
1: Jockusch and Stephan [12] actually
proved that the sequence of all primitive re-
cursive sets is maximally di!cult for COH,
and the degrees of its cohesive sets are ex-
actly those whose jump is PA over →↑. Brat-
tka, Hendtlass and Kreuzer [64] refined it to
obtain an instance-wise correspondence.

Jump cone avoidance 8

8.1 Context and motivation . . 103

8.2 Use first-jump control . . . 104

8.3 Forcing and density 105

8.4 Weak König’s lemma . . . 107

8.5 Cohesiveness principle . . 109

8.6 Partition regularity 112

8.7 Pigeonhole principle . . . 119

Prerequisites: Chapters 2 to 4

From many perspectives, second-jump control is the same as first-jump control,
mutatis mutandis: it consists of constructing sets 𝐿 which controlling their
ω0

2(𝐿) properties. To achieve this, one defines again a forcing question for
the class of ω0

2 formulas, with the same abstract theorems. In the practice,
however, there is a strong technical gap from first-jump control to second-
jump control. This is merely due to the fact that, unlike Turing functionals,
jump functional are not continuous functions in Cantor space. The forcing
question therefore becomes a density statement, which often does not yield
the appropriate definitional complexity. The main task of the design of a good
second-jump control consists in finding the most e"ective notion of forcing to
build solutions to a given problem. As a byproduct, this often yields insights
about the structural nature of the problem.

8.1 Context and motivation

Second-jump control received much less attention than first-jump control in
computability theory, and reverse mathematics in particular. One of the reasons
is that the vast majority of statements studied in reverse mathematics could
be separated using first-jump properties. Moreover, as we shall see in the next
section, many second-jump properties can be obtained from e"ectivization
of first-jump properties. Besides reverse mathematics, second-jump control
can be used in computability theory to construct sets of low2 degree. Such
sets occur naturally in computability theory, but often using the following char-
acterization, rather than directly using a second-jump control: a set 𝑀 is of
low2 degree i" →↑ is of high degree over 𝑀. There are however a few examples
where second-jump control naturally occurs in reverse mathematics.

In the study of Ramsey’s theorem and more generally combinatorial hierarchies,
the cohesiveness principle quickly became an unavoidable tool, as a bridge
between computable instances for (𝑁 + 1)-tuples and arbitrary instances of 𝑁-
tuples. For example, COH reduces computable instances of Ramsey’s theorem
for pairs to arbitrary instances of the pigeonhole principle (see Theorem 3.4.1).
Recall from Section 3.4 that an infinite set 𝑂 ↓ ℕ is cohesive for a sequence
of sets ↔𝑃 = 𝑃0 , 𝑃1 , . . . if for every 𝑁 ↗ ℕ, 𝑂 ↓↘

𝑃𝑁 or 𝑂 ↓↘
𝑃𝑁 , where

↓↘ means “included up to finite changes”. The cohesiveness principle is the
problem COH whose instances are infinite sequences of sets, and whose
solutions are infinite cohesive sets. By Jockusch and Stephan [12] 1 proved that
COH is equivalent to the problem “For every ε0

2 infinite binary tree 𝑄 ↓ 2<ℕ ,
there is a ε0

2-approximation of an infinite path.” The cohesiveness principle is
therefore a statement about jump computation and separating principles from
COH over reverse mathematics requires to use second-jump control [65].

Ramsey’s theorem for 𝑁-tuples induces a hierarchy of statements based on 𝑁.
From a reverse mathematical perspective, this hierarchy is known to collapse
at level 3 and RT𝑁

2 is equivalent to ACA0 for every 𝑁 ≃ 3. [4, 14]. On the
other hand, some consequences of Ramsey’s theorem, such as the free set
(FS𝑁) [66] and the rainbow Ramsey (RRT𝑁

2) [67] theorems are not known to

104 8 Jump cone avoidance

2: Recall that a problem P admits a weakly
low basis if for every set 𝑅 every PA de-
gree 𝑆 over 𝑅

↑, every 𝑅-computable in-
stance 𝑀 of P admits a solution 𝑇 such that
(𝑇⇐𝑅)↑ ⇒𝑄 𝑆. For example, Ramsey’s the-
orem for pairs admits a weakly low basis.

collapse [13]. The most promising approach to prove the strictness of these
hierarchies is using iterated jump control [68].

In this section, we shall focus on the unability, for a given problem, to code a
fixed set in the jump of its solutions. This is the notion of jump cone avoidance.
This is one of the simplest applications of second-jump control, and already
illustrates the core problematics of the techniques.

Definition 8.1.1. A problem P admits jump cone avoidance if for every set 𝑅
and every non-ε0

2(𝑅) set 𝑂, every 𝑅-computable instance 𝑀 of P admits a
solution 𝑇 such that 𝑂 is not ε0

2(𝑅 ⇐ 𝑇). ⇑

Here again, one can drop the 𝑅-computability restriction of the P-instance, to
yield strong jump cone avoidance. By letting 𝑅 = → and 𝑂 = →↑↑, if a problem P
admits jump cone avoidance, then even computable instance admits a solution
of non-high degree.

8.2 Use first-jump control

Second-jump control aims at proving theorems about the jump of solutions
to mathematical problems. However, an e"ectivization of first-jump control is
sometimes su!cient to obtain the same results. Indeed, if a problem admits a
low basis, or a weakly low basis2, it admits jump cone avoidance, a low2 basis,
and many other properties.

Proposition 8.2.1. If a problem P admits a weakly low basis, then it admits
jump cone avoidance. 𝜑

P!""#. Fix a set 𝑅, a non-ε0
2(𝑅) set 𝑂 and a 𝑅-computable instance 𝑀 of P.

By the low basis theorem relativized to 𝑅
↑ (see Theorem 4.4.6), there is a

set 𝑈 of PA degree over 𝑅↑ such that 𝑂 ⊋𝑄 𝑈. Since P admits a weakly low
basis, then there is a solution 𝑇 such that (𝑇 ⇐ 𝑅)↑ ⇒𝑄 𝑈. In particular, 𝑂 is
not ε0

2(𝑅 ⇐ 𝑇).

The strong technical gap between first-jump and second-jump control gives
a strong incentive to use first-jump control to prove second-jump properties
when possible. This should be the first consideration is the decisional process
of the choice of jump-control techniques.

Exercise 8.2.2. A problem P admits preservation of 1 jump hyperimmunity if
for every set 𝑅 and every 𝑅-hyperimmune function 𝑉 , every 𝑅-computable
instance 𝑀 of P admits a solution 𝑇 such that 𝑉 is 𝑇 ⇐ 𝑅-hyperimmune. Use
the computably dominated basis theorem to prove that if P admits a weakly
low basis, then it admits preservation of 1 jump hyperimmunity. 𝜑

Exercise 8.2.3. A problem P admits jump DNC avoidance if for every set 𝑅
and every set 𝑊 such that 𝑅↑ is not of DNC degree over 𝑊, every 𝑅-computable
instance 𝑀 of P admits a solution 𝑇 such that (𝑇 ⇐ 𝑅)↑ is not of DNC degree
over 𝑊.

1. Show that if P admits a low basis, then it admits jump DNC avoidance.
2. Give an example of a problem which admits a weakly low basis, but not

jump DNC avoidance. 𝜑

8.3 Forcing and density 105

4: Here, we distinguish the length |𝜒| of a
string 𝜒, and the cardinality card 𝜒 which
is the cardinality of the finite set {𝑋 < |𝜒| :
𝜒(𝑋) = 1}.

8.3 Forcing and density

First-jump control using forcing constructions can be really thought of as
straightforward generalization of the finite extension method. On the other
hand, the full power of the forcing framework is unleashed when deciding
properties at higher levels on the arithmetic hierarchy, and it already witnessed
with ϑ0

2 properties. Consider Cohen forcing for the sake of simplicity, that is, the
set of finite binary strings 2<ℕ partially ordered by the prefix relation ⇓. 3

3: Traditionally, the order relation is re-
versed in forcing, that is, a condition 𝑌 ex-
tends 𝑍 if 𝑌 ⇒ 𝑍. This order is justified by
the fact that the condition 𝑌 seen as an ap-
proximation the constructed set 𝐿 is more
precise than 𝑍, hence the class [𝑌] of can-
didate sets satisfying the approximation 𝑌

is a subclass of [𝑍].

In the case of Cohen forcing, the relation
“𝜒 is a prefix of 𝜓” is denoted 𝜒 ⇓ 𝜓, which
might cause some confusion with the usual
forcing notation. In particular, an infinite de-
scending sequence of Cohen conditions is
an infinite ascending sequence of strings
𝜒0 ⇓ 𝜒1 ⇓ . . .

The
interpretation of a Cohen condition 𝜒 is the class [𝜒] = {𝑀 ↗ 2ℕ : 𝜒 ⇔ 𝑀},
that is, the class of all infinite binary sequences starting with 𝜒.

Intuitively, a condition 𝑍 forces a property 𝜔(𝐿) if 𝑍, seen as an approximation
of the constructed set 𝐿, already contains the information that 𝜔(𝐿) will hold.
One would be therefore tempted to use the following definition:

Definition 8.3.1. A condition 𝑍 strongly forces a property 𝜔(𝐿) if 𝜔(𝐿)
holds for every 𝐿 ↗ [𝑍]. ⇑

In the case of Cohen forcing, 𝜒 strongly forces 𝜔(𝐿) if 𝜔(𝐿) holds for every
infinite binary sequence starting with 𝜒. The strong forcing relation ensures
that whatever the remainder of the construction, even if the construction is
very degenerate, then the property will hold. For example, if 𝜒 strongly forces
𝜔(𝐿), then 𝜔(𝐿) will hold even for 𝐿 = 𝜒00000 · · · or 𝐿 = 𝜒11111 · · · , which
can both be considered as very degenerate constructions since at any stage,
one could decide to include any arbitrary finite binary sequence. This strong
forcing relation is suitable for ω0

1 and ϑ0
1 properties, and therefore su!cient

for first-jump control.

Lemma 8.3.2. For every ω0
1 formula 𝜔(𝐿), the set of all Cohen conditions

strongly forcing either 𝜔(𝐿) or ¬𝜔(𝐿) is dense. 𝜑

P!""#. Say 𝜔(𝐿) ↖ (↙𝑋)𝜕(𝐿⫅̸𝑋) for some ε0
0-formula 𝜕. Let 𝜒 be a Co-

hen condition. If there is some 𝜓 ∝ 𝜒 and some 𝑋 < |𝜓| such that 𝜕(𝜓⫅̸𝑋)
holds, then for every 𝐿 ↗ [𝜓], 𝜕(𝐿⫅̸𝑋) holds, hence 𝜓 strongly forces 𝜔(𝐿).
Otherwise, for every 𝜓 ∝ 𝜒 and every 𝑋 < |𝜓| , ¬𝜕(𝜓⫅̸𝑋) holds, hence for
every 𝐿 ↗ [𝜒] and every 𝑋, ¬𝜕(𝐿⫅̸𝑋) holds, so 𝜒 strongly forces ¬𝜔(𝐿).

The previous lemma can be thought of as stating the completeness of the
strong forcing relation for ω0

1 and ϑ0
1 formulas in Cohen forcing. In particular, it

follows that every such property about the constructed set can be decided at a
finite stage of the construction. We loose completeness of the strong forcing
relation when dealing with ω0

2 and ϑ0
2 formulas. Consider for example the ϑ0

2
formula 𝜔(𝐿) ↖ “𝐿 is infinite”, which can be written as ′𝑋↙𝑎(𝑎 > 𝑋 ∞ 𝑎 ↗ 𝐿).
Then no Cohen condition 𝜒 strongly forces either 𝜔(𝐿) or ¬𝜔(𝐿) since [𝜒]
contains the finite set 𝐿 = 𝜒00000 · · · and the infinite set 𝐿 = 𝜒11111 · · · .
On the other hand, there is an asymmetry between the two cases, as there
are many ways to construct an infinite set, while any construction of a finite set
must be degenerate. For every condition 𝜒, there is an extension 𝜓 ∝ 𝜒 such
that card 𝜓 > card 𝜒4, hence every su!ciently generic filter yields an infinite
set.

