
The reverse mathematics of

bounded Ramsey’s theorem for pairs

Quentin Le Houérou Ludovic Patey

September 3, 2025

Abstract

In this article, we study a degenerate version of Ramsey’s theorem for
pairs and two colors (RT2

2), in which the homogeneous sets for color 1
are of bounded size. By RT2

2, it follows that every such coloring admits
an infinite homogeneous set for color 0. This statement, called BRT2

2, is
known to be computably true, that is, every computable instance admits
a computable solution, but the known proofs use Σ0

2-induction (IΣ0
2). We

prove that BRT2
2 follows from the Erdős-Moser theorem but not from the

Ascending Descending sequence principle, and that its computably true
version is equivalent to IΣ0

2 over RCA0.

1 Introduction

Ramsey’s theorem for pairs and two colors (RT2
2) is a combinatorial theorem

which states that every coloring f : [N]2 → 2 admits an infinite f -homogeneous
set. Here, given a set X, [X]2 denotes the set of unordered pairs over X and
a set H ⊆ X is f -homogeneous if all the pairs in [H]2 have the same color
by f . The statement RT2

2 was extensively studied from a meta-mathematical
viewpoint, both in reverse mathematics and computability theory. In partic-
ular, Specker [39] proved that RT2

2 is not computably true, in that there is a
computable coloring f : [N]2 → 2 with no infinite computable f -homogeneous
set.

Many applications of Ramsey’s theorem in mathematics yield degenerate
colorings. In some cases, the specific features of the coloring can be exploited to
yield simpler solutions, in a computable or proof-theoretic sense. For instance, a
coloring f : [N]2 → 2 is transitive for some color i < 2 if for every x < y < z such
that f(x, y) = f(y, z) = i, then f(x, z) = i. The restriction of RT2

2 to colorings
which are transitive for one or both colors yield the Chain AntiChain (CAC)
and the Ascending Descending Sequence (ADS) principles, respectively. The
statements RT2

2, CAC and ADS form a strictly decreasing sequence in reverse
mathematics (see [18, Corollary 3.12] and [27, Theorem 1.7]).

In this paper, we study another common degenerate version of Ramsey’s
theorem for pairs and two colors, in which the homogeneous sets for color 1 have

1



bounded size. By RT2
2, it follows that there exists an infinite homogeneous set

for color 0. This is part of a larger project started with and driven by Frittaion,
who introduced bounded Ramsey’s theorem for colorings of arbitrary tuples.
This project was pursued by Soldà [38, Section 4.1], and then independently by
Belanger, Shafer and Yokoyama (unpublished).

Statement (Bounded RT2
2). BRT2

2 is the statement “For every coloring f :
[N]2 → 2 and every ℓ ∈ N such that there is no f -homogeneous set for color 1
of size ℓ, there is an infinite f -homogeneous set for color 0.”

The statement BRT2
2 is significantly weaker than RT2

2. From a computa-
tional viewpoint, contrary to Ramsey’s theorem for pairs, BRT2

2 is computably
true. However, as we shall see, the existence of a computable solution requires
Σ0

2-induction. Since RT2
2 does not imply the Σ0

2-induction scheme [10] in re-
verse mathematics, the pure existence of a solution to an instance of BRT2

2 is
strictly weaker than the existence of a computable solution. We shall study this
bounded version of Ramsey’s theorem for pairs using the framework of reverse
mathematics.

1.1 Reverse mathematics

Reverse mathematics is a foundational program whose goal is to find optimal
axioms to prove theorems from ordinary mathematics. It uses the framework
of subsystems of second-order arithmetic, with a base theory, RCA0, captur-
ing “computable mathematics”. The theory RCA0 contains the theory P− of
discretely ordered commutative semirings, together with the ∆0

1-comprehension
scheme and the Σ0

1-induction scheme. We now give a more precise account of
those schemes.

