following lemma shows that the definition of the forcing question meets a
strong version of its specifications.

Lemma 11.7.4. Let 𝜒 ↔ 2<ℕ be a Cohen condition and B ↗ 2ℕ be a ω0
𝜘

class for 𝜘 < 𝜑𝑂𝑁

1 .

1. If 𝜒 ?⇑B, then there is an extension 𝜕 ⇓ 𝜒 forcing 𝑅 ↔ B.
2. If 𝜒 ?⊋B, then 𝜒 forces 𝑅 ς B. 𝜖

P!""#. We prove simultaneously both items inductively on 𝜘.

Base case: 𝜘 = $. If 𝜒 ?⇑B, then, letting 𝜕 ⇓ 𝜒 be such that [𝜕] ↗ B, for
every filter F containing 𝜕, 𝑅F ↔ B. It follows that 𝜕 is an extension of 𝜒
forcing 𝑅 ↔ B. Conversely, if 𝜒 does not force 𝑅 ς B, then there is a filter F
containing 𝜒 such that 𝑅F ↔ B. Then, since B is open in Cantor space, there
is a finite 𝜕 ⇔ 𝑅F such that [𝜕] ↗ B. Since 𝜒 ⇔ 𝑅F, by taking 𝜕 long enough,
one has 𝜒 ⇔ 𝜕, thus 𝜒 ?⇑B.

Inductive case: 𝜘 > $. Say B =
⋃

𝑀
B𝑀 , where B𝑀 is ε0

𝜙𝑀
. If 𝜒 ?⇑B, then

there is some 𝑀 ↔ ℕ and some 𝜕 ⇓ 𝜒 such that 𝜕 ?⇑B𝑀 . By induction
hypothesis, there is some 𝜗 ⇓ 𝜕 forcing 𝑅 ↔ B𝑀 . In particular, 𝜗 is an
extension of 𝜒 forcing 𝑅 ↔ B. If 𝜒 ?⊋B, then for every 𝑀 ↔ ℕ and every
𝜕 ⇓ 𝜒, 𝜕 ?⊋B𝑀 . By induction hypothesis, for every 𝑀 ↔ ℕ and every 𝜕 ⇓ 𝜒,
there is some 𝜗 ⇓ 𝜕 forcing 𝑅 ς B𝑀 . In other words, for every 𝑀 ↔ ℕ, the
set of all 𝜗 forcing 𝑅 ς B𝑀 is dense below 𝜒. Thus, for every su!ciently
generic filter Fcontaining 𝜒 and for every 𝑀 ↔ ℕ, there is some 𝜗 ↔ F forcing
𝑅 ς B𝑀 , hence 𝑅 ς

⋃
𝑀
B𝑀 . In other words, 𝜒 forces 𝑅 ς B.

11.7 Transfinite jump control 171

43: By Corollary 11.5.8, for 𝜘 ≃ 𝜑, the
following class is ω0

𝜘 uniformly in 𝑆 and 𝑈:

B𝑆 ,𝑈 = {𝑒 : ϖ𝑃
𝑒

𝑑

𝑇
(𝑆)↖= 𝑈}

The following diagonalization lemma is a straightforward generalization of
Lemma 3.2.2. Fix some 𝑑 ↔ O such that |𝑑| = 𝜘. Recall that a set is 𝑃

𝑕

𝑑
-

computable i" 𝜘 < 𝜑 and it is ϑ0
𝜘+$(𝑕), or 𝜘 ≃ 𝜑 and it is ϑ0

𝜘(𝑕). For
simplicity, we shall handle only the case 𝜘 ≃ 𝜑, since the finite case is
Lemma 11.2.4.

Lemma 11.7.5. For every Cohen condition 𝜒 ↔ 2<ℕ and every Turing index 𝑇,
there is an extension 𝜕 ⇓ 𝜒 forcing ϖ𝑃

𝑅

𝑑

𝑇
ϱ 𝑄. 𝜖

P!""#. Consider the following set43

𝑉 = {(𝑆 , 𝑈) ↔ ℕ ∝ 2 : 𝑔 ?⇑{𝑒 : ϖ𝑃
𝑒

𝑑

𝑇
(𝑆)↖= 𝑈}}

Since the forcing question is ω0
𝜘-preserving, the set 𝑉 is ω0

𝜘. There are three
cases:

⫅̸ Case 1: (𝑆 , 1↑ 𝑄(𝑆)) ↔ 𝑉 for some 𝑆 ↔ ℕ. By Lemma 11.7.4(1), there
is an extension 𝜕 ⇓ 𝜒 forcing ϖ𝑃

𝑅

𝑑

𝑇
(𝑆)↖= 1 ↑ 𝑄(𝑆).