Let us now consider an arbitrary ω0
2 formula 𝜔(𝐿) ↖ ↙𝑋𝜕(𝐿𝑋), where 𝜕 is a

ϑ0
1 formula. Given a Cohen condition 𝜒, either there exists an extension 𝜓 ∝ 𝜒

strongly forcing 𝜕(𝐿, 𝑋) for some 𝑋, in which case 𝜓 forces 𝜔(𝐿), or for every

106 8 Jump cone avoidance

7: By Post’s theorem, the property
ϖ𝐿

↑
𝑏
(𝑋)∈= 𝑐 is ω0

2, although the translation
is not straightforward. It can be written as

↙𝜖↙𝑑[ϖ𝜖
𝑏
(𝑋)∈= 𝑐 ∞ ′𝑒 𝜖 ⇓ 𝐿

↑
𝑑+𝑒]

where {𝐿↑
𝑒
}𝑒↗ℕ is a fixed 𝐿-c.e. enumera-

tion of 𝐿↑.

extension 𝜓 ∝ 𝜒 such that for every 𝑋 and every extension 𝜓 ∝ 𝜒, 𝜓 does
not strongly force 𝜕(𝐿, 𝑋). In the latter case, by Lemma 8.3.2, for every 𝑋

and every 𝜓 ∝ 𝜒, there is an extension 𝜖 strongly forcing ¬𝜕(𝐿, 𝑋). In other
words, for every 𝑋, the set of conditions strongly forcing ¬𝜕(𝐿, 𝑋) is dense
below 𝜒. Then, if F is a su!ciently generic filter containing 𝜒, it will contain
for every 𝑋 a condition strongly forcing ¬𝜕(𝐿, 𝑋), hence (′𝑋)¬𝜕(𝐿F, 𝑋) will
hold. This motivates the following definition of the forcing relation.

Definition 8.3.3. A condition 𝑍 forces a property 𝜔(𝐿) if 𝜔(𝐿F) holds for
every su!ciently generic filter Fcontaining 𝑍. ⇑

With this definition, every Cohen condition forces 𝐿 to be infinite. For any rea-
sonable notion of forcing, one can prove that for every arithmetic formula 𝜔(𝐿),
the set of conditions forcing either 𝜔(𝐿) or ¬𝜔(𝐿) is dense.

The previous explanation induced a forcing question for ω0
2 formulas in Cohen

forcing.

Definition 8.3.4. Let 𝜒 be a Cohen condition, and 𝜔(𝐿) ↖ ↙𝑋𝜕(𝐿, 𝑋) be a
ω0

2 formula. Define 𝜒 ?∋𝜔(𝐿) to hold if there exists some 𝑋 ↗ ℕ and some
𝜓 ∝ 𝜒 such that 𝜓 strongly forces 𝜕(𝐿, 𝑋), that is, for every 𝜖 ∝ 𝜓, 𝜕(𝜖, 𝑋)
holds.5

5: Recall that Cohen forcing admits a ω0
1-

preserving forcing question for ω0
1 formulas

defined as 𝜒 ?∋𝜔(𝐿) if there is some 𝜓 ∝ 𝜒
such that 𝜔(𝜓) holds. It induces a forcing
question for ϑ0

1 formulas by taking its nega-
tion. In the following of this chapter, it might
be better to think of the forcing question
for a ω0

2 formula 𝜔(𝐿) ↖ ↙𝑋𝜕(𝐿, 𝑋) as
𝜒 ?∋𝜔(𝐿) if there is some 𝑋 ↗ ℕ and
some 𝜓 ∝ 𝜒 such that 𝜓 ?∋𝜕(𝐿, 𝑋).

6

6: Note that with this forcing question, ei-
ther there exists an extension strongly forc-
ing 𝜔(𝐿), or an extension forcing ¬𝜔(𝐿).
In general, the forcing relation for ω0

2 formu-
las can be chosen to be the strong version,
while the general definition is needed for ϑ0

2
formulas.

⇑

A simple analysis on the definition of the forcing question shows that it is ω0
2-

preserving. The existence of a ω0
2-preserving forcing question for ω0

2 formulas
yields jump cone avoidance, with the same proof of Theorem 3.3.4, mutatis
mutandis

Theorem 8.3.5

Let (ℙ,⇒) be a notion of forcing with a ω0
2-preserving forcing question. For

every non-ε0
2 set 𝑂 and every su!ciently generic filter F, 𝑂 is not ε0

2(𝐿F).

P!""#. It su!ces to prove the following lemma:

Lemma 8.3.6. For every condition 𝑍 ↗ ℙ and every Turing index 𝑏 ↗ ℕ, there
is an extension 𝑌 ⇒ 𝑍 forcing ϖ𝐿

↑
𝑏

ϱ 𝑂. 𝜑

P!""#. Consider the following set7

𝑓 = {(𝑋 , 𝑐) ↗ ℕ △ 2 : 𝑍 ?∋ϖ𝐿
↑

𝑏
(𝑋)∈= 𝑐}

Since the forcing question is ω0
1-preserving, the set 𝑓 is ω0

1. There are three
cases:

⫆̸ Case 1: (𝑋 , 1▽𝑂(𝑋)) ↗ 𝑓 for some 𝑋 ↗ ℕ. By Property (1) of the forcing
question, there is an extension 𝑌 ⇒ 𝑍 forcing ϖ𝐿

↑
𝑏
(𝑋)∈= 1 ▽ 𝑂(𝑋).

⫆̸ Case 2: (𝑋 , 𝑂(𝑋)) ς 𝑓 for some 𝑋 ↗ ℕ. By Property (2) of the forcing
question, there is an extension 𝑌 ⇒ 𝑍 forcing ϖ𝐿

↑
𝑏
(𝑋)̸ or ϖ𝐿

𝑏
(𝑔)∈ϱ

𝑂(𝑋).
⫆̸ Case 3: None of Case 1 and Case 2 holds. Then 𝑓 is a ω0

2 graph of the
characteristic function of 𝑂, hence 𝑂 is computable. This contradicts
our hypothesis.

We are now ready to prove Theorem 8.3.5. Given 𝑏 ↗ ℕ, let D𝑏 be the set of
all conditions 𝑌 ↗ ℙ forcing ϖ𝐿

𝑏
ϱ 𝑂.. It follows from Lemma 8.3.6 that every

D𝑏 is dense, hence every su!ciently generic filter F is {D𝑏 : 𝑏 ↗ ℕ}-generic,
so 𝑂 ⊋𝑄 𝐿F. This completes the proof of Theorem 8.3.5.

8.4 Weak König’s lemma 107

In particular, since Cohen forcing admits a ω0
2-preserving forcing question for

ω0
2 formulas, we obtain our first jump cone avoidance theorem using a direct

second-jump control.

Theorem 8.3.7

Let 𝑂 be a non-ε0
2 set. For every su!ciently Cohen generic filter F, 𝑂 is

not ε0
2(𝐿F).

Exercise 8.3.8. Consider Cohen forcing. Recall from Section 3.6 that a forcing
question is ω0

𝑁
-compact if for every 𝑍 ↗ ℙ and every ω0

𝑁
formula 𝜔(𝐿, 𝑋), if

𝑍 ?∋ ↙𝑋𝜔(𝐿, 𝑋) holds, then there is a finite set 𝑕 ↓ ℕ such that 𝑍 ?∋ ↙𝑋 ↗
𝑕 𝜔(𝐿, 𝑋).

1. Show that the forcing question for ω0
2 formulas is ω0

2-compact
2. Adapt Theorem 3.6.4 to prove that for every →↑-hyperimmune function 𝑉 :

ℕ ↦ ℕ and every su!ciently Cohen generic filter F, the function 𝑉 is
𝐿

↑
F

-hyperimmune. 𝜑

8.4 Weak König’s lemma

As explained in the previous section, the forcing relation for a ϑ0
2 formula

′𝑋𝜕(𝐿, 𝑋) is a density statement for a countable family ofω0
1 formulas {𝜕(𝐿, 𝑋) :

𝑋 ↗ ℕ}. Density statements require to quantify over the partial order, which is
not an issue when dealing with Cohen forcing, but can be very complicated is
the partial order is not computable as it is often the case. One will then need
to define a custom forcing question with the desired properties.

Our first non-trivial example concerns weak König’s lemma, for which we prove
it admits simultaneously cone and jump cone avoidance.8

8: By the cone avoidance basis theorem
(Theorem 3.2.6), given a non-computable
set 𝑂, every non-empty ϑ0

1 class admits
a member 𝐿 such that 𝑂 ⊋𝑄 𝐿. By the
low basis theorem (Theorem 4.4.6), given
a non-ε0

2 set 𝑊, every non-empty ϑ0
1 class

admits a member 𝐿 of low degree, in which
case 𝑊 is not ε0

2(𝐿). One cannot however
abstractly deduce from these theorems that
WKL admits simultaneously cone and jump
cone avoidance.

Lawton (see [69]) proved that one can ac-
tually combine the low and the cone avoid-
ance basis theorem, by showing that if 𝑂 is
ε0

2 and non-computable, then every non-
empty ϑ0

1 class admits a member 𝐿 of
low degree such that 𝑂 ⊋𝑄 𝐿. The case
where 𝑂 is non-ε0

2 follows directly from the
low basis theorem. Thus, as stated, Theo-
rem 8.4.1 follows from Lawton’s theorem,
but its proof generalizes to countable cones
avoidance, while Lawton’s proof does not.

Theorem 8.4.1 (Wang [70])

Let 𝑂 be a non-computable set and 𝑊 be a non-ε0
2 set. For every non-empty

ϑ0
1 class P ↓ 2ℕ , there exists a member 𝐿 ↗ P such that 𝑂 ⊋𝑄 𝐿 and

𝑊 ⊋𝑄 𝐿
↑.

P!""#. Recall that Jockusch-Soare forcing is the notion of forcing whose
conditions are infinite computable binary trees 𝑄 ↓ 2<ℕ , partially ordered by
the subset relation. In this proof, we shall actually restrict the partial order
to infinite primitive recursive binary trees. Indeed, as mentioned before, the
complexity of the partial order is relevant in second-jump control. The index
set of all total computable sets is ϑ0

2-complete, while all primitive recursive
sets can be computably listed. The restriction to primitive recursive trees is
without loss of generality, as shows the following lemma:

Lemma 8.4.2. Let 𝑄 ↓ 2<ℕ be an infinite co-c.e. tree. There is a primitive
recursive tree 𝑖 ∀ 𝑄 such that [𝑖] = [𝑄]. 𝜑

P!""#. Say 𝑄 = {𝜒 ↗ 2<ℕ : ϖ𝑏(𝜒)̸} for some partial computable func-
tion ϖ𝑏 . Let 𝑖 = {𝜒 ↗ 2<ℕ : ′𝑒 < |𝜒| ϖ𝑏(𝜒⫅̸𝑒)[𝑒]̸}. Note that the predi-
cate ϖ𝑏(𝑋)[𝑒]̸ is primitive recursive, and primitive recursion is closed under
bounded quantification. We first show that 𝑖 ∀ 𝑄. If 𝜒 ↗ 𝑄, then 𝑄 being a
tree, for every 𝑒 < |𝜒| , 𝜒⫅̸𝑒 ↗ 𝑄, so by definition of 𝑄, ϖ𝑏(𝜒⫅̸𝑒)[𝑒] ,̸ hence
𝜒 ↗ 𝑖. Thus 𝑖 ∀ 𝑄, and in particular [𝑖] ∀ [𝑄]. We now prove that [𝑖] ↓ [𝑄].

108 8 Jump cone avoidance

Let 𝑆 ↗ [𝑖] and 𝜒 ⇔ 𝑆. Suppose for the contradiction that ϖ𝑏(𝜒)∈. Then,
letting 𝑑 > |𝜒| be such that ϖ𝑏(𝜒)[𝑑]∈, 𝑆⫅̸𝑑 ς 𝑖, contradicting 𝑆 ↗ [𝑖]. It
follows that ϖ𝑏(𝜒)̸ , and this for every 𝜒 ⇔ 𝑆, so 𝑆 ↗ [𝑄].

In particular, there exists a primitive recursive tree 𝑄 such that [𝑄] = P.
The interpretation [𝑄] of a tree 𝑄 is the class of its paths. Every su!ciently
filter Ffor this notion of forcing induces a path 𝐿F which is the unique element
of
⋂{[𝑄] : 𝑄 ↗ F}. The forcing question for ω0

1 formulas of Exercise 3.3.7
also holds when working with primitive recursive trees.

Definition 8.4.3. Given a condition 𝑄 ↓ 2<ℕ and a ω0
1 formula 𝜔(𝐿), define

𝑄 ?∋𝜔(𝐿) to hold if there is some level 𝑗 ↗ ℕ such that 𝜔(𝜒) holds for every
node 𝜒 at level 𝑗 in 𝑄. ⇑

One easily sees that this forcing question is ω0
1-preserving.

Lemma 8.4.4. Let 𝑄 ↓ 2<ℕ be a condition and 𝜔(𝐿) be a ω0
1 formula.

1. If 𝑄 ?∋𝜔(𝐿), then 𝑄 forces 𝜔(𝐿)
2. If 𝑄 ?⫋𝜔(𝐿), then there is an extension 𝑖 ⇒ 𝑄 forcing ¬𝜔(𝐿). 𝜑

P!""#. Suppose first 𝑄 ?∋𝜔(𝐿). Let 𝑗 ↗ ℕ be the level witnessing it. For
every 𝑆 ↗ [𝑄], 𝑆⫅̸𝑗 ↗ 𝑄, so 𝜔(𝑆⫅̸𝑗) holds, hence 𝜔(𝑆) holds. Thus 𝑄

forces 𝜔(𝐿). Suppose now 𝑄 ?⫋𝜔(𝐿). Say 𝜔(𝐿) ↖ ↙𝑋𝜕(𝐿, 𝑋) for some ε0
0

formula 𝜕. Then 𝑖 = {𝜒 ↗ 𝑄 : ′𝑋 < |𝜒|¬𝜕(𝜒, 𝑋)} is an infinite primitive
recursive9

9: Every ε0
0 formula is primitive recursive.