Definition 1.1. Given a family of formulas Γ, the Γ-induction scheme is de-
fined for every Γ-formula φ as

φ(0) ∧ ∀x(φ(x) → φ(x+ 1)) → ∀yφ(y)

We write IΓ for the theory P− together with the Γ-induction scheme. The
arithmetic hierarchy induces a hierarchy of induction schemes. By Paris and
Kirby [30], IΠ0

n and IΣ0
n are equivalent for every n ≥ 0, while IΣ0

n+1 is strictly
stronger than IΣ0

n.

The induction scheme for arithmetic formulas is equivalent modulo P− + IΣ0
0

to the following collection (or bounding) scheme for the same family of formulas:

Definition 1.2. Given a family of formulas Γ, the Γ-collection (or Γ-bounding)
scheme is defined for every Γ-formula φ as

∀a[(∀x < a)∃yφ(x, y) → ∃b(∀x < a)(∃y < b)φ(x, y)]
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We write BΓ for the theory P− together with the Σ0
0-induction scheme and the

Γ-collection scheme. By Paris and Kirby [30], BΣ0
n+1 and BΠ0

n are equivalent
for every n ≥ 1, and the following hierarchy is strict:

IΣ0
1 < BΣ0

2 < IΣ0
2 < BΣ0

3 < · · ·

Being a ∆0
n-predicate is a semantic notion, which depends either of a the-

ory, or a structure. Because of this, one usually defines the ∆0
n-comprehension

scheme using the following syntactical artifact.

Definition 1.3. The ∆0
n-comprehension scheme is defined for every Σ0

n-formula
φ and every Π0

n-formula ψ as

∀x(φ(x) ↔ ψ(x)) → ∃X∀y(y ∈ X ↔ φ(y))

The theories RCA0 + IΣ0
n and RCA0 +BΣ0

n being Π1
1-conservative extensions

of IΣ0
n and BΣ0

n, respectively, the previous hierarchy remains strict over RCA0.
Since the beginning of reverse mathematics, many theorems have been stud-

ied. It appeared that most theorems are either provable over RCA0, or provably
equivalent over RCA0 to one of four systems of axioms, linearly ordered by logi-
cal implication [35]. However, some counter-example exist, the most important
one being Ramsey’s theorem for pairs and two colors [34, 26]. Since then, the
study of Ramsey’s theorem, and more generally of combinatorial theorems in
reverse mathematics, became a very active research field.

1.2 Main contributions

As mentioned, this article focuses on the study of a degenerate version of RT2
2, in

which the homogeneous sets for color 1 have bounded size. By an old argument
of Hirst [19, Theorem 6.8], RCA0 ⊢ BRT2

2 → BΣ0
2. Belanger and Yokoyama

(unpublished) gave independently two proofs of RCA0 ⊢ IΣ0
2 → BRT2

2 (see
Proposition 2.1). On the other hand, BRT2

2 follows from RT2
2, which is known

not to imply IΣ0
2 over RCA0 by Chong, Slaman and Yang [10]. It follows that

RCA0 + BRT2
2 ̸⊢ IΣ0

2. Our first main contribution is the following theorem:

Main Theorem 1.4 (Short version). Every model of RCA0 + BΣ0
2 + ¬IΣ0

2

contains an instance f of BRT2
2 with no ∆1(f)-definable solution.

It follows that RCA0+BΣ0
2 ̸⊢ BRT2

2, hence the strength of BRT2
2 lies strictly in

between IΣ0
2 and BΣ0

2. Furthermore, the statement “BRT2
2 is computably true”

is equivalent to IΣ0
2 over RCA0. Here, given a Π1

2-problem P, the statement “P
is computably true” means that every P-instance X admits a ∆1(X)-definable
solution. This situation already appears in the literature, with the tree theorem
for singletons [11, 8] and bounded-width weak König’s lemma [37]. Over RCA0+
BΣ0