⫅̸ Case 2: (𝑆 , 𝑄(𝑆)) ς 𝑉 for some 𝑆 ↔ ℕ. By Lemma 11.7.4(2), there is
an extension 𝜕 ⇓ 𝜒 forcing ϖ𝑃

𝑅

𝑑

𝑇
(𝑆)′ or ϖ𝑃

𝑅

𝑑

𝑇
(𝑆)↖ϱ 𝑄(𝑆).

⫅̸ Case 3: None of Case 1 and Case 2 holds. Then 𝑉 is a ω0
𝜘 graph of

the characteristic function of 𝑄, hence 𝑄 is ϑ0
𝜘. This contradicts our

hypothesis.

We are now ready to prove Theorem 11.7.1. Let Fbe a su!ciently generic
filter for Cohen forcing, and let 𝑅F =

⋃
F. By genericity of F, 𝑅F is an infinite

binary sequence. If 𝜘 < 𝜑, by Lemma 11.2.4 𝑄 ⫆̸ 𝑅
(𝜘↑1)
F

. If 𝜘 ≃ 𝜑, by
Lemma 11.7.5, 𝑄 ⫆̸𝑊 𝑃

𝑅F

𝑑
. In both cases, 𝑄 is not ϑ0

𝜘(𝑅F). This completes
the proof of Theorem 11.7.1.

Exercise 11.7.6. Let (ℙ,↓) be the primitive recursive Jockusch-Soare forcing,
that is, ℙ is the set of all infinite primitive recursive binary trees 𝑊 ↗ 2<ℕ ,
partially ordered by inclusion. Fix a non-zero 𝜘 < 𝜑𝑂𝑁

1 .

1. Adapt the proof of Theorem 9.4.1 to design a ω0
𝜘-preserving forcing

question for ω0
𝜘-formulas.

2. Deduce that for every non-ϑ0
𝜘 set 𝑄 and every su!ciently generic ℙ-

filter F, 𝑄 is not ϑ0
𝜘(𝑅F). 𝜖

11.7.2 Hyperjump control

Hyperjump control can be seen as the higher counterpart of first-jump con-
trol. Recall that the hyperjump of a set 𝑒 is the set O𝑒 , that is, Kleene’s O
relative to 𝑒. The goal of this section is to develop a set of tools to prove that,
given a su!ciently generic filter F, 𝜑𝑅F

1 = 𝜑𝑂𝑁

1 . From this, it follows that the
levels of the relativized hyperarithmetic hierarchy are left unchanged, reducing
hyperjump control to 𝜘-jump control for every 𝜘 < 𝜑𝑂𝑁

1 .

For this, we first need to define sets and classes slightly more complex than
the hyperarithmetic hierarchy, but still in the Borel realm. Recall that, although
the notion of ω0

𝜘-code can be defined for every ordinal 𝜘, by the ω1
1 majoration

theorem, the corresponding hierarchy collapses at the level of 𝜑𝑂𝑁

1 , that is,
every ω0

𝜘 set is ω0
𝜙 for some 𝜙 < 𝜑𝑂𝑁

1 . One can however extend the family of

172 11 Higher jump cone avoidance

47: The function (𝑑 , 𝑀) ℜ→ 2𝑑
𝑀

is defined
inductively by 2𝑑0 = 𝑑 and 2𝑑

𝑀+1 = 22𝑑
𝑀 .

48: The set O𝑅

<𝜘 is the set of all codes 𝑑 ↔
O
𝑅 such that |𝑑|𝑅 < 𝜘. Note that O𝑅

<𝜑𝑂𝑁

1
ϱ

O in general. We can however assume for
convenience that O↗ O

𝑅

<𝜑𝑂𝑁

1
.

sets and classes by considering e"ective unions along ε1
1 sets of ordinals. A

hyperarithmetic code is a ω0
𝜘-code for some 𝜘 < 𝜑𝑂𝑁

1 , and a ε1
1-code of a

set 𝑎 ↗ ℕ is a code of a ε1
1-formula defining 𝑎.

Definition 11.7.7.