On this other hand, there exist primitive re-
cursive predicates which are not ε0

0.

subtree of 𝑄 forcing ¬𝜔(𝐿).

Since this notion of forcing admits a ω0
1-preserving forcing question for ω0

1 for-
mulas, by Theorem 3.3.4 for every su!ciently generic filter F, 𝑂 ⊋𝑄 𝐿F. Until
now, the proof was only a rewriting of Theorem 3.2.6 with primitive recursive
trees, using the more abstract framework of the forcing question. We now turn
to second jump control.

Definition 8.4.5. Given a condition 𝑄 ↓ 2<ℕ and a ω0
2 formula 𝜔(𝐿) ↖

↙𝑋𝜕(𝐿, 𝑋), define 𝑄 ?∋𝜔(𝐿) to hold if there is some 𝑋 ↗ ℕ and an exten-
sion 𝑖 ⇒ 𝑄 such that 𝑖 ?∋𝜕(𝐿, 𝑋).10

10: In this definition, 𝜕 is a ϑ0
1 formula, so

the relation 𝑖 ?∋𝜕(𝐿, 𝑋) is the forcing ques-
tion for ϑ0

1 formulas induced by the forcing
question for ω0

1 formulas by taking the nega-
tion. Note the similarity with the forcing ques-
tion for ω0

2 formulas in Cohen forcing.

11

11: Although the partial order is not com-
putable, the complexity of finding an exten-
sion is “absorbed” in the overall complex-
ity of the forcing question for ω0

2 formulas,
yielding a ω0

2-preserving forcing question.
Because of this, the forcing questions at
higher levels of the arithmetic hierarchy will
be similar to the ones for Cohen forcing.

⇑

Looking at the complexity of the forcing question for ω0
2 formulas, the relation

𝑖 ?∋𝜕(𝐿, 𝑋) is ϑ0
1 since it is the negation of theω0

1-preserving forcing question
for ω0

1 formulas. Being an infinite primitive recursive tree and being a subset of
another primitive recursive tree is a ϑ0

1 predicate, so the overall formula is ω0
2.

We now show that this relation satisfies the specifications of a forcing question.

Lemma 8.4.6. Let 𝑄 ↓ 2<ℕ be a condition and 𝜔(𝐿) be a ω0
2 formula.

1. If 𝑄 ?∋𝜔(𝐿), then there is an extension 𝑖 ⇒ 𝑄 forcing 𝜔(𝐿)
2. If 𝑄 ?⫋𝜔(𝐿), then 𝑄 forces ¬𝜔(𝐿). 𝜑

P!""#. Say 𝜔(𝐿) ↖ ↙𝑋𝜕(𝐿, 𝑋). Suppose first 𝑄 ?∋𝜔(𝐿). Let 𝑋 ↗ ℕ and
𝑖 ⇒ 𝑄 be such that 𝑖 ?∋𝜕(𝐿, 𝑋). By Lemma 8.4.4, there is an extension
𝑖1 ⇒ 𝑖 forcing 𝜕(𝐿, 𝑋). In particular, 𝑖1 ⇒ 𝑄 and 𝑖1 forces 𝜔(𝐿). Suppose
now 𝑄 ?⫋𝜔(𝐿). Let 𝑋 ↗ ℕ. We claim that the set of all conditions forcing
¬𝜕(𝐿, 𝑋) is dense below 𝑄. Indeed, given a condition 𝑖 ⇒ 𝑄, 𝑖 ?⫋𝜕(𝐿, 𝑋),
so by Lemma 8.4.4, there is an extension 𝑖1 ⇒ 𝑖 forcing ¬𝜕(𝐿, 𝑋). Thus, for
every su!ciently generic filter F containing 𝑄 and every 𝑋 ↗ ℕ, there is a
condition 𝑖1 ↗ F forcing ¬𝜕(𝐿, 𝑋), thus ¬𝜔(𝐿F) holds.

8.5 Cohesiveness principle 109

Since this notion of forcing admits a ω0
2-preserving forcing question for ω0

2
formulas, by Theorem 8.3.5 for every su!ciently generic filter F, 𝑂 ⊋𝑄 𝐿

↑
F

.
To conclude the theorem, by Lemma 8.4.2, there is a condition 𝑄 such that
[𝑄] = P, so for every su!ciently generic filter Fcontaining 𝑄, 𝐿F ↗ P. This
completes the proof of Theorem 8.4.1.

Exercise 8.4.7 (Le Houérou, Levy Patey and Mimouni [71]). Recall the no-
tion of ω0

𝑁
-compactness from Section 3.6. Consider the Jockusch-Soare notion

of forcing restricted to primitive recursive trees (Theorem 8.4.1).

1. Show that the forcing questions for ω0
1 and ω0

2 formulas are ω0
1-compact

and ω0
2-compact, respectively.

2. Fix a hyperimmune function 𝑉 : ℕ ↦ ℕ and a →↑-hyperimmune function
𝑘 : ℕ ↦ ℕ. Prove that every non-empty ϑ0

1 class P ↓ 2ℕ has a
member 𝐿 such that 𝑉 is 𝐿-hyperimmune and 𝑘 is 𝐿

↑-hyperimmune. 𝜑

8.5 Cohesiveness principle

As mentioned before, because of its equivalence with the statement “every
ε0

2 infinite binary tree admits a ε0
2-approximation of a path”, the cohesiveness

principle is a statement about jump computation. By Toswner’s theorem (The-
orem 7.3.8) ε0

2-approximations of a path can be added to a model without
of RCA0 without a"ecting its first-jump properties. Thus, one should expect
from a natural notion of forcing for COH to have a trivial first-jump control, and
a second-jump control resembling the one of weak König’s lemma. This is
actually the case.

Consider a uniformly computable sequence of sets 𝑃0 , 𝑃1 , . . . The usual
notion of forcing to build ↔𝑃-cohesive sets with a good first-jump control is
computable Mathias forcing, that is, Mathias forcing whose reservoirs are
computable. The first-jump control of such a notion of forcing is very similar
to Cohen forcing, and preserves the same first-jump properties. On the other
hand, even when working with computable reservoirs, Mathias forcing does
not admit a good second-jump control. In particular, every su!ciently generic
filter for computable Mathias forcing yields a set of high degree. Recall that
a function 𝑉 : ℕ ↦ ℕ is dominating if it eventually dominates every total
computable function. By Martin’s domination theorem [72], a set 𝑀 is of high
degree i" it computes a dominating function.

Proposition 8.5.1. Let Fbe a su!ciently generic filter for computable Mathias
forcing. Then the principal function of 𝐿F is dominating, hence 𝐿F is of high
degree. 𝜑

P!""#. Let 𝑉 be a total computable function. We can assume without loss
of generality that 𝑉 is strictly increasing. Let us shows that the class D𝑉 of
all computable Mathias conditions (𝜓,𝑇) forcing the principal function of 𝐿 to
eventually dominate 𝑉 is dense. Fix a computable Mathias condition (𝜒,𝑀),
and say 𝑀 = {𝑋0 < 𝑋1 < . . . }. Let 𝑙 = card{𝑋 < |𝜒| : 𝜒(𝑋) = 1}. Then the
set 𝑇 = {𝑋

𝑉 (𝑙+𝑒) : 𝑒 ↗ ℕ} is a computable subset of 𝑀 and (𝜒,𝑇) forces the
principal function of 𝐿 to eventually dominate 𝑉 .

There are multiple ways to explain why computable Mathias forcing does not
admit a good second-jump control, each of them yielding the same conclusion:

110 8 Jump cone avoidance

12: The general takeway of this discussion
is that when trying to design a notion of forc-
ing with a good second-jump control, con-
sider a notion of forcing with a good first-
jump control, then restrict the partial order
to be the less permissive possible, allowing
only the conditions produced by the first-
jump control. This usually yields a partial
order with better complexity, and hopefully
enables to define a ω0

2-preserving forcing
question.

13: Note the similarity with the notion of forc-
ing in Theorem 3.2.4. In both cases, we
build a cone avoiding set 𝐿 whose jump
computes a fixed degree. Indeed, if 𝐿 is ↔𝑃-
cohesive, then for every 𝑁, there is exactly
one 𝜖 of length 𝑁 such that 𝐿 ↓↘

𝑃𝜖, and
such a 𝜖 can be found 𝐿

↑-computably. By
construction, 𝜖 ⇔ 𝑆, so 𝐿

↑ ≃𝑄 𝑆.

the problem comes from the permissiveness of the reservoirs, which can be
arbitrary computable sets.12

1. Sparsity of the reservoirs. Proposition 8.5.1 shows that computable
Mathias forcing allows to take extensions with sparse reservoirs and
then produce dominant functions. However, the only operations needed
to produce cohesive sets is to split the reservoir according to computable
partitions and pick any infinite part. The first condition is (𝜗,ℕ) with a
non-sparse reservoir. Then, intuitively, if a reservoir 𝑀 is not too sparse,
then for every 2-partition 𝑀0 ∃ 𝑀1 = 𝑀, at least one of the parts not too
sparse either. One could therefore maintain non-sparsity as an invariant
by asking the reservoirs to be boolean combinations of 𝑃0 , 𝑃1 , . . .

2. Complexity of the partial order. When trying to design a forcing question
for ω0

2 formulas in computable Mathias forcing, one needs to quantify
over the partial order, and therefore quantify over infinite computable
subsets of the reservoir. This quantification is too complex and cannot
be “absorbed” in the complexity of the general formula to produce a
ω0

2-preserving question. One must therefore adopt a more e!cient way
to represent forcing conditions, such as only keeping track of the boolean
choices of partitions induced by the sets 𝑃0 , 𝑃1 , . . .

In the following theorem, we restrict computable Mathias forcing to conditions
obtained boolean combinations of computable partitions, and take advantage
of this additional structure to design a forcing question with a good second-
jump control. This yields that COH admits simultaneously cone and jump cone
avoidance.

Theorem 8.5.2

Let 𝑂 be a non-computable set and 𝑊 be a non-ε0
2 set. For every uniformly

computable sequence of sets 𝑃0 , 𝑃1 , . . . , there exists an infinite cohesive
set 𝐿 such that 𝑂 ⊋𝑄 𝐿 and 𝑊 ⊋𝑄 𝐿

↑.

P!""#. Given 𝜖 ↗ 2<ℕ , let

𝑃𝜖 =
⋂

𝜖(𝑁)=0
𝑃𝑁

⋂
𝜖(𝑁)=1

𝑃𝑁

and let 𝑄 = {𝜖 ↗ 2<ℕ : ↙𝑋 > |𝜖| 𝑋 ↗ 𝑃𝜖}. Note that 𝑄 is a ω0
1 tree, and

for every extendible node 𝜖 ↗ 𝑄, 𝑃𝜖 is infinite. By the cone avoidance basis
theorem (Theorem 3.2.6) relativized to →↑, there is a path 𝑆 ↗ [𝑄] such that
𝑊 ⊋𝑄 𝑆 ⇐ →↑.

Consider the notion of forcing whose conditions13 are pairs (𝜒, 𝑁). One can
think of such a condition as computable Mathias condition (𝜒, 𝑃𝑆⫅̸𝑁). Note
that since 𝑆 ↗ [𝑄], 𝑃𝑆⫅̸𝑁 is infinite. The interpretation of a condition (𝜒, 𝑁) is
the interpretation of the associated computable Mathias condition, that is

[𝜒, 𝑁] = {𝐿 : 𝜒 ⇓ 𝐿 ↓ 𝜒 ¬ 𝑃𝑆⫅̸𝑁}

A condition (𝜓,𝑚) extends (𝜒, 𝑁) if 𝜒 ⇓ 𝜓, 𝑚 ≃ 𝑁, and 𝜓 \ 𝜒 ↓ 𝑃𝑆⫅̸𝑁 .
Every su!ciently generic filter F for this notion of forcing induces a path 𝐿F

defined as
⋃{𝜒 : (𝜒, 𝑁) ↗ F}. Alternatively, 𝐿F is the unique element

of
⋂

(𝜒,𝑁)↗F[𝜒, 𝑁]. The forcing question for ω0
1 formulas is induced from the

forcing question in computable Mathias forcing:

8.5 Cohesiveness principle 111

Definition 8.5.3. Given a condition (𝜒, 𝑁) and a ω0
1 formula 𝜔(𝐿), define

(𝜒, 𝑁) ?∋𝜔(𝐿) to hold if there is some 𝜓 ↗ [𝜒, 𝑁] such that 𝜔(𝜓) holds. ⇑

One easily sees that this forcing question is ω0
1-preserving, although not uni-

formly in the condition, since one needs to hard-code the initial segment of 𝑆
of length 𝑁.

Lemma 8.5.4. Let (𝜒, 𝑁) be a condition and 𝜔(𝐿) be a ω0
1 formula.