2, both statements are strictly in between IΣ0
2 and BΣ0

2, and their computably
true version is equivalent to IΣ0

2.
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By Bovykin and Weiermann [7], there exists a natural decomposition of
Ramsey’s theorem for pairs into the Erdős-Moser theorem (EM) and the As-
cending Descending Sequence principle (ADS). Over RCA0, the Erdős-Moser
theorem can be seen as the statement that every coloring f : [N]2 → 2 admits
an infinite sub-coloring which is transitive for both colors, while ADS states
that every such coloring admits an infinite f -homogeneous set. From a reverse
mathematical viewpoint, these statements almost play the role of a split pair,
in that the strongest known common consequences are BΣ0

2 and the existence of
hyperimmune functions ([24, 18, 27]). Soldà [38, Theorem 4.1.10] proved that
BRT2

2 is a consequence of EM, and we prove that BRT2
2 does not follow from

ADS over RCA0. More precisely, we prove the following theorem:

Main Theorem 1.5. Every countable topped model of RCA0 +BΣ0
2 +¬IΣ0

2 can
be ω-extended into a model of RCA0 + ADS + ¬BRT2

2.

Here, a model is topped if its second-order part is of the form {Z : Z ≤T Y }
for some fixed set Y , and an ω-extension of model M is a model N obtained
from M by adding sets, but keeping the integers part unchanged. This proves
that RCA0 + ADS ̸⊢ BRT2

2 in a strong sense: RCA0 + ADS + ¬BRT2
2 is Π1

1-
conservative over RCA0+BΣ0

2+¬IΣ0
2. This separation proof involves a formalized

preservation of a combinatorial property by ADS, using an effective construction
in a weak model of arithmetic.

2 BRT2
2 and partition theorems on partial orders

This section is essentially a survey in which we give the best known proof that
BRT2

2 is computably true, and relate the bounded Ramsey’s theorem for pairs to
two well-known theorems from graph theory, namely, Dilworth’s theorem and
Mirsky’s theorem. Both theorems and variants have already been studied in
reverse mathematics.

As mentioned in the introduction, Hirst [19, Theorem 6.8] proved that BRT2
2

implies BΣ0
2 over RCA0, thanks to the equivalence between BΣ0

2 and the infinite
pigeonhole principle (RT1). This principle states, for every k ∈ N and every
coloring g : N → k, the existence of an infinite g-homogeneous set, that is, an
infinite set H ⊆ N on which g is constant. Given such a coloring g : N → k,
let f(x, y) = 0 if g(x) = g(y) and 1 otherwise. There are no f -homogeneous
set for color 1 of size k + 1, and any infinite f -homogeneous set for color 0 is
g-homogeneous.

Versions of Ramsey’s theorem for pairs in which all the homogeneous sets
have the same color were mentioned in reverse mathematics by Jockusch [21]
under the name “unbalanced”, but the bounded Ramsey’s theorem was first
introduced by Frittaion (unpublished), who proved BRT2

2 over RCA0 + IΣ0
3. The

upper bound was improved by Belanger and Yokoyama (unpublished) inde-
pendently with two different proofs. The one by Yokoyama can be found in
Soldà [38, Lemma 4.1.9]. We now give the proof of Belanger.

Proposition 2.1 (Belanger and Yokoyama). RCA0 ⊢ IΣ0
2 → BRT2

2.
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Proof of Belanger. Let T ⊆ N<N be the computable tree such that

(1) every x ∈ N appears in some node σ ∈ T ;

(2) every σ ∈ T is f -homogeneous for color 0;

(3) for every σ ∈ T and every x, y ∈ N such that σ · x, σ · y ∈ T , f(x, y) = 1.