1. A ω0
𝜑𝑂𝑁

1
-code of a class B ↗ 2ℕ is a pair ∞3, 𝑇∈, where 𝑇 is ε1

1-code
of set 𝑎 ↗ ℕ such that B =

⋃
𝑇↔𝑎 B𝑇 , where B𝑇 is the class of

hyperarithmetic code 𝑇.44

44: As explained, this notion does not co-
incide with the naive definition of ω0

𝜑𝑂𝑁

1
in

terms of e"ective countable union of hyper-
arithmetic sets. The set of hyperarithmetic
codes of the union must be non-ω1

1 in or-
der to properly extend the hyperarithmetic
hierarchy.

2. A ε0
𝜑𝑂𝑁

1
-code of a class B↗ 2ℕ is a pair ∞1, 𝑇∈, where 𝑇 is aω0

𝜑𝑂𝑁

1
-code

of the class 2ℕ \ B.
3. A ω0

𝜑𝑂𝑁

1 +$-code of a class B =
⋃

𝑀
B𝑀 is a pair ∞2, 𝑇∈ where 𝑜𝑇 is

non-empty and enumerates ε0
𝜑𝑂𝑁

1
-codes of the classes B𝑀 . ↘

A class B↗ 2ℕ is ω0
𝜑𝑂𝑁

1
(ε0

𝜑𝑂𝑁

1
, ω0

𝜑𝑂𝑁

1 +1
) if it admits a corresponding code. One

can define the notions of ω0
𝜑𝑂𝑁

1
, ε0

𝜑𝑂𝑁

1
and ω0

𝜑𝑂𝑁

1 +$ for sets accordingly. In the

case of sets, ε1
1 and ω0

𝜑𝑂𝑁

1
sets coincide. For classes on the other hand, every

ω0
𝜑𝑂𝑁

1
class is ε1

1, but the converse is not true.45

45: From a topological viewpoint, every
ω0
𝜑𝑂𝑁

1 +$
class is Borel. The Borel hierar-

chy does not collapse on the Cantor space,
and there exists e"ectively co-analytic (ε1

1)
classes which are not Borel. On the other
hand, as mentioned before, every set of in-
tegers is open in the discrete topology on ℕ,
so there is no contradiction to the equiva-
lence between ε1

1 and ω0
𝜑𝑂𝑁

1
sets.

It will be sometimes more convenient to represent a ω0
𝜑𝑂𝑁

1
class as a count-

able union along O. The following lemma shows that the two definitions are
equivalent.

Lemma 11.7.8. A class B ↗ 2ℕ is ω0
𝜑𝑂𝑁

1
i" B =

⋃
𝑑↔O D𝑑 , where D𝑑 is

hyperarithmetic uniformly in 𝑑.46
46: Note that one can computably switch
from one representation to the other. 𝜖

P!""#. Suppose first B =
⋃

𝑇↔𝑎 B𝑇 , where 𝑎 is ε1
1 and B𝑇 is the class of

hyperarithmetic code 𝑇. Since O is ε1
1-complete for the many-one reduction,

there is a total computable function 𝐿 : ℕ → ℕ such that 𝑇 ↔ 𝑎 i" 𝐿 (𝑇) ↔ O.
One can furthermore suppose that 𝐿 is injective and increasing, since given
a code 𝑑 ↔ O and 𝑀 ↔ ℕ, 2𝑑

𝑀
↔ O i" 𝑑 ↔ O.47 In particular, the range of 𝐿

is computable. For every 𝑑 ↔ O, D𝑑 = B
𝐿
↑1(𝑑) if 𝑑 is in the range of 𝐿 , and

D𝑑 = ∋ otherwise. Note that D𝑑 is ω0
𝜙 for some 𝜙 < 𝜑𝑂𝑁

1 , and a ω0
𝜙-code

of D𝑑 can be found uniformly in 𝑑. By construction, B=
⋃

𝑑↔O D𝑑 .

Suppose now B=
⋃

𝑑↔O D𝑑 , where D𝑑 is hyperarithmetic uniformly in 𝑑. Let
𝐿 : ℕ → ℕ be a partial computable function such that 𝐿 (𝑑) is a hyperarithmetic
code of D𝑑 for every 𝑑 ↔ O. Here again, one can suppose that 𝐿 is injective
and increasing, since one can computably transform a hyperarithmetic code
into a larger hyperarithmetic code of the same class. Let 𝑎 = { 𝐿 (𝑑) : 𝑑 ↔ O}.
The set 𝑎 is ε1

1 as it is the image of a ε1
1 set by a computable injective function.

Thus B=
⋃

𝑇↔𝑎 B𝑇 , where B𝑇 is the class of hyperarithmetic code 𝑇.