1. If (𝜒, 𝑁) ?∋𝜔(𝐿), then there is an extension (𝜓, 𝑁) ⇒ (𝜒, 𝑁) forcing
𝜔(𝐿) ;

2. If (𝜒, 𝑁) ?⫋𝜔(𝐿), then (𝜒, 𝑁) forces ¬𝜔(𝐿). 𝜑

P!""#. Suppose first (𝜒, 𝑁) ?∋𝜔(𝐿). Let 𝜓 ↗ [𝜒, 𝑁] be such that 𝜔(𝜓) holds.
Then (𝜓, 𝑁) is a valid extension and for every 𝐿 ↗ [𝜓, 𝑁], 𝜓 ⇓ 𝐿, so 𝜔(𝐿)
holds. It follows that (𝜓, 𝑁) forces 𝜔(𝐿). Suppose now (𝜒, 𝑁) ?⫋𝜔(𝐿). Then
for every extension (𝜓,𝑚) ⇒ (𝜒, 𝑁), 𝜓 ↗ [𝜒, 𝑁], so ¬𝜔(𝜓) holds. It follows
that (𝜒, 𝑁) forces ¬𝜔(𝐿).

Since this notion of forcing admits a ω0
1-preserving forcing question for ω0

1
formulas, by Theorem 3.3.4 for every su!ciently generic filter F, 𝑂 ⊋𝑄 𝐿F.
We now turn to second jump control.

Definition 8.5.5. Given a condition (𝜒, 𝑁) and aω0
2 formula 𝜔(𝐿) ↖ ↙𝑋𝜕(𝐿,

𝑋), define (𝜒, 𝑁) ?∋𝜔(𝐿) to hold if there is some 𝑋 ↗ ℕ and an extension
(𝜓,𝑚) ⇒ (𝜒, 𝑁) such that (𝜓,𝑚) ?∋𝜕(𝐿, 𝑋).14 14: As before, 𝜕 is a ϑ0

1 formula, so we
consider the forcing question forϑ0

1 induced
by the forcing question for ω0

1 formulas by
taking the negation.

⇑

The extension relation (𝜓,𝑚) ⇒ (𝜒, 𝑁) is computable uniformly in 𝑆. Moreover,
the relation (𝜓,𝑚) ?∋𝜕(𝐿, 𝑋) isϑ0

1 since the forcing question forω0
1 formulas is

ω0
1-preserving. It follows that the forcing question for ω0

2 formulas is ω0
1(𝑆⇐ →↑).

Lemma 8.5.6. Let (𝜒, 𝑁) be a condition and 𝜔(𝐿) be a ω0
2 formula.

1. If (𝜒, 𝑁) ?∋𝜔(𝐿), then there is an extension (𝜓,𝑚) ⇒ (𝜒, 𝑁) forcing
𝜔(𝐿) ;

2. If (𝜒, 𝑁) ?⫋𝜔(𝐿), then (𝜒, 𝑁) forces ¬𝜔(𝐿). 𝜑

P!""#. Say 𝜔(𝐿) ↖ ↙𝑋𝜕(𝐿, 𝑋). Suppose first (𝜒, 𝑁) ?∋𝜔(𝐿). Then there ex-
ists some 𝑋 ↗ ℕ and an extension (𝜓,𝑚) ⇒ (𝜒, 𝑁) such that (𝜓,𝑚) ?∋𝜕(𝐿, 𝑋).
By Lemma 8.5.4, there is an extension of (𝜓,𝑚) forcing 𝜕(𝐿, 𝑋), hence forc-
ing 𝜔(𝐿). Suppose now (𝜒, 𝑁) ?⫋𝜔(𝐿). Fix some 𝑋 ↗ ℕ. We claim that the
set of all conditions forcing ¬𝜕(𝐿, 𝑋) is dense below (𝜒, 𝑁). Indeed, given
a condition (𝜓,𝑚) ⇒ (𝜒, 𝑁), (𝜓,𝑚) ?⫋𝜕(𝐿, 𝑋), so by Lemma 8.5.4, there is
an extension for (𝜓,𝑚) forcing ¬𝜕(𝐿, 𝑋). Thus, for every su!ciently generic
filter Fcontaining (𝜒, 𝑁) and every 𝑋 ↗ ℕ, there is a condition in F forcing
¬𝜕(𝐿, 𝑋), so ¬𝜔(𝐿F) holds.

Exercise 8.5.7. Using the fact that the forcing question for ω0
2 formulas is

ω0
1(𝑆 ⇐ →↑) and that 𝑊 ⊋𝑄 𝑆 ⇐ →↑, adapt Theorem 3.3.4 to show that for every

su!ciently generic filter F, 𝑊 ⊋𝑄 𝐿
↑
F

. 𝜑

Thus, for every su!ciently generic filter F, 𝑂 ⊋𝑄 𝐿F and 𝑊 ⊋𝑄 𝐿
↑
F

. Since
𝑆 ↗ [𝑄], then for every 𝑁, 𝑃𝑆⫅̸𝑁 is infinite, hence for every su!ciently generic

112 8 Jump cone avoidance

filter F, 𝐿F is infinite. Last, for every condition (𝜒, 𝑁), the condition (𝜒, 𝑁 + 1)
is a valid extension, so for every su!ciently generic filter F, 𝐿F is cohesive
for 𝑃0 , 𝑃1 , . . . This completes the proof of Theorem 8.5.2.

The second-jump control in the proof of Theorem 8.5.2 was in two steps: first,
one picked the sequence of boolean decisions 𝑆 ↗ [𝑄] by a relativized first-
jump control for WKL, then one built an infinite cohesive set 𝐿 with aω0

1(𝑆⇐→↑)
forcing question for ω0

2 formulas. One can actually define a notion of forcing
doing both at once, as shows the following exercise.

Exercise 8.5.8 (Patey [73]). Fix a uniformly computable sequence of sets
𝑃0 , 𝑃1 , . . . and define 𝑃𝜖 and 𝑄 as in Theorem 8.5.2. Consider the notion of
forcing whose conditions are tuples (𝜒, 𝜖, 𝑖), where 𝜒 is a finite string, 𝑖 is
an infinite →↑-primitive recursive subtree of 𝑄15

15: Note that by restricting the tree 𝑄, one
restricts the possible reservoirs 𝑃𝜖 with
𝜖 ↗ 𝑄, so one restricts the forced nega-
tive information. Thus, the third component
of a condition forces positive information.
This shall be explained in the next section
in further details.

, and 𝜖 is an extendible node
in 𝑖. One can think of a condition as a computable Mathias condition (𝜒, 𝑃𝜖),
together with a →↑-primitive recursive Jockusch-Soare forcing condition 𝑖. A
condition (𝜓, 𝜘,𝑛) extends a condition (𝜒, 𝜖, 𝑖) if 𝜒 ⇓ 𝜓, 𝜖 ⇓ 𝜘, 𝑛 ↓ 𝑖 and
𝜓 \ 𝜒 ↓ 𝑃𝜖.

1. Define a ω0
1-preserving forcing question for ω0

1 formulas.16

16: Note that given a condition (𝜒, 𝜖, 𝑖),
the forcing question does not involve 𝑖, and
the answers leave 𝜖 and 𝑖 unchanged. First-
jump control can therefore “ignore” the com-
ponents responsible of higher jump control. 2. Define a ω0

2-preserving forcing question for ω0
2 formulas.17

17: Hint: combine the forcing question for
ω0

2 formulas in Definition 8.5.5 and the
forcing question for ω0

1 formulas in Defini-
tion 8.4.3.

𝜑

8.6 Partition regularity

Most theorems from Ramsey theory are proven using variants of Mathias
forcing. However, as shows Proposition 8.5.1, generic Mathias filters tend to
produce sets of high degree, even when working with computable reservoirs.
In order to construct solutions to theorems from Ramsey theory with a good
second-jump control, one must therefore refine this notion of forcing to be less
permissive about reservoirs. In the case of the cohesiveness principle, the
solution was restrict the reservoirs to boolean combinations of a a uniformly
computable sequence of sets. In this section, we generalize the approach by
allowing to split the reservoirs based on any finite partition of the integers. This
yields the notion of partition regularity.

Definition 8.6.1. A class P ↓ 2ℕ is partition regular1818: By the upward-closure of a partition
regular class, P is non-empty i" ℕ ↗ P,
and the last property can be restricted to
2-partitions of 𝑀, that is, where 𝑇0 ∅𝑇1 = →
and 𝑇0 ¬ 𝑇1 = 𝑀. By iterating the split-
ting, if P is partition regular, then for ev-
ery 𝑜, for every 𝑀 ↗ P and every 𝑜-cover
𝑇0 ¬ · · · ¬ 𝑇

𝑜▽1 ∀ 𝑀, there is some 𝑝 < 𝑜

such that 𝑇𝑝 ↗ P.

if

1. P is non-empty ;
2. For all 𝑀 ↗ P and 𝑇 ∀ 𝑀, 𝑇 ↗ P ;
3. For every 𝑀 ↗ P and every 2-cover 𝑇0 ¬𝑇1 ∀ 𝑀, there is some 𝑝 < 2

such that 𝑇𝑝 ↗ P. ⇑

There exist many examples of partition regularity statements in combina-
torics.

Example 8.6.2. The following classes are partition regular:

1. {𝑀 : 𝑀 is infinite } by the infinite pigeonhole principle ;
2. {𝑀 : 𝑁 ↗ 𝑀} for a fixed 𝑁 ↗ ℕ ;
3. {𝑀 : lim sup

𝑁↦ℜ
|{1,2,...,𝑁}∅𝑀 |

𝑁
> 0} ;

4. {𝑀 : ∑
𝑁↗𝑀 1

𝑁
= ℜ}.

8.6 Partition regularity 113

19: Note that a non-trivial partition regular
class does not contain any principal partition
regular subclass.

20: Partition regular classes contain every
“typical set”. In particular, if P is partition
regular and measurable, then its measure
is 1 (see Monin and Patey [74]). Moreover,
if P satisfies the Baire property, then it is
co-meager.

Among these examples, the second is considered as degenerate, as it contains
finite sets. A partition regular class is principal if it is of the form {𝑀 : 𝑁 ↗ 𝑀}
for a fixed 𝑁 ↗ ℕ. We shall work only with partition regular classes containing
only infinite sets. A class A↓ 2ℕ is non-trivial if it contains only sets with at
least two elements. If A is partition regular, then it is non-trivial i" it contains
only infinite sets.19 The following operator is an easy way to define non-trivial
partition regular classes:

Definition 8.6.3. Given an infinite set 𝑀, let L𝑀 = {𝑇 : 𝑀∅𝑇 is infinite }.⇑

In the computability-theoretic realm, many statements of the form “Every set 𝑞
has an infinite subset 𝑟 ↓ 𝑞 or 𝑟 ↓ 𝑞 satisfying some weakness property”
can be rephrased in terms of partition regularity.

Example 8.6.4. The following classes are partition regular:

1. {𝑀 : ↙𝑇 ↗ [𝑀]𝜙 𝑇 ⫌𝑄 𝑂} for any 𝑂 ⊋𝑄 → (Theorem 3.4.5);
2. {𝑀 : ↙𝑇 ↗ [𝑀]𝜙 𝑇 is not of PA degree (Theorem 5.4.3);

One can think of non-trivial partition regular classes as generalizations of the
notion of infinity, satisfying some basic operations that one expects of infinite
sets, that is, if a set is infinite, then any superset is again infinite, and when
splitting an infinite set in two parts, at least one of the parts is infinite.20 Looking
at the proof of strong cone avoidance of RT1

2 (Theorem 3.4.5), splitting and
finite truncation are the only operations on the reservoir to obtain a good first-
jump control. One can therefore fix a partition regular class P and work with
conditions whose reservoir belongs to P.

Exercise 8.6.5 (Flood [75]). Adapt the proof of Theorem 3.4.5 to show that
for every non-computable set 𝑂 and every set 𝑞, there is a set 𝑟 ↓ 𝑞 or
𝑟 ↓ 𝑞 such that 𝑂 ⊋𝑄 𝑟 and lim sup

𝑁↦ℜ
|{1,2,...,𝑁}∅𝑀 |

𝑁
> 0. 𝜑

Exercise 8.6.6. Let P be a non-trivial partition regular class. Show that if
𝑀 ↗ P and 𝑇 =↘

𝑀, then 𝑇 ↗ P. In other words, P is closed under finite
changes. 𝜑

Exercise 8.6.7 (Monin and Patey [74]). Let {P𝑝} 𝑝↗𝑠 be an arbitrary union of
partition regular classes. Show that

⋃
𝑝↗𝑠 P𝑝 is partition regular. 𝜑

Exercise 8.6.8. Given an infinite set 𝑀, let L𝑀 = {𝑅 : 𝑅 ∅ 𝑀 is infinite }.
Prove that for every partition regular class P, the following class is partition
regular:

{𝑀 : L𝑀 ∅P is partition regular }

Positive and negative information. One can understand the restriction of
the reservoirs to partition regular classes in terms of positive and negative
information. In a Mathias condition (𝜒,𝑀), the stem 𝜒 fixes an initial segment
of the constructed set 𝐿. It specifies that 𝐿 must contain {𝑁 : 𝜒(𝑁) = 1}
and must avoid {𝑁 : 𝜒(𝑁) = 0}. Thus, 𝜒 forces a finite amount of positive
and negative information. On the other hand, the reservoir 𝑀 forces an infinite
amount of negative information since 𝐿 must avoid any new element outside
the reservoir, but does not force any positive information, as for every 𝑁 ↗ 𝑀,
one can construct a set 𝐿 such that 𝑁 ς 𝐿.