By (2) and by assumption, T has finite depth, so by (1) and BΣ0
2, there is some

level ℓ0 ∈ N such that {σ ∈ T : |σ| = ℓ0} is infinite. By IΣ0
2, there is a least

such level ℓ ≤ ℓ0. Since T has only one node at level 0, namely ⟨⟩, ℓ > 0. By
minimality of ℓ, {σ ∈ T : |σ| = ℓ−1} is finite, so by BΣ0

2, there is some σ ∈ T of
length ℓ−1 with infinitely many immediate children. The set {x ∈ N : σ ·x ∈ T}
is therefore infinite, and by (3), it is f -homogeneous for color 1.

Note that if the bound to the 1-homogeneous sets is a standard integer, then
so is the depth of the tree in Proposition 2.1, and the statement is provable
over RCA0 + BΣ0

2 (see Soldà [38, Corollary 4.1.5]).

Bounded Ramsey’s theorem for pairs and two colors can be formulated in
terms of graphs, stating that every infinite graph with no sub-clique of some
size k admits an infinite induced sub-anticlique. This statement has applications
to partial orders, through their comparability and incomparability graphs.

2.1 Dilworth’s theorem

Dilworth’s theorem is a famous combinatorial theorem about partial orders,
closely related to the bounded Ramsey’s theorem. The width w(P) of a partial
order P = (N, <P) is the size of its largest antichain.

Statement (Dilworth’s theorem). “For every partial order P = (N, <P) with
finite width, there is a coloring g : N → w(P) such that for every i < w(P),
g−1(i) is a P-chain.”

Such a coloring g is called a chain partition of P. Dilworth’s theorem is
classically proven for finite partial orders, but the infinitary version directly
follows from it by a compactness argument as follows: Given a partial order P =
(N, <P) of finite width w, one can define its incomparability graph G = (N, E),
that is, the graph such that {x, y} ∈ E iff x and y are P-incomparable. Finite
Dilworth’s theorem essentially states that the graph G is locally w-colorable.
By Gasarch and Hirst [16, Theorem 4], RCA0 + WKL proves that every locally
w-colorable graph is w-colorable, and any such w-coloring is a chain partition
of G. Thus, Dilworth’s theorem follows from RCA0 +WKL. Hirst [19, Theorem
3.23] studied Dilworth’s theorem in reverse mathematics and proved that it is
equivalent to WKL over RCA0, even restricted to partial orders of width 2.

Proposition 2.2 (Hirst [19, Theorem 3.23]). Over RCA0, Dilworth’s theorem
is equivalent to WKL.
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Seeing a partial graph of finite width as a degenerate instance of BRT2
2, we

are interested in the existence of an infinite P-chain. Given a chain partition
g : N → k, a final application of RT1 suffices to obtain such a chain. Therefore,
RCA0+WKL+BΣ0

2 is sufficient to prove that every partial order with finite width
admits an infinite chain. Dilworth’s theorem states that the chain partition of
P equals its width, but for our purpose, it is sufficient to consider the following
weaker statement.

Statement (Weak Dilworth’s theorem). “For every partial order P = (N, <P)
with finite width, there is some k ∈ N and a coloring g : N → k such that for
every i < k, g−1(i) is a P-chain.”

By Schmerl [33], if 2 ≤ k ≤ m, then the statement “Every locally k-colorable
graph is m-colorable” is equivalent to WKL over RCA0. Based on the proof of
Dilworth’s theorem, one would naturally expect that weak Dilworth’s theorem
remains equivalent to WKL over RCA0. Surprisingly, Kierstead [23] proved that
every computable graph with width w admits a computable chain partition of
size (5w − 1)/4.

Theorem 2.3 (Kierstead [23]). Weak Dilworth’s theorem is computably true.

The original proof by Kierstead [23] involved strong induction axioms, but
in their study of a theorem from Rival and Sands [32], Fiori-Carones, Marcone,
Shafer, Soldà, with the help of Yokoyama, adapted the proof of Kierstead to
formalize it over RCA0 (see [14, Theorem 3.5]).

Proposition 2.4 (Fiori-Carones et al. [14]). RCA0 proves weak Dilworth’s the-
orem.