As usual, Cohen forcing provides a simple example to illustrate the use of the
forcing question. We therefore prove that Cohen genericity preserves 𝜑𝑂𝑁

1 .

Theorem 11.7.9 (Feferman [89])
For every su!ciently Cohen generic filter F, 𝜑𝑅F

1 = 𝜑𝑂𝑁

1 .

P!""#. Suppose 𝜑𝑅

1 > 𝜑𝑂𝑁

1 , then there is an element 𝑑 ↔ O
𝑅 which codes

for 𝜑𝑂𝑁

1 . Since 𝜑𝑂𝑁

1 is a limit ordinal, 𝑑 = 3 · 5𝑇 , where ↙𝑀ϖ𝑅

𝑇
(𝑀)↖↔ O

𝑅

<𝜑𝑂𝑁

1
and

11.7 Transfinite jump control 173

with sup
𝑀
|ϖ𝑅

𝑇
(𝑀)|𝑅 = 𝜑𝑂𝑁

1 .48 We shall therefore naturally work with ω0
𝜑𝑂𝑁

1 +$
classes. We first extend the forcing question to ω0

𝜑𝑂𝑁

1
and ω0

𝜑𝑂𝑁

1 +$ classes,

assuming the existence of a ω0
𝜘-preserving forcing question for ω0

𝜘-formulas
(see the proof of Theorem 11.7.1).

Definition 11.7.10. Let 𝜒 ↔ 2<ℕ be a Cohen condition, and B=
⋃

𝑑↔OB𝑑

be a ω0
𝜑𝑂𝑁

1
class.49 49: By Lemma 11.7.8, B can be written of

this form.
Let 𝜒 ?⇑B hold if there is some 𝑑 ↔ O and some 𝜕 ⇓ 𝜒

such that 𝜕 ?⇑B𝑑 . ↘

The forcing question for a ω0
𝜑𝑂𝑁

1
-class B is ω0

𝜑𝑂𝑁

1
uniformly in a ω0

𝜑𝑂𝑁

1
-code of B.

One easily proves that the forcing question meets its specifications. The proof
is left as an exercise.

Exercise 11.7.11. Let 𝜒 ↔ 2<ℕ be a Cohen condition, and B=
⋃

𝑑↔OB𝑑 be
a ω0

𝜑𝑂𝑁

1
class. Prove that

1. if 𝜒 ?⇑B, then there is an extension of 𝜒 forcing 𝑅 ↔ B;
2. if 𝜒 ?⊋B, then there is an extension of 𝜒 forcing 𝑅 ς B. 𝜖

We now extend the forcing question to ω0
𝜑𝑂𝑁

1 +$ classes.

Definition 11.7.12. Let 𝜒 ↔ 2<ℕ be a Cohen condition, and B =
⋃

𝑀
B𝑀

be a ω0
𝜑𝑂𝑁

1 +$ class. Let 𝜒 ?⇑B hold if there is some 𝑀 ↔ ℕ and some 𝜕 ⇓ 𝜒

such that 𝜕 ?⇑B𝑀 .50 50: The class B𝑀 is ε0
𝜑𝑂𝑁

1
, so 𝜕 ?⇑B𝑀 is

a shorthand for 𝜕 ?⊋(2ℕ \ B𝑀). The forc-
ing question for ω0

𝜑𝑂𝑁

1 +$
-classes is ω0

𝜑𝑂𝑁

1 +$
-

preserving, but we are not going to use this
fact in the proof.

↘

The forcing question for ω0
𝜑𝑂𝑁

1 +$ classes meets its specification, but one can
actually prove a stronger version of it, in the negative case. Recall that, given
a set 𝑕 and 𝜙 < 𝜑𝑕

1 , we let O𝑕

<𝜙 = {𝑑 ↔ O : |𝑑|𝑕 < 𝜙}.

Lemma 11.7.13. Let 𝜒 ↔ 2<ℕ be a Cohen condition, and B=
⋃

𝑀

⋂
𝑑↔OB𝑀 ,𝑑

be a ω0
𝜑𝑂𝑁

1 +$ class, where B𝑀 ,𝑑 is hyperarithmetic uniformly in 𝑀 and 𝑑.51 51: Every ω0
𝜑𝑂𝑁

1 +$
class can be written of

this form thanks to Lemma 11.7.8.
1. If 𝜒 ?⇑B, then there is an extension of 𝜒 forcing 𝑅 ↔ B;
2. If 𝜒 ?⊋B, then there is some 𝜙 < 𝜑𝑂𝑁

1 and an extension of 𝜒 forcing
𝑅 ς

⋃
𝑀

⋂
𝑑↔O<𝜙 B𝑀 ,𝑑 .52

52: Note that B↗ ⋃
𝑀

⋂
𝑑↔O<𝜙 B𝑀 ,𝑑 .