114 8 Jump cone avoidance

It is useful to think as a ω0
1 property as a positive information and therefore

a ϑ0
1 property as a negative one. When constructing a set using a variant of

Mathias forcing with the first-jump control, one usually increases the stem to
force ω0

1 properties, and decrease the reservoir to force ϑ0
1 properties. The

situation becomes more complicated when forcing ϑ0
2 properties ′𝑋𝜕(𝐿, 𝑋),

as it becomes a density statement about a countable collection ofω0
1 properties

{𝜕(𝐿, 𝑋) : 𝑋 ↗ ℕ}. It therefore requires to maintain some positive information
over all future conditions. A partition regular class is therefore a “reservoir of
reservoirs”, as it restricts the possible choices of reservoirs, hence restricts the
future negative information, which is a way of forcing positive information.

8.6.1 Largeness

One should expect from a notion of largeness that it is upward-closed under
inclusion, that is, if A↓ 2ℕ is a largeness notion and B ∀ A, then so is B.
The collection of all partition regular classes is not closed upward. For instance,
pick any non-trivial partition regular class P which does not contain some
infinite set 𝑀. Then the P¬ {𝑅 : 𝑅 ∀ 𝑀} is an upward-closed superset of P,
but is not partition regular. The following notion of largeness is more convenient
to work with:

Definition 8.6.9. A class A↓ 2ℕ is large2121: Note that a large class is necessarily
non-empty, as ℕ ↗ A.

if

1. For all 𝑀 ↗ Aand 𝑇 ∀ 𝑀, 𝑇 ↗ A ;
2. For every 𝑜 ↗ ℕ and every 𝑜-cover 𝑇0 ¬ · · · ¬ 𝑇𝑜▽1 = ℕ, there is

some 𝑝 < 𝑜 such that 𝑇𝑝 ↗ A. ⇑

There exists a formal relationship between largeness and partition regularity:
a class is large i" it contains a partition regular subclass. The union of a family
of partition regular classes being again partition regular, every large class
contains a maximal partition regular subclass for inclusion. This subclass
admits the following explicit syntactic definition.

Proposition 8.6.10 (Monin and Patey [29]). Given a large class A ↓ 2ℕ ,
the class

L(A) = {𝑀 ↗ A : ′𝑜′𝑀0 ¬ · · · ¬ 𝑀𝑜▽1 ∀ 𝑀 ↙𝑝 < 𝑜 𝑀𝑝 ↗ A}

is the maximal partition regular subclass of A. 𝜑

P!""#. We first prove that L(A) is a partition regular subclass of A. First,
note that L(A) is upward-closed. Moreover, by definition of A being large,
ℕ ↗ L(A), so L(A) is non-empty. Let 𝑀 ↗ L(A) and 𝑀0 ¬ · · · ¬ 𝑀𝑜▽1 ∀ 𝑀.
Suppose for the contradiction that 𝑀𝑝 ς L(A) for every 𝑝 < 𝑜. Then, for
every 𝑝 < 𝑜, there is some 𝑜𝑝 ↗ ℕ and some 𝑜𝑝-cover 𝑇0

𝑝
¬ · · · ¬ 𝑇

𝑜▽1
𝑝

∀ 𝑀𝑝

such that 𝑇𝑡

𝑝
ς A for every 𝑡 < 𝑜𝑝 . hen {𝑇𝑡

𝑝
: 𝑝 < 𝑜 , 𝑡 < 𝑜𝑝} is a cover

of 𝑀 contradicting 𝑀 ↗ L(A). Therefore, L(A) is partition regular. Moreover,
L(A) ↓ Aas witnessed by taking the trivial cover of 𝑀 by itself.

We now prove that L(A) is the maximal partition regular subclass of A. Let B
be a partition regular subclass of A. Then for every 𝑀 ↗ B, every 𝑀0 ¬ · · · ¬
𝑀𝑜▽1 ∀ 𝑀, there is some 𝑝 < 𝑜 such that 𝑀𝑝 ↗ B↓ A. Thus 𝑀 ↗ L(A), so
B↓ L(A).

8.6 Partition regularity 115

22: We write boldface !0
n for the levels of

the Borel hierarchy, and lightface ω0
𝑁

for the
levels of its e"ective hierarchy.

23: Recall that a Scott ideal is a Turing ideal
which satisfies weak König’s lemma, that is,
for every infinite binary tree 𝑄 ↗ M, then
[𝑄] ∅ M ϱ →. A Scott code for a Turing
ideal M = {𝑅0 , 𝑅1 , . . . } is a set 𝑢 =⊕

𝑝 𝑅𝑝 such that the basic operations on
the 𝑢-indices are computable.

Recall that a class A↓ 2ℕ is non-trivial if it contains only sets with at least
two elements. Note that contrary to partition regular classes, a non-trivial large
class may contain finite sets, but its maximal partition regular subclass L(A)
contains only infinite sets.

Exercise 8.6.11 (Monin and Patey [74] ; Mimouni).

1. Show that if P ↓ 2ℕ is a non-trivial partition regular class and 𝑀 ↗ P,
then P∅L𝑀 is large.

2. Construct a non-trivial partition regular class P and a set 𝑀 ↗ P such
that P∅L𝑀 is not partition regular. 𝜑

Exercise 8.6.12 (Monin and Patey [74]). Let A↓ 2ℕ be a non-trivial large
class. Show that L(A) = {𝑀 : A∅L𝑀 is large }. 𝜑

Exercise 8.6.13 (Monin and Patey [29]). Show that if A0 ∀ A1 ∀ . . . is a
decreasing sequence of large classes, then

⋂
𝑁
A𝑁 is large. 𝜑

8.6.2 E!ective classes

The class of all infinite sets is ϑ0
2. Actually, this is the first level of the e"ective

Borel hierarchy containing a non-trivial partition regular class, as there is no
non-trivial !0

2 partition regular class [74].22 Moreover, ϑ0
2 classes is the first

level satisfying some stability, in the sense that if a ω0
1 class A↓ 2ℕ is large,

then L(A) is ϑ0
2, while if A is ϑ0

2, then so is L(A). Actually, we shall work with
a slightly more general family of partition regular classes: arbitrary intersections
of ω0

1 classes over a Scott ideal.

In what follows, fix a uniform sequence of all c.e. sets of strings 𝑣0 ,𝑣1 , · · · ↓
2<ℕ . It induces an enumeration of all upward-closed ω0

1 classes U0 , U1 , . . .

defined by U𝑏 = {𝑀 ↗ 2ℕ : ↙𝜖 ↗ 𝑣𝑏 𝜖 ↓ 𝑀}. These enumerations
admit immediate relativizations to oracles. We therefore let U𝑅

0 , U
𝑅

1 , . . . be
an enumeration of all upward-closed ω0

1(𝑅) classes. From now on, fix a Scott
ideal M= {𝑅0 , 𝑅1 , . . . } with Scott code 𝑢.23 Given a set 𝑂 ↓ ℕ2, we let

U
M

𝑂
=

⋂
(𝑏 ,𝑝)↗𝑂

U
𝑅𝑝

𝑏

From now on, we shall work exclusively with classes of the form U
M

𝑂
, and

give a particular focus on the complexity of the set 𝑂 of indices. Thanks to
Exercise 8.6.13, if U

M

𝑂
is not large, then there is a finite set 𝑕 ↓ 𝑂 such

that UM

𝑕
is not large either. Note that the latter class is ω0

1(M). This pseudo-
compactness phenomenon plays a key role in the computability-theoretic
features of large classes.

Lemma 8.6.14 (Monin and Patey [68]). Let 𝑂 ↓ ℕ2 be a set. The statement
“UM

𝑂
is large” is ϑ0

1(𝑂 ⇐ 𝑢
↑) uniformly in 𝑂 and 𝑢. 𝜑

P!""#. Let us first show that the statement “U𝑅

𝑏
is large” is ϑ0

2(𝑅) uniformly
in 𝑏 and 𝑅. Indeed, by compactness, U𝑅

𝑏
is large i" for every 𝑜 ↗ ℕ, there is

some 𝑗 ↗ ℕ such that for every 𝑜-partition 𝑇0 ¬ · · ·¬𝑇𝑜▽1 = {0, . . . , 𝑗}, there
is some 𝑝 < 𝑜 and some 𝜖 ↗ 𝑣𝑏 such that 𝜖 ↓ 𝑇𝑝 . This statement is ϑ0

2(𝑅)
uniformly in 𝑏 and 𝑅. Then, by Exercise 8.6.13, UM

𝑂
is large i" for every finite

set 𝑕 ↓ 𝑂, UM

𝑕
is large. The resulting statement is therefore ϑ0

1(𝑂 ⇐ 𝑢
↑).

116 8 Jump cone avoidance

The following lemma shows that classes of the form U
M

𝑂
are robust, in the

sense that if a large class is of this form, then so is its maximum partition
regular subclass. Moreover, the translation of the index sets is computable.

Lemma 8.6.15 (Monin and Patey [68]). Let 𝑂 ↓ ℕ2 be a set. Then there
exists a set 𝑊 ↓ ℕ2 computable uniformly in 𝑂 such that UM

𝑊
= L(UM

𝑂
). 𝜑

P!""#. We first claim that L(UM

𝑂
) ↓ ⋂

𝑕↓fin𝑂 L(UM

𝑕
). Indeed, for some

finite 𝑕 ↓ 𝑂, L(UM

𝑂
) ↓ U

M

𝑂
↓ U

M

𝑕
, so L(UM

𝑂
) is a partition regular

subclass of U
M

𝑕
. By maximality of L(UM

𝑕
), we have L(UM

𝑂
) ↓ L(UM

𝑕
).

Since it is the case of every 𝑕 ↓fin 𝑂, we have L(UM

𝑂
) ↓ ⋂

𝑕↓fin𝑂 L(UM

𝑕
).

We next claim that
⋂

𝑕↓fin𝑂 L(UM

𝑕
) ↓ L(UM

𝑂
). Suppose that 𝑀 ς L(UM

𝑂
).

Then there is some 𝑜 and some 𝑜-cover𝑇0¬ · · ·¬𝑇𝑜▽1 = 𝑀 such that for every
𝑝 < 𝑜, 𝑇𝑝 ς U

M

𝑂
. Then there is a finite set 𝑕 ↓fin 𝑂 such that for every 𝑝 < 𝑜,

𝑇𝑝 ς U
M

𝑕
, so 𝑀 ς L(UM

𝑕
). This proves our claim.

For every 𝑕 ↓fin 𝑂, let 𝑤(𝑕) be an 𝑢-index of the set
⊕

(𝑏 ,𝑝)↗𝑕 𝑅𝑝 . For
every 𝑕 ↓fin 𝑂 and 𝑜 ↗ ℕ, let 𝑘(𝑕, 𝑜) be an index of the 𝑅

𝑤(𝑕)-c.e. set
of all 𝜖 ↗ 2<ℕ such that for every 𝑜-partition 𝜖0 ¬ · · · ¬ 𝜖𝑜▽1 = 𝜖, there is
some 𝑝 < 𝑜 such that for each (𝑏 , 𝑝) ↗ 𝑕, 𝑣𝑅𝑝

𝑏
enumerates a subset of 𝜖𝑝 . In

other words,

U
𝑅
𝑤(𝑕)

𝑘(𝑕,𝑜) = {𝑀 : ′𝑇0 ¬ · · · ¬ 𝑇𝑜▽1 = 𝑀 ↙𝑝 < 𝑜 𝑇𝑝 ↗ U
M

𝑕
}

Then, letting 𝑊 = {(𝑘(𝑕, 𝑜), 𝑤(𝑕)) : 𝑜 ↗ ℕ, 𝑕 ↓fin 𝑂}, the class U
M

𝑊
equals⋂

𝑕↓fin𝑂 L(UM

𝑕
), which is nothing but L(UM

𝑂
).

Exercise 8.6.16 (Monin and Patey [74]). Let P be a ϑ0
2 large class and 𝑀

be co-hyperimmune. Show that 𝑀 ↗ P. 𝜑

8.6.3 M-minimal classes

As mentioned above, to obtain a variant of Mathias forcing with a good second-
jump control, one needs to maintain some positive information over all the
reservoirs. This is achieved by restricting the reservoirs to a fixed partition
regular class. Given the computability-theoretic nature of theω0

2(𝐿) and ϑ0
2(𝐿)

statements needed to be forced, the appropriate partition regular class does
not admit a nice explicit combinatorial definition. Seeing a partition regular
class as a “reservoir of reservoirs”, if Q ↓ P are two partition regular classes,
Q will impose more restrictions on the possible choices of reservoirs than P.
Considering a reservoir forces negative information about the set 𝐿, Q will
force more positive information than P. With this intuition, minimal partition
regular classes will ensure as much positive information as possible, while
allowing the reservoirs to be split.