Kierstead’s theorem can be stated in the modern formalism as the existence
of an on-line algorithm for the chain partition problem, where an on-line al-
gorithm is one that produces its output progressively, as it receives its input,
without having access to the entire input in advance. The bound (5w − 1)/4
obtained by Kierstead was recently improved by Bosek and Krawczyk [5, 6] to
w14 logw and by Bosek et al [4] to w6.5 logw+7. See [3] for a survey on the subject.

The proof of Kierstead’s theorem is complex, but in the case where the
partial order is up-growing, there exist significantly simpler algorithms (see Fel-
sner [12]). A presentation of a partial order is up-growing if each new element
is maximal among the elements inputted so far. The following proposition is
essentially a reformulation of Felsner’s algorithm [12] in our formalism, in which
an up-growing partial order can be seen as a coloring f : [N]2 → 2 which is
transitive for color 0. Indeed, any such coloring can be seen as the partial order
P = (N, <P) defined by x <P y iff x <N y and f(x, y) = 0.

Proposition 2.5 (RCA0). Fix some k ∈ N. For every coloring f : [N]2 → 2
which is transitive for color 0, and such that there is no f -homogeneous set
for color 1 of some size k, there is a coloring g : N →

(
k+1
2

)
such that for

every i <
(
k+1
2

)
, g−1(i) is f -homogeneous for color 0.
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Felsner’s algorithm [12]. Fix k and f . We first construct a uniformly f -computable
sequence (F 1

s , . . . , F
k−1
s )s∈N such that for every s ∈ N,

(1) Each F i
s is a set of size at most i, containing finite f -homogeneous sets for

color 0;

(2) F 1
s ∪ · · · ∪ F k−1

s forms a partition of [0, s), that is, for every x < s, there
is exactly one i and one H ∈ F i

s such that x ∈ H;

(3) For each F i
s , the set {maxH : H ∈ F i

s} is f -homogeneous for color 1.

At stage 0, F 1
0 = · · · = F k−1

0 = ∅. At stage s + 1, assume F 1
s , . . . F

k−1
s are

defined. Let i ∈ {1, . . . , k} be the least index such that either cardF i
s < i,

or there is some H ∈ F i
s such that f(maxH, s) = 0. Such an index exists as

otherwise, by (3), {maxH : H ∈ F k−1
s } ∪ {s} would form an f -homogeneous

set for color 1 of size k, contradicting our hypothesis. We have two cases:
Case 1: there is some H ∈ F i

s such that f(maxH, s) = 0. Then let Ĥ =
H∪{s}. If i = 1, then, letting F i

s+1 = (F i
s\{H})∪{Ĥ}, and F j

s+1 = F j
s for j ̸= i,

the new tuple satisfies properties (1-3). If i > 1, then, letting F i−1
s+1 = F i

s \ {H},

F i
s+1 = F i−1

s ∪ {Ĥ}, and F j
s+1 = F j

s for j ̸∈ {i − 1, i}, the new tuple satisfies
properties (1-3).

Case 2: there is no such H. Then cardF i
s < i and, letting F i

s+1 = F i
s ∪{{s}}

and F j
s+1 = F j

s for j ̸= i, the new tuple satisfies properties (1-3). This completes
the construction of the sequence.

Let g : N →
(
k+1
2

)
be defined inductively as follows: g(0) = 0. Given x, let

g(x) = g(y) for any y < x such that for some i ∈ {1, . . . , k} and some H ∈ F j
x+1,

x, y ∈ H, if it exists. Otherwise, let g(x) be the least fresh color. By construction

and by (1), there are at most
∑

i∈{1,...,k} i = (1+k)k
2 =

(
k+1
2

)
colors. Moreover,

if g(x) = g(y), then there is some f -homogeneous set H for color 0 such that
x, y ∈ H, so f(x, y) = 0. It follows that for every i <

(
k+1
2

)
g−1(i) is f -

homogeneous for color 0.