𝜖

P!""#. Suppose 𝜒 ?⇑B. Then there is some 𝑀 ↔ ℕ and some 𝜕 ⇓ 𝜒 such
that 𝜕 ?⇑⋂

𝑑↔OB𝑀 ,𝑑 . By Exercise 11.7.11, there is an extension 𝜗 ⇓ 𝜕 forcing
𝑅 ↔ ⋂

𝑑↔OB𝑀 ,𝑑 , hence forcing 𝑅 ↔ B.

Suppose 𝜒 ?⊋B. For every 𝑀 and every 𝜕 ⇓ 𝜒, 𝜕 ?⊋⋂
𝑑↔OB𝑀 ,𝑑 , in other words,

𝜕 ?⇑⋃
𝑑↔O(2ℕ \ B𝑀 ,𝑑). Unfolding the definition, for every 𝑀, and every 𝜕 ⇓ 𝜒,

there is some 𝜗 ⇓ 𝜕 and some 𝑑 ↔ O such that 𝜗 ?⇑(2ℕ \B𝑀 ,𝑑). Given 𝑀 ↔ ℕ

and 𝜕 ⇓ 𝜒, let 𝐿 (𝑀 , 𝜕) = 𝑑 for some 𝑑 ↔ O such that there some 𝜗 ⇓ 𝜕 for
which 𝜗 ?⇑(2ℕ \ B𝑀 ,𝑑). The function 𝐿 is ε1

1 and total, so by Corollary 11.6.4,
there is some 𝜙 < 𝜑𝑂𝑁

1 such that sup
𝑀 ,𝜕⇓𝜒 | 𝐿 (𝑀 , 𝜕)| < 𝜙. Thus, for every

𝑀 ↔ ℕ and every 𝜕 ⇓ 𝜒, there is some 𝜗 ⇓ 𝜕 and some 𝑑 ↔ O<𝜙 such that
𝜗 ?⇑(2ℕ \B𝑀 ,𝑑), and by definition of the forcing question, there is some 𝜛 ⇓ 𝜗
forcing 𝑅 ς B𝑀 ,𝑑 . For every 𝑀, let 𝑍𝑀 be the set of 𝜛 such that for some 𝑑 ↔
O<𝜙, 𝜛 forces 𝑅 ς B𝑀 ,𝑑 . The set 𝑍𝑀 is dense below 𝜒 for every 𝑀 ↔ ℕ, so
for every su!ciently generic filter F containing 𝜒, F↦ 𝑍𝑀 ϱ ∋, and thus
𝑅F ς

⋃
𝑀

⋂
𝑑↔O<𝜙 B𝑀 ,𝑑 .

174 11 Higher jump cone avoidance

The following lemma is an immediate application of Lemma 11.7.13. The core
argument actually lies in Lemma 11.7.13 rather than Lemma 11.7.14.

Lemma 11.7.14. Let 𝜒 ↔ 2<ℕ be a Cohen condition and ϖ𝑇 be a Turing
functional. There is an extension 𝜕 ⇓ 𝜒 forcing one of the following:

1. ⇒𝑀 ↙𝜘 < 𝜑𝑂𝑁

1 ϖ𝑅

𝑇
(𝑀) ς O

𝑅

<𝜘;
2. ⇒𝜙 < 𝜑𝑂𝑁

1 ↙𝑀 ϖ𝑅

𝑇
(𝑀) ↔ O

𝑅

<𝜙. 𝜖

P!""#. By Spector [93], the class B𝑀 ,𝑑 = {𝑒 : ϖ𝑒

𝑇
(𝑀) ς O

𝑒

<|𝑑| } is hyper-
arithmetic uniformly in 𝑀 ↔ ℕ and 𝑑 ↔ O. It follows that the class B =⋃

𝑀

⋂
𝑑↔OB𝑀 ,𝑑 is ω0

𝜑𝑂𝑁

1 +$. If 𝜒 ?⇑B, then by Lemma 11.7.13(1), there is an

extension forcing 𝑅 ↔ B, in other words forcing ⇒𝑀 ↙𝜘 < 𝜑𝑂𝑁

1 ϖ𝑅

𝑇
(𝑀) ς O

𝑅

<𝜘.
If 𝜒 ?⊋B, then by Lemma 11.7.13(2), there is some 𝜙 < 𝜑𝑂𝑁

1 and an extension
of 𝜒 forcing 𝑅 ς

⋃
𝑀

⋂
𝑑↔O<𝜙 B𝑀 ,𝑑 , in other words forcing ↙𝑀ϖ𝑅

𝑇
(𝑀) ↔ O

𝑅

<𝜙.