Definition 8.6.17. A large class A is M-minimal2424: This notion of minimality is e"ective and
not combinatorial, in the sense that there
might exist large subclasses B & A, but
not of the form U

M

𝑂
.

if for every set 𝑀 ↗ M

and 𝑏 ↗ ℕ, either A↓ U
𝑀

𝑏
, or A∅ U

𝑀

𝑏
is not large. ⇑

Every large class containing a partition regular subclass, every M-minimal
large class of the form U

M

𝑂
is also partition regular. There exists a natural

greedy algorithm to build a set 𝑂 ↓ ℕ2 such that U
M

𝑂
is non-trivial and

M-minimal.

8.6 Partition regularity 117

Proposition 8.6.18 (Le Houérou, Levy Patey and Mimouni [71]). Let𝑊 ↓
ℕ2 be a set such that UM

𝑊
is large. Then (𝑊 ⇐ 𝑢

↑)↑ computes a set 𝑂 ∀ 𝑊

such that UM

𝑂
is M-minimal. 𝜑

P!""#. By the padding lemma, there is a total computable function 𝑘 : ℕ2 ↦
ℕ such that for every 𝑏 , 𝑒 ↗ ℕ and every set 𝑀, U𝑀

𝑘(𝑏 ,𝑒) = U
𝑀

𝑏
and 𝑘(𝑏 , 𝑒) > 𝑒.

By uniformity of the properties of a Scott code, there is another total computable
function 𝑤 : ℕ2 ↦ ℕ such that for every 𝑏 , 𝑒 ↗ ℕ and every Scott code 𝑢,
𝑤(𝑏 , 𝑒) and 𝑏 are both 𝑢-indices of the same set, and 𝑤(𝑏 , 𝑒) > 𝑒.

We build a (𝑊 ⇐ 𝑢
↑)↑-computable sequence of 𝑊-computable sets 𝑂0 ↓

𝑂1 ↓ . . . such that, letting 𝑂 =
⋃

𝑒
𝑂𝑒 , U𝑢

𝑂
is M-minimal and for every 𝑒,

𝑂⫅̸𝑒 = 𝑂𝑒⫅̸𝑒. Start with 𝑂0 = 𝑊. Then, given a set 𝑂𝑒 ↓ ℕ2 such that UM

𝑂𝑒

is
large, and a pair (𝑏 , 𝑝), define 𝑂𝑒+1 = 𝑂𝑒 ¬ {(𝑘(𝑏 , 𝑒), 𝑤(𝑝 , 𝑒))} if UM

𝑂𝑒

∅ U
𝑅𝑝

𝑏

is large, and 𝑂𝑒+1 = 𝑂𝑒 otherwise. The set 𝑂 =
⋃

𝑒
𝑂𝑒 is the desired set.

Note that by choice of 𝑘 and 𝑤, in the former case, UM

𝑂𝑒+1
= U

M

𝑂𝑒

∅ U
𝑅𝑝

𝑏
. By

Lemma 8.6.14, the statement “UM

𝑂𝑒

∅ U
𝑅𝑝

𝑏
is large” is ϑ0

1(𝑂𝑒 ⇐ 𝑢
↑), so it

can be decided (𝑊 ⇐ 𝑢
↑)↑-computably since 𝑂𝑒 ⇒𝑄 𝑊. The use of 𝑘 and 𝑤

ensures that 𝑂𝑒+1⫅̸𝑒 = 𝑂𝑒⫅̸𝑒.

Suppose 𝑢 is of low degree by the low basis theorem (Theorem 4.4.6). One
can start with a non-trivial class U

M

𝑊
for some computable set 𝑊, and apply

Proposition 8.6.18 to obtain a →↑↑-computable set 𝑂 ∀ 𝑊 such that UM

𝑂
is M-

minimal. However, →↑↑-computability is too complex for our purpose. Thankfully,
one does not need to explicitly have access to the set of indices of the M-
minimal class, but only to be able to check that a class is “compatible” with it.
This yields the notion of M-cohesive class.

8.6.4 M-cohesive classes

In general, if Aand B are two large classes, then A∅ B is not necessarily
large. For instance, consider the class A = L𝑀 and B = L

𝑀
for some bi-

infinite set 𝑀. Thus, in the algorithm of Proposition 8.6.18, the order in which
one considers the pairs (𝑏 , 𝑝) matters. Therefore, there exist many M-minimal
classes of the form U

M

𝑂
, depending on the ordering of the pairs. The following

notion of M-cohesiveness is a way of choosing an M-minimal class without
explicitly giving its set of indices.

Definition 8.6.19. A large class A is M-cohesive if for every set 𝑀 ↗ M,
either A↓ L𝑀 , or A↓ L

𝑀
. ⇑

This definition may seem out of the blue, so let us start with a few manipulations
which will give some intuition.

Exercise 8.6.20. Let A↓ 2ℕ be M-cohesive.

1. Show that for every 𝑀 ↗ M, 𝑀 ↗ A i" A↓ L𝑀 .
2. Deduce that A∅M is an ultrafilter on M. 𝜑

The following exercise justifies the cohesiveness terminology.

118 8 Jump cone avoidance

26: Recall that by Exercise 4.6.5, 𝑆 is able
to choose, among two ϑ0

1(𝑊 ⇐ 𝑢
↑) formu-

las such that at least one is true, a valid
one.

Exercise 8.6.21 (Le Houérou, Levy Patey and Mimouni [71]). Recall that an
infinite set 𝑟 is cohesive for a sequence of sets 𝑃0 , 𝑃1 , . . . if for every 𝑁 ↗ ℕ,
either 𝑟 ↓↘

𝑃𝑁 , or 𝑟 ↓ 𝑃𝑁 . Show that for every infinite set 𝑟 cohesive for the
Turing ideal M seen as a sequence of sets, the class L𝑟 is partition regular
and M-cohesive. 𝜑

The following lemma is the most important combinatorial feature of M-cohesive
classes. It actually says that an M-cohesive class already contains the infor-
mation of an M-minimal class, in the sans that in the greedy algorithm of
Proposition 8.6.18, the ordering on the pairs does not matter.

Lemma 8.6.22 (Monin and Patey [68]). Let U
M

𝑂
be an M-cohesive class.

Let UM

𝑊
and U

𝑢

𝑥
be such that UM

𝑂
∅ U

M

𝑊
and U

M

𝑂
∅ U

M

𝑥
are both large. Then

so is U
M

𝑂
∅ U

M

𝑊
∅ U

M

𝑥
.25

25: Note that in this proof, we exploit the
fact that all these classes are intersections
of ω0

1(M) classes, and the fact that % is a
Scott ideal.

𝜑

P!""#. Suppose for the contradiction that UM

𝑂
∅U

M

𝑊
∅U

M

𝑥
is not large. Then,

by Exercise 8.6.13, there are some finite sets 𝑂1 ↓ 𝑂, 𝑊1 ↓ 𝑊 and 𝑥1 ↓ 𝑥

such that U
M

𝑂1
∅ U

M

𝑊1
∅ U

M

𝑥1
is not large. For every 𝑜 ↗ ℕ, let C𝑜 be the

collection of all sets 𝑇0 ⇐ · · · ⇐ 𝑇𝑜▽1 such that 𝑇0 ∃ · · · ∃ 𝑇𝑜▽1 = ℕ and for
every 𝑝 < 𝑜, 𝑇𝑝 ς U

M

𝑂1
∅ U

M

𝑊1
∅ U

M

𝑥1
. Note that for every 𝑜, C𝑜 is ϑ0

1(M) since
U

M

𝑂1
∅ U

M

𝑊1
∅ U

M

𝑥1
is ω0

1(M). Moreover, there is some 𝑜 such that C𝑜 ϱ →.
Since M is a Scott ideal, there is such a set 𝑇0 ⇐ · · · ⇐ 𝑇𝑜▽1 ↗ C𝑜 ∅M. Since
U

M

𝑂
is M-cohesive, there is some 𝑝 < 𝑜 such that UM

𝑂
↓ L𝑇𝑝

. In particular,
𝑇𝑝 ↗ U

M

𝑂
, so either 𝑇𝑝 ς U

M

𝑊
, or 𝑇𝑝 ς U

M

𝑥
. Suppose 𝑇𝑝 ς U

M

𝑊
, as the other

case is symmetric. Since 𝑇𝑡 ∅ 𝑇𝑝 = → for every 𝑡 ϱ 𝑝, then 𝑇𝑡 ς U
M

𝑂
↓ L𝑝 for

every 𝑡 ϱ 𝑝. It follows that 𝑇0 , . . . ,𝑇𝑜▽1 witnesses that UM

𝑂
∅ U

M

𝑊
is not large.

Contradiction.

It follows that every M-cohesive class for the form U
M

𝑂
admits a unique M-

minimal large subclass.

Lemma 8.6.23 (Monin and Patey [68]). For every M-cohesive class U
M

𝑂
,

there exists a unique M-minimal large subclass:

ℑUM

𝑂
⊤ =

⋂
𝑏↗ℕ,𝑀↗M

{U𝑀

𝑏
: UM

𝑂
∅ U

𝑀

𝑏
is large }

P!""#. We first prove that ℑUM

𝑂
⊤ is large. Let (𝑏0 ,𝑀0), (𝑏1 ,𝑀1), . . . be an

enumeration of all pairs (𝑏 ,𝑀) ↗ ℕ △ M such that U
M

𝑂
∅ U

𝑀

𝑏
is large. By

induction on 𝑁, using Lemma 8.6.22,
⋂

𝑝<𝑁 U
𝑀𝑝

𝑏𝑝
is large for every 𝑁. Thus, by

Exercise 8.6.13, ℑUM

𝑂
⊤ is large. Next, ℑUM

𝑂
⊤ ↓ U

M

𝑂
as for every (𝑏 , 𝑝) ↗ 𝑂,

U
M

𝑂
∅ U

𝑅𝑝

𝑏
is trivially large. Last, ℑUM

𝑂
⊤ is M-minimal by construction.

Contrary to M-minimal classes, one can build a set 𝑂 ↓ ℕ2 such that UM

𝑂
is

M-cohesive computably in any PA degree over 𝑢↑.

Proposition 8.6.24 (Le Houérou, Levy Patey and Mimouni [71]). Let𝑊 ↓
ℕ2 be a set such that U

M

𝑊
is large and non-trivial. Then any PA degree

over 𝑊 ⇐ 𝑢
↑ computes a set 𝑂 ∀ 𝑊 such that UM

𝑂
is M-cohesive. 𝜑

P!""#. Fix 𝑆 a PA degree over 𝑊 ⇐ 𝑢
↑.26 First, consider two 𝑢-computable

enumerations of sets (𝑥𝑁)𝑁↗ℕ and (𝑕𝑁)𝑁↗ℕ such that for every 𝑁 ↗ ℕ, U𝑅𝑁

𝑥𝑁

=

8.7 Pigeonhole principle 119

L𝑅𝑁
and U

𝑅𝑁

𝑕𝑁

= L
𝑅𝑁

. By the padding lemma, one can suppose that min𝑥𝑁 ,

min 𝑕𝑁 ≃ 𝑁. The set 𝑂 will be defined as
⋃

𝑁↗ℕ 𝑂𝑁 for 𝑂0 ↓ 𝑂1 ↓ . . . a
𝑆-computable sequence of 𝑢 ⇐ 𝑊-computable sets satisfying:

⫆̸ 𝑂0 = 𝑊,
⫆̸ U

M

𝑂𝑜

is large for every 𝑜 ↗ ℕ,
⫆̸ 𝑂𝑜⫅̸𝑜 = 𝑂⫅̸𝑜 for every 𝑜 ↗ ℕ, and thus 𝑂 will be 𝑆-computable.

Let 𝑂0 = 𝑊, then, by assumption, UM

𝑂0
is large.

Assume 𝑂𝑜 has been defined for some 𝑜 ↗ ℕ. Then, as U
M

𝑂𝑜

is large, one of
the two following ϑ0

1(𝑊 ⇐ 𝑢
↑) statements must hold: “UM

𝑂𝑜

∅L𝑅𝑜
is large↑↑ or

“UM

𝑂𝑜

∅L
𝑅𝑜

is large↑↑. Hence, 𝑆 is able to choose one that is true. If UM

𝑂𝑜

∅L𝑅𝑜

is large, let 𝑂𝑜+1 = 𝑂𝑜 ¬ 𝑥𝑜 , and if UM

𝑂𝑜

∅L
𝑅𝑜

is large, let 𝑂𝑜+1 = 𝑂𝑜 ¬ 𝑕𝑜 .
By our assumption that min𝑥𝑁 ,min 𝑕𝑁 ≃ 𝑁 for all 𝑁, the value of 𝑂𝑜⫅̸𝑜 will
be left unchanged in the rest of the construction.