This simpler algorithm is sufficient to obtain another proof that EM implies
BRT2

2 over RCA0.

Corollary 2.6 (Soldà [38, Theorem 4.1.10]). RCA0 ⊢ EM → BRT2
2.

Proof. Let f : [N]2 → 2 be a coloring with no f -homogeneous set for color 1
of size k for some k ∈ N. By EM, there is an infinite subset X = {x0 <
x1 < . . . } which is f -transitive for both colors. Let h : [N]2 → 2 be defined
by h(a, b) = f(xa, xb). In particular, h is transitive for both colors and has no
h-homogeneous set for color 1 of size k. By Proposition 2.5, there is some ℓ ∈ N
and a coloring g : N → ℓ such that for every i < ℓ, g−1(i) is h-homogeneous for
color 0. By RT1 which follows from EM (see Kreuzer [24]), there is some i < ℓ
such that g−1(i) is infinite. The set {xa : g(a) = i} is an infinite f -homogeneous
set for color 0.
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2.2 Mirsky’s theorem

Dilworth’s theorem admits a dual version for partial orders with chains of
bounded size, due to Mirsky [29]. The height h(P) of a partial order P =
(N, <P) is the size of its largest P-chain.

Statement (Mirsky’s theorem). “For every partial order P = (N, <P) with
finite height, there is a coloring g : N → h(P) such that for every i < h(P),
g−1(i) is a P-antichain.”

Accordingly, such a coloring g is called an antichain partition of P. Contrary
to Dilworth’s theorem, Mirsky’s theorem admits a trivial combinatorial proof:
Given a partial order P = (N, <P) with finite height h, define g : N → h as
follows: g(x) is the size of the largest P-chain with x as P-maximal element.
However, from a reverse mathematical viewpoint, the definition of g requires an
unbounded search for such a P-chain, and is formalized over ACA0. Hirst [19]
actually showed that Mirsky’s theorem is equivalent to WKL (and therefore
to Dilworth’s theorem) over RCA0, even when restricted to partial orders of
height 2.

Proposition 2.7 (Hirst [19, Theorem 3.24]). Over RCA0, Mirsky’s theorem is
equivalent to WKL.

The proof of Mirsky’s theorem over RCA0 + WKL is very similar to that if
Dilworth’s theorem, this time using the comparability graph. As for Dilworth’s
theorem, one can define a weak version of the statement.

Statement (Weak Mirsky’s theorem). “For every partial order P = (N, <P)
with finite height, there is some k ∈ N and a coloring g : N → k such that for
every i < k, g−1(i) is a P-antichain.”

The natural combinatorial proof of Mirsky’s theorem can be refined, to yield
a proof of weak Mirsky’s theorem over RCA0.

Proposition 2.8. Weak Mirsky’s theorem is provable over RCA0.

Proof. Let P = (N, <P) be a partial order with finite height h. Let g0 : N →
h be defined as follows: given x ∈ N, g0(x) = s where x0, . . . , xs(= x) is
the longest sequence of elements both <P -increasing and <N-increasing. The
coloring g1 : N → h is defined accordingly, where the sequence is <P -decreasing
and <N-increasing. Last, let g : N → h2 be defined by g(x) = ⟨g0(x), g1(x)⟩.

We claim that for every i, j < h, g−1(⟨i, j⟩) is a P-antichain. Indeed, other-
wise, there is some x, y ∈ g−1(⟨i, j⟩) with x <N y and x <P y or y <P x. This
contradicts the fact that x, y ∈ g−1

0 (i) in the first case, and x, y ∈ g−1
1 (j) in the

second case.

Mimouni and Patey [28] defined an asymmetric version of the Erdős-Moser
theorem in which the solution is required to be transitive for one color at least.