We are now ready to prove Theorem 11.7.9. Let Fbe a su!ciently generic
filter for Cohen forcing. Suppose for the contradiction that 𝜑𝑅F

1 > 𝜑𝑂𝑁

1 . Then
there is some 𝑑 ↔ O

𝑅F which codes for 𝜑𝑂𝑁

1 . Since 𝜑𝑂𝑁

1 is a limit ordi-
nal, 𝑑 = 3 · 5𝑇 , where ↙𝑀ϖ𝑅F

𝑇
(𝑀) ↖↔ O

𝑅F

<𝜑𝑂𝑁

1
and with sup

𝑀
|ϖ𝑅F

𝑇
(𝑀)|𝑅 =

𝜑𝑂𝑁

1 . By Lemma 11.7.14, either ⇒𝑀 ↙𝜘 < 𝜑𝑂𝑁

1 ϖ𝑅F

𝑇
(𝑀) ς O

𝑅F

<𝜘 , or ⇒𝜙 <

𝜑𝑂𝑁

1 ↙𝑀 ϖ𝑅F

𝑇
(𝑀) ↔ O

𝑅F

<𝜙 , in which case sup
𝑀
|ϖ𝑅

𝑇
(𝑀)|𝑅 ↓ 𝜙 < 𝜑𝑂𝑁

1 . In both
cases, this yields a contradiction, so 𝜑𝑅F

1 = 𝜑𝑂𝑁

1 . This completes the proof of
Theorem 11.7.9.

Combining Theorem 11.7.9 and Theorem 11.7.1, we obtain cone avoidance
for the hyperarithmetic reduction.

Corollary 11.7.15 (Feferman [89])
Let 𝑄 be a non-hyperarithmetic set. For every su!ciently generic Cohen
filter F, 𝑄 ⫆̸𝑠 𝑅F.

P!""#. Let Fbe a su!ciently generic Cohen filter. By Theorem 11.7.1, 𝑄 is
not ϑ0

𝜘(𝑅F) for any 𝜘 < 𝜑𝑂𝑁

1 , and by Theorem 11.7.9, 𝜑𝑅F

1 = 𝜑𝑂𝑁

1 . It follows
that 𝑄 is not ϑ0

𝜘(𝑅F) for any 𝜘 < 𝜑𝑅F

1 , thus 𝑄 ⫆̸𝑠 𝑅F.

The following contains the core property to prove that every su!ciently generic
filter preserves 𝜑𝑂𝑁

1 .

Definition 11.7.16. Given a notion of forcing (ℙ,↓), a forcing question is
ω0
𝜑𝑂𝑁

1 +$-majoring if for every ω0
𝜑𝑂𝑁

1 +$ class B=
⋃

𝑀

⋂
𝑑↔OB𝑀 ,𝑑 where B𝑀 ,𝑑

is hyperarithmetic uniformly in 𝑀 and 𝑑, for every condition 𝑔 ↔ ℙ such
that 𝑔 ?⊋B, there is some 𝜙 < 𝜑𝑂𝑁

1 and an extension 𝑗 ↓ 𝑔 forcing 𝑅 ς⋃
𝑀

⋂
𝑑↔O<𝜙 B𝑀 ,𝑑 . ↘

We leave the abstract theorem as an exercise.

Exercise 11.7.17. Let (ℙ,↓) be a notion of forcing, with a ω0
𝜑𝑂𝑁

1 +$-majoring

forcing question. Prove that for every su!ciently generic filter F, 𝜑𝑅F

1 = 𝜑𝑂𝑁

1 .𝜖

11.7 Transfinite jump control 175

Exercise 11.7.18. Let (ℙ,↓) be the primitive recursive Jockusch-Soare forc-
ing, that is, ℙ is the set of all infinite primitive recursive binary trees 𝑊 ↗ 2<ℕ ,
partially ordered by inclusion.

1. Show the existence of a ω0
𝜑𝑂𝑁

1 +$-majoring forcing question.

2. Deduce that for every su!ciently generic filter F, 𝜑𝑅F

1 = 𝜑𝑂𝑁

1 . 𝜖