8.7 Pigeonhole principle

By Jockusch and Dzhafarov’s theorem (Theorem 3.4.5), RT1
2 admits strong

cone avoidance, the only sets that can be encoded by all the infinite subsets and
co-subsets of an arbitrary set are the computable ones. Using the framework
of largeness and partition regularity, we can now prove the counterpart for
jump computation, known as strong jump cone avoidance of RT1

2. It follows
that for every set 𝑞, there is an infinite subset 𝑟 ↓ 𝑞 or 𝑟 ↓ 𝑞 of non-high
degree.

Theorem 8.7.1 (Monin and Patey [29])

Let 𝑂 be a non-ε0
2 set. For every set 𝑞, there is an infinite subset 𝑟 ↓ 𝑞

or 𝑟 ↓ 𝑞 such that 𝑂 is not ε0
2(𝑟).

P!""#. Fix 𝑂 and 𝑞. As in Theorem 3.4.5, we shall construct two sets 𝐿0 ↓ 𝑞

and 𝐿1 ↓ 𝑞 using a disjunctive notion of forcing. For simplicity, let 𝑞0 = 𝑞

and 𝑞1 = 𝑞.

By the low basis theorem (Theorem 4.4.6) and Theorem 4.3.2, there exists
a set 𝑢 of low degree coding a Scott ideal M. By the cone avoidance basis
theorem (Theorem 3.2.6) relativized to →↑ and Theorem 4.3.2, there is a code
𝑦 for a Scott ideal Ncontaining →↑ such that 𝑂 ⊋𝑄 𝑦 . By Proposition 8.6.24,
Ncontains a set 𝑊 ↓ ℕ2 such that UM

𝑊
is an M-cohesive class.

The two sets 𝐿0 and 𝐿1 will be constructed using a variant of Mathias forcing
whose conditions are triples (𝜒0 , 𝜒1 ,𝑀), where

1. (𝜒𝑝 ,𝑀) is a Mathias condition for each 𝑝 < 2 ;
2. 𝜒𝑝 ↓ 𝑞𝑝 ; 𝑀 ↗ ℑUM

𝑊
⊤ ;

3. 𝑀 ↗ N.27

27: This notion of forcing ressembles the
one of Theorem 3.4.5, with two main di"er-
ences. First, the reservoir must belong to
the M-minimal partition regular subclass of
U
M

𝑊
, which ensures that it maintains a lot

of positive information. Second, one usu-
ally requires that the reservoir satisfies the
desired property, that is, 𝑂 is not ε0

2(𝑀).
However, because of the forcing question
for ω0

2 formulas, the reservoir only satisfies
that 𝑂 ⊋𝑄 𝑀 ⇐ 𝑊 ⇐ →↑. In particular, 𝑀 can
compute →↑, or can even be of PA degree
over →↑.

One must really think of a condition as a pair of Mathias conditions which share
a same reservoir. The interpretation [𝜒0 , 𝜒1 ,𝑀] of a condition (𝜒0 , 𝜒1 ,𝑀) is
the class

[𝜒0 , 𝜒1 ,𝑀] = {(𝐿0 ,𝐿1) : ′𝑝 < 2 𝜒𝑝 ⇓ 𝐿𝑝 ↓ 𝜒𝑝 ¬ 𝑀}

120 8 Jump cone avoidance

28: Also note that by Exercise 8.6.6, if part
𝑝 is valid in 𝑍 = (𝜒0 , 𝜒1 ,𝑀) and 𝑌 =
(𝜓0 , 𝜓1 ,𝑇) ⇒ 𝑍 with 𝑇 =↘

𝑀, then part 𝑝
is valid in 𝑌.

A condition (𝜓0 , 𝜓1 ,𝑇) extends (𝜒0 , 𝜒1 ,𝑀) if (𝜓𝑝 ,𝑇) Mathias extends (𝜒𝑝 ,𝑀)
for each 𝑝 < 2. Any filter F induces two sets 𝐿F,0 and 𝐿F,1 defined by
𝐿F,𝑝 =

⋃{𝜒𝑝 : (𝜒0 , 𝜒1 ,𝑀) ↗ F}. Note that (𝐿F,0 ,𝐿F,1) ↗
⋂{[𝜒0 , 𝜒1 ,𝑀] :

(𝜒0 , 𝜒1 ,𝑀) ↗ F}.

The goal is therefore to build two infinite sets 𝐿0 ,𝐿1, satisfying the following
requirements for every 𝑏0 , 𝑏1 ↗ ℕ:

R𝑏0 ,𝑏1 : ϖ𝐿
↑
0

𝑏0 ϱ 𝑂 ⊥ϖ
𝐿
↑
1

𝑏1 ϱ 𝑂

If every requirement is satisfied, then an easy pairing argument shows that
either 𝑂 ⊋𝑄 𝐿0, or 𝑂 ⊋𝑄 𝐿1. However, in general, it is not possible to ensure
that 𝐿0 and 𝐿1 are both infinite. For example, 𝑞 could be finite or co-finite.

In the proof of Theorem 3.4.5, we used as a hypothesis that there is no set
satisfying the statement of the theorem, which implies in particular that for
every reservoir 𝑀, both 𝑀 ∅ 𝑞 and 𝑀 ∅ 𝑞 are infinite. In this proof, we will
need to consider a stronger property.

Definition 8.7.2. We say that part 𝑝 of (𝜒0 , 𝜒1 ,𝑀) is valid if 𝑀 ∅ 𝑞𝑝 ↗ U
M

𝑊
.

Part 𝑝 of a filter F is valid if part 𝑝 is valid for every condition in F. ⇑

Since 𝑀 ↗ ℑUM

𝑊
⊤, then by partition regularity, either 𝑞0∅𝑀 or 𝑞1∅𝑀 belongs

to ℑUM

𝑊
⊤. It follows that every condition has at least a valid part.28 Moreover,

if 𝑌 extends 𝑍 and part 𝑝 of 𝑌 is valid, then so is part 𝑝 of 𝑍. Thus, every filter
admits a valid part.

We shall first prove that for every su!ciently generic filter Fwith valid part 𝑝,
not only 𝐿F,𝑝 is infinite, but it furthermore belongs to ℑUM

𝑊
⊤.

Lemma 8.7.3. Let 𝑍 = (𝜒0 , 𝜒1 ,𝑀) be a condition with valid part 𝑝 and let
V ∀ ℑUM

𝑊
⊤ be a large ω0

1(M) class. There is an extension (𝜓0 , 𝜓1 ,𝑇) of 𝑍
such that [𝜓𝑝] ↓ V. 𝜑

P!""#. Since part 𝑝 of 𝑍 is valid, then 𝑀 ∅ 𝑞𝑝 ↗ ℑUM

𝑊
⊤ ↓ V. Moreover,

V is ω0
1(M), so there is some 𝜖 ↓ 𝑀 ∅ 𝑞𝑝 such that [𝜖] ↓ V. Last, by

upward-closure of V, [𝜒𝑝 ¬ 𝜖] ↓ V, so letting 𝜓𝑝 = 𝜒𝑝 ¬ 𝜖, 𝜓1▽𝑝 = 𝜒1▽𝑝 and
𝑇 = 𝑀 \ {0, . . . , |𝜖|}, (𝜓0 , 𝜓1 ,𝑇) is the desired extension.

We now design a forcing question for ω0
1 formulas. Note that this forcing

question is not ω0
1-preserving, and therefore does not yield a good first-jump

control. This is due to the fact that the reservoir 𝑀 is too complex, so the
only way to access it is to approximate it by a large class, yielding a ϑ0

1(N)
statement. On the bright side, the forcing question is not disjunctive, and can
be applied on every valid part.

Definition 8.7.4. Given a string 𝜒 ↗ 2<ℕ and a ω0
1 formula 𝜔(𝐿), define

𝜒 ?∋𝜔(𝐿) to hold if the following class is large29

29: Note that this forcing question is not
defined over conditions, but over strings.
Given a condition (𝜒0 , 𝜒1 ,𝑀), it is intended
to be applied on 𝜒0 or 𝜒1, depending on
which part is valid. Also note that, surpris-
ingly, since the forcing question does not in-
volve the reservoir, its answer only depends
on the stem.

:

U
M

𝑊
∅ {𝑅 : ↙𝜖 ↓ 𝑅 𝜔(𝜒 ¬ 𝜖)}

By Lemma 8.6.14, the forcing question is ϑ0
1(𝑊 ⇐ 𝑢

↑) uniformly in 𝜒 and 𝜔.
Since 𝑢 is of low degree, 𝑢↑ ↗ Nand by assumption, 𝑊 ↗ N, so the forcing
question is ϑ0

1(N).

8.7 Pigeonhole principle 121

Lemma 8.7.5. Let 𝑍 = (𝜒0 , 𝜒1 ,𝑀) be a condition with valid part 𝑝 and 𝜔(𝐿)
be a ω0

1 formula.

1. If 𝜒𝑝 ?∋𝜔(𝐿), then there is an extension of 𝑍 forcing 𝜔(𝐿𝑝) ;
2. If 𝜒𝑝 ?⫋𝜔(𝐿), then there is an extension of 𝑍 forcing ¬𝜔(𝐿𝑝). 𝜑

P!""#. Let V= {𝑅 : ↙𝜖 ↓ 𝑅 𝜔(𝜒𝑝 ¬ 𝜖)}.

Suppose first 𝜒𝑝 ?∋𝜔(𝐿). Then U
M

𝑊
∅ V is large, so by Lemma 8.6.23,

ℑUM

𝑊
⊤ ↓ V. Since part 𝑝 of 𝑍 is valid, then 𝑞𝑝 ∅ 𝑀 ↗ ℑUM

𝑊
⊤ ↓ V. Un-

folding the definition of V, there is some 𝜖 ↓ 𝑞𝑝 ∅ 𝑀 such that 𝜔(𝜒𝑝 ¬ 𝜖)
holds. Letting 𝜓𝑝 = 𝜒𝑝 ¬ 𝜖, 𝜓1▽𝑝 = 𝜒1▽𝑝 and 𝑇 = 𝑀 \ {0, . . . , |𝜖|}, (𝜓0 , 𝜓1 ,𝑇)
is an extension forcing 𝜔(𝐿𝑝).
Suppose now 𝜒𝑝 ?⫋𝜔(𝐿). Then U

M

𝑊
∅ V is not large, so by Exercise 8.6.13,

there is a finite set 𝑕 ↓ 𝑊 such that UM

𝑕
∅ V is not large. For every 𝑜, let C𝑜

be the ϑ0
1(M) class of all sets 𝑅0 ⇐ · · ·⇐ 𝑅𝑜▽1 such that 𝑅0 ¬ · · ·¬𝑅𝑜▽1 = ℕ

and for every 𝑡 < 𝑜, 𝑅𝑝 ς U
M

𝑕
∅ V. By assumption, C𝑜 ϱ → for some 𝑜 ↗ ℕ,

so since M is a Scott ideal, there is such a set 𝑅0 ⇐ · · ·⇐ 𝑅𝑜▽1 in C𝑜 ∅M. By
partition regularity of ℑUM

𝑊
⊤, there is some 𝑡 < 𝑜 such that 𝑀∅𝑅𝑡 ↗ ℑUM

𝑊
⊤. In

particular, 𝑀𝑡 ↗ ℑUM

𝑊
⊤ ↓ U

M

𝑕
so 𝑀𝑡 ς V. Letting𝑇 = 𝑀∅𝑅𝑡 , 𝑌 = (𝜒0 , 𝜒1 ,𝑇)

is an extension such that for every 𝜖 ↓ 𝑇, ¬𝜔(𝜒𝑝 ¬ 𝜖) holds. It follows that 𝑌
forces ¬𝜔(𝐿𝑝).

We now turn to second-jump control. The forcing relation for ω0
1, ϑ0

1 and ω0
2

formulas is the usual one. It will be convenient to work with the following
syntactic forcing relation for ϑ0

2 formulas.

Definition 8.7.6. Let 𝑍 = (𝜒0 , 𝜒1 ,𝑀) be a condition, 𝑝 < 2 be a part and
𝜔(𝐿) ↖ ′𝑋𝜕(𝐿, 𝑋) be a ϑ0

2 formula. Let 𝑍 ' 𝜔(𝐿𝑝) hold if for every 𝜖 ↓ 𝑀

and every 𝑋 ↗ ℕ, 𝜒𝑝 ¬ 𝜖 ?∋𝜕(𝐿, 𝑋).30

30: Assuming the forcing question for ω0
1

formulas meets its specification, this forc-
ing relation says that for every 𝑋 and every
future extension of the stem, there will be
an extension forcing 𝜕(𝐿𝑝 , 𝑋). Thus, this
forcing question states, for each 𝑋, the den-
sity below 𝑍 of the set of conditions forc-
ing 𝜕(𝐿𝑝 , 𝑋). Since the forcing question for
ω0

1 formulas meets its specification on valid
parts, then this syntactic forcing relation im-
plies the true forcing relation one the parts
which remain valid in the future.