Statement (Half Erdős-Moser theorem). HEM is the statement “For every
coloring f : [N]2 → 2, there is an infinite f -transitive subset for some color.”
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By combining Proposition 2.5 and Proposition 2.8, one obtains the following
implication. It is unknown whether HEM implies BΣ0

2 over RCA0.

Proposition 2.9. RCA0 + BΣ0
2 ⊢ HEM → BRT2

2.

Proof. Let f : [N]2 → 2 be a coloring with no f -homogeneous set for color 1 of
size k for some k ∈ N. By HEM, there is an infinite subset X = {x0 < x1 < . . . }
which is f -transitive for some color c < 2. Let h : [N]2 → 2 be defined by
h(a, b) = f(xa, xb). In particular, h is transitive for color c and has no h-
homogeneous set for color 1 of size k. By Proposition 2.5 if c = 0, and by
Proposition 2.8 if c = 1, there is some ℓ ∈ N and a coloring g : N → ℓ such that
for every i < ℓ, g−1(i) is h-homogeneous for color 0. By RT1 which follows from
BΣ0

2, there is some i < ℓ such that g−i is infinite. The set {xa : g(a) = i} is an
infinite f -homogeneous set for color 0.

3 BΣ0
2 does not imply BRT2

2

The goal of this section is to prove Main Theorem 1.4 and its consequences.
The constructed instance f of BRT2

2 with no ∆1(f)-definable solution will also
serve as the BRT2

2-instance witnessing that RCA0 + ADS ̸⊢ BRT2
2 in Section 4.

Before constructing such an instance, let us introduce some basic notions about
models of arithmetic with restricted induction, and the relation between fail-
ure of induction and cuts. See Hajek and Pudlak [17] for a more extensive
introduction.

3.1 Models of weak arithmetic and cuts

A structure in the language of second-order arithmetic is a tuple

M = (M,S, 0, 1,+,×, <)

whereM denotes the set of integers, S ⊆ P(S) is the collection of sets of integers,
0 and 1 are constants in M , and +,× : M2 → M are binary operations and <
is a binary relation on M . We shall exclusively work with structures which are
models of RCA0, and simply call them models, and usually abbreviate them by
M = (M,S). A model M = (M,S) is topped by a set Y ∈ S if every set in S
is ∆1(Y )-definable with parameters in M .

A model where M is the set of standard integers ω = {0, 1, . . . } will be called
an ω-model, if M ̸= ω, then the model is said to be non-standard.

Definition 3.1 (cut). A cut in a model M = (M,S, 0, 1,+,×, <) is a nonempty
subset I ⊆M which is closed by successor, and is an initial segment of M , that
is, if a ∈ I and b ≤ a, then b ∈ I.

In a non-standard model, the elements 0, 1, 1 + 1, 1 + 1 + 1, . . . form a cut
which can be identified with ω. The amount of induction satisfied by a model
corresponds to the difficulty of having cuts that are definable.
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Proposition 3.2. Let M |= RCA0 + BΣ0
n for some n, then M |= ¬IΣ0

n if and
only if there exists some Σ0

n formula ϕ(x), such that the set {x : ϕ(x)} forms a
proper cut.

Finite/infinite sets. In models of weak arithmetic, the various definitions of
infinity are not necessarily equivalent, and require a precise terminology. A
subset X ⊆ M is said to be M -bounded if there exists some y ∈ M such that
x < y for every x ∈ X. If no such y exists, X is said to be M -unbounded. In a
model M = (M,S) |= RCA0, the M -bounded sets belonging to S will be called
M-finite and the M -unbounded M-infinite.

Every element a ∈M can be seen as the binary encoding of some M -bounded
set F ⊆ M and we write a =

∑
x∈F 2x. Not all M -bounded sets can be M -

coded by some integer a ∈ M , but if M = (M,S) |= RCA0, then the M -coded
sets are exactly the M-finite, hence, the M-finite sets only depends on the first
order part M of the model M and we will call them M -finite to emphasize on
that.