. ⇑

One easily proves that this syntactic forcing relation is closed under condition
extension. The following lemma states that, for every su!ciently generic filter F
with valid part 𝑝, if 𝑍 ' 𝜔(𝐿𝑝) for some 𝑍 ↗ F, then 𝑍 forces 𝜔(𝐿𝑝).

Lemma 8.7.7. Let 𝑍 = (𝜒0 , 𝜒1 ,𝑀) be a condition with valid part 𝑝 and 𝜔(𝐿) ↖
′𝑋𝜕(𝐿, 𝑋) be a ϑ0

2 formula. If 𝑍 ' 𝜔(𝐿𝑝), then for every 𝑋 ↗ ℕ, there is an
extension 𝑌 ⇒ 𝑍 forcing 𝜕(𝐿𝑝 , 𝑋). 𝜑

P!""#. Fix 𝑋 ↗ ℕ. Since 𝑍 ' 𝜔(𝐿𝑝), then in particular, for 𝜖 = →, 𝜒𝑝 ?∋𝜕(𝐿, 𝑋).
By Lemma 8.7.5, there is an extension of 𝑍 forcing 𝜕(𝐿𝑝 , 𝑋).

The notion of forcing admits a ω0
2-preserving disjunctive forcing question for ω0

2
formulas, but which satisfies its specification only if both parts of the condition
are valid.

Definition 8.7.8. Given a condition 𝑍 = (𝜒0 , 𝜒1 ,𝑀) and a pair of ω0
2 for-

mulas 𝜔0(𝐿) and 𝜔1(𝐿), with 𝜔𝑝(𝐿) ↖ ↙𝑋𝜕𝑝(𝐿, 𝑋), define 𝑍 ?∋𝜔0(𝐿0) ⊥
𝜔1(𝐿1) to hold if for every 2-partition 𝑅0 ¬ 𝑅1 = 𝑀, there is some 𝑝 < 2,
some 𝑋 ↗ ℕ and some 𝜖 ↓ 𝑅𝑝 such that 𝜒𝑝 ¬ 𝜖 ?∋𝜕𝑝(𝐿, 𝑋).31 31: As usual, the formula 𝜕𝑝 being ϑ0

1, we
use here the forcing question for ϑ0

1 formu-
las obtained by taking the negation of the
forcing question for ω0

1 formulas.

⇑

By compactness, this forcing question holds i" there is a level 𝑗 ↗ ℕ such that
for every 2-partition 𝑅0 ¬ 𝑅1 = 𝑀⫅̸

𝑗
, there is some 𝑝 < 2, some 𝑋 ↗ ℕ and

122 8 Jump cone avoidance

some 𝜖 ↓ 𝑅𝑝 such that 𝜒𝑝 ¬ 𝜖 ?∋𝜕𝑝(𝐿, 𝑋). The formula 𝜒𝑝 ¬ 𝜖 ?∋𝜕𝑝(𝐿, 𝑋) is
ω0

1(N) uniformly in 𝜒𝑝 , 𝜖 and 𝜕𝑝 , thus the overall forcing question is ω0
1(N)

uniformly in 𝑍, 𝜔0 and 𝜔1.

Lemma 8.7.9. Let 𝑍 = (𝜒0 , 𝜒1 ,𝑀) be a condition with both valid parts and
𝜔0(𝐿), 𝜔1(𝐿) be two ω0

1 formulas.

1. If 𝑍 ?∋𝜔0(𝐿0) ⊥ 𝜔1(𝐿1), then there is an extension of 𝑍 forcing 𝜔(𝐿𝑝)
for some 𝑝 < 2 ;

2. If 𝑍 ?⫋𝜔0(𝐿0) ⊥ 𝜔1(𝐿1), then there is an extension 𝑌 of 𝑍 with 𝑌 '
¬𝜔(𝐿𝑝) for some 𝑝 < 2. 𝜑

P!""#. Say 𝜔𝑝(𝐿) ↖ ↙𝑋𝜕𝑝(𝐿, 𝑋).
Suppose first 𝑍 ?∋𝜔0(𝐿0) ⊥ 𝜔1(𝐿1). Then, letting 𝑅0 = 𝑀 ∅ 𝑞0 and 𝑅1 =
𝑀 ∅ 𝑞1, there is some 𝑝 < 2, some 𝑋 ↗ ℕ and some 𝜖 ↓ 𝑀 ∅ 𝑞𝑝 such
that 𝜒𝑝 ¬ 𝜖 ?∋𝜕𝑝(𝐿, 𝑋). In particular, letting 𝜓𝑝 = 𝜒𝑝 ¬ 𝜖, 𝜓1▽𝑝 = 𝜒1▽𝑝 and
𝑇 = 𝑀 \ {0, . . . , |𝜖|}, 𝑌 = (𝜓0 , 𝜓1 ,𝑇) is an extension such that both parts
are valid. By Lemma 8.7.5, there is an extension of 𝑌 forcing 𝜕𝑝(𝐿𝑝 , 𝑋), hence
forcing 𝜔(𝐿𝑝).
Suppose now 𝑍 ?⫋𝜔0(𝐿0)⊥ 𝜔1(𝐿1). Let Cbe the ϑ0

1(N) class of all 𝑅 such
that, letting 𝑅0 = 𝑅 and 𝑅1 = 𝑅, for every 𝑝 < 2, every 𝑋 ↗ ℕ, and every
𝜖 ↓ 𝑀 ∅ 𝑅𝑝 , 𝜒𝑝 ¬ 𝜖 ?⫋𝜕𝑝(𝐿, 𝑋). Since N is a Scott ideal, there is such a
set 𝑅 ↗ C∅ N. By partition regularity of ℑUM

𝑊
⊤, there is some 𝑝 < 2 such

that 𝑀 ∅ 𝑅𝑝 ↗ ℑUM

𝑊
⊤. The condition 𝑌 = (𝜒0 , 𝜒1 ,𝑀 ∅ 𝑅𝑝) is an extension of 𝑍

such that 𝑌 ' ¬𝜔𝑝(𝐿𝑝).

In most cases, for su!ciently Cohen generic or su!ciently random sets 𝑞,
both parts of every conditions will be valid. Unfortunately, in some degenerate
cases, there might be some condition 𝑍 = (𝜒0 , 𝜒1 ,𝑀) with only one valid
part, say part 0, and the disjunctive forcing question may not work because it
would yield an extension deciding the formula on part 1. In this case, for every
extension of 𝑍, part 1 will stay invalid, and part 0 will be valid. We will therefore
make a degenerate construction in the valid part.

If some part of a condition is not valid, then it is witnessed by a large ω0
1(M)

superclass of ℑUM

𝑊
⊤ in the following sense.

Definition 8.7.10. A witness of invalidity of part 𝑝 of a condition 𝑍 = (𝜒0 , 𝜒1 ,𝑀)
is a ω0

1(M) large class V∀ ℑUM

𝑊
⊤ such that 𝑀 ∅ 𝑞𝑝 ς V. ⇑

If part 𝑝 of 𝑍 is not valid, then by definition, 𝑀∅𝑞𝑝 ς ℑUM

𝑊
⊤, so by Lemma 8.6.23,

there is some ω0
1(M) class V such that 𝑀 ∅ 𝑞𝑝 ς V. Thus, every invalid

part admits a witness of invalidity. One can exploit this witness to design a
non-disjunctive forcing question for ω0

2 formulas on the valid part with the good
definitional properties.

Definition 8.7.11. Let 𝑍 = (𝜒0 , 𝜒1 ,𝑀) be a condition with witness of inva-
lidity Von part 1 ▽ 𝑝, and let 𝜔(𝐿) ↖ ↙𝑋𝜕(𝐿, 𝑋) be a ω0

2 formula. Define
𝑍 ?∋V𝜔(𝐿𝑝) to hold if for every 2-partition 𝑅0∃𝑅1 = 𝑀 such that 𝑅1▽𝑝 ς V,
there is some 𝑋 ↗ ℕ and some 𝜖 ↓ 𝑅𝑝 such that 𝜒𝑝 ¬ 𝜖 ?∋𝜕𝑝(𝐿, 𝑋). ⇑

Again, by compactness, this degenerate forcing question is ω0
1(N). The follow-

ing lemma shows that this forcing question meets its specification.

8.7 Pigeonhole principle 123

Lemma 8.7.12. Let 𝑍 = (𝜒0 , 𝜒1 ,𝑀) be a condition with witness of invalidity
Von part 1 ▽ 𝑝, and let 𝜔(𝐿) be a ω0

2 formula.

1. If 𝑍 ?∋V𝜔(𝐿𝑝), then there is an extension of 𝑍 forcing 𝜔(𝐿𝑝).
2. If 𝑍 ?⫋V𝜔(𝐿𝑝), then there is an extension 𝑌 ⇒ 𝑍 such that 𝑌 ' ¬𝜔(𝐿𝑝).

𝜑

P!""#. Say 𝜔(𝐿) ↖ ↙𝑋𝜕(𝐿, 𝑋).
Suppose first 𝑍 ?∋V𝜔(𝐿𝑝). In particular, for 𝑅0 = 𝑞0 ∅ 𝑀 and 𝑅1 = 𝑞1 ∅ 𝑀,
there is some 𝑋 ↗ ℕ and some 𝜖 ↓ 𝑞𝑝 ∅ 𝑀 such that 𝜒𝑝 ¬ 𝜖 ?∋𝜕𝑝(𝐿, 𝑋).
Letting 𝜓𝑝 = 𝜒𝑝 ¬ 𝜖, 𝜓1▽𝑝 = 𝜒1▽𝑝 and 𝑇 = 𝑀 \ {0, . . . , |𝜖|}, 𝑌 = (𝜓0 , 𝜓1 ,𝑇) is
an extension such that part 1▽𝑝 is invalid, hence part 𝑝 is valid. By Lemma 8.7.5,
there is an extension of 𝑌 forcing 𝜕𝑝(𝐿𝑝 , 𝑋), hence forcing 𝜔(𝐿𝑝).
Suppose now 𝑍 ?⫋V𝜔(𝐿𝑝). Let C be the ϑ0

1(N) class of all 𝑅 such that,
letting 𝑅0 = 𝑅 and 𝑅1 = 𝑅, then 𝑅1▽𝑝 ς Vand for every 𝑋 ↗ ℕ, and every
𝜖 ↓ 𝑀 ∅ 𝑅𝑝 , 𝜒𝑝 ¬ 𝜖 ?⫋𝜕𝑝(𝐿, 𝑋). Since N is a Scott ideal, there is such a
set 𝑅 ↗ C∅N. By partition regularity of ℑUM

𝑊
⊤, since 𝑀∅𝑅1▽𝑝 ς V∀ ℑUM

𝑊
⊤,

then 𝑀 ∅𝑅𝑝 ↗ ℑUM

𝑊
⊤. The condition 𝑌 = (𝜒0 , 𝜒1 ,𝑀 ∅𝑅𝑝) is an extension of 𝑍

such that 𝑌 ' ¬𝜔𝑝(𝐿𝑝).

We are now ready to prove Theorem 8.7.1.

Suppose first there is a condition 𝑍 with some invalid part 1 ▽ 𝑝. Let Fbe a
su!ciently generic filter containing 𝑍 and let 𝐿𝑝 = 𝐿F,𝑝 . Then part 𝑝 is valid
in F. By Lemma 8.7.7, the syntactic forcing relation for ϑ0

2 formulas implies the
true forcing relation on part 𝑝. By Lemma 8.7.12 and by adapting Theorem 8.3.5,
for every Turing functional ϖ𝑏 , there is some condition 𝑌 ↗ F forcing ϖ

𝐿
↑
𝑝

𝑏
ϱ 𝑂,

so 𝑂 is not ε0
2(𝐿𝑝).

Suppose now that for every condition, both parts are valid. Let Fbe a su!-
ciently generic filter, and let 𝐿𝑝 = 𝐿F,𝑝 for 𝑝 < 2. By Lemma 8.7.7, the syntactic
forcing relation for ϑ0

2 formulas implies the true forcing relation on both parts.
By Lemma 8.7.9 and by adapting Theorem 8.3.5, for every pair of Turing func-
tionals ϖ𝑏0 ,ϖ𝑏1 , there is some condition 𝑌 ↗ F forcing ϖ

𝐿
↑
0

𝑏0 ϱ 𝑂 ⊥ϖ
𝐿
↑
1

𝑏1 ϱ 𝑂.
By a pairing argument, there is some 𝑝 < 2 such that 𝑂 is not ε0

2(𝐿𝑝). This
completes the proof of Theorem 8.7.1.

Exercise 8.7.13 (Monin and Patey [29]). Let 𝑉 : ℕ ↦ ℕ be →↑-hyperimmune.
Adapt the proof of Theorem 8.7.1 and Theorem 3.6.4 to show that for every
set 𝑞, there is an infinite subset 𝑟 ↓ 𝑞 or 𝑟 ↓ 𝑞 such that 𝑉 us 𝑟

↑-
hyperimmune. 𝜑