Cofinal functions. The lack of induction can also be measured in the existence
of definable cofinal functions from a proper cut to M . This will be of central
importance for proving Main Theorem 1.4. For I ⊆M a cut, a function f : I →
M is said to be cofinal (in M) if its range is M -unbounded.

Proposition 3.3. If M |= RCA0 + BΣ0
n + ¬IΣ0

n for some n, then there exists
some increasing Σ0

n-definable cofinal function f : I → M defined on some Σ0
n

definable proper cut.

In particular, if M = (M,S) |= RCA0 + BΣ0
2 + ¬IΣ0

2 and I ⊆ M is a
Σ0

2-cut bounded by some k ∈ M , one can assume that the function f can be
approximated by a ∆0

1 sequence of functions (gs)s∈M such that for every s ∈M ,
gs : k → M is increasing, and for every x < k, s 7→ gs(x) is non-decreasing,
dominated by s 7→ s, and converges to g(x).

3.2 Main result

In what follows, a Σn(X)-formula (respectively a Πn(X)-formula or ∆n(X)-
formula) is a Σ0

n-formula (respectively a Π0
n-formula or ∆0

n-formula) with only
X as a second-order parameter and any first-order parameters.

The core of the argument lies in the following technical lemma:

Lemma 3.4 (IΣ0
1). For every set X, every b ∈ N and n ∈ N, there exists a

∆1(X) coloring f bn : [N]2 → 2 such that:

• There is no set of size 3 that is f bn-homogeneous for the color 1.

• For every e < n such that WX
e is infinite, there exists some x, y ∈ WX

e

such that b ≤ x < y and f(x, y) = 1.

Furthermore, the construction is uniform in n and b.
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Proof. The coloring f bn will be defined by stages, with f bn(x, s) being defined
at stage s for every x < s. At any point of the construction, any x ∈ N will
be in state “0” or “1”, meaning that at any further stage s, f(x, s) will be set
accordingly. By default, every x ∈ N has the state “0”. We consider a trash
Ts ⊆ [0, s] where the elements leaving state “1” will be put, to ensure that they
will never go back to that state. Our construction will ensure that |Ts| ≤ n2 at
every stage s.

For every e < n, we say that e is active at a stage s if card(WX
e [s]∩ [b, s]) >

n2. Once an element is active, it stays active for the rest of the construction.

Construction: at stage s, if there exists some new e < n that became
active at this stage, we then put every x < s that is in state “1” in state “0”
and put them in the trash Ts. Then, for every e′ < n that is active, we pick an
element in WX

e′ [s]∩ [b, s] \Ts an put it in state “1”. If no such e < n was found,
then the all the elements stay in the same state and no new element is added
to the trash.

Finally, whether or not a new e was found, we let f(x, s) = c for every c < 2
and every x < s in state “c”.

Claim 1: Ts ≤ n2 for every s ∈ N, hence the construction is well-defined.
Indeed, there are always at most n elements in state “1” at a given time (one
per active e). And such elements are put into the trash at most n times during
the construction (once every time a new e < n became active). Therefore, we
can always pick an element in WX

e′ [s] ∩ [b, s] \ Ts if WX
e′ is active at stage s.

Claim 2: There is no set of size 3 that is f bn-homogeneous for the color 1.
Assume by contradiction that we have such a set {x < y < z}. By construction,
x was in state “1” at stage y for f(x, y) to be equal to 1. Then, for f(y, z) to
be equal to 1, we need y to be in state “1” at stage z, but y can only enter
state “1” after stage y, which would put x in the trash, and make it so that
f(x, z) = 0.

Claim 3: For every e < n such that WX
e is infinite, there exists some

x, y ∈WX
e such that b ≤ x < y and f(x, y) = 1. If WX

e is infinite, then by IΣ0
1,

there is some stage s such that card(WX
e [s] ∩ [b, s]) > n2, hence e is eventually

active. Then, for every y > s, there will be some x ∈ WX
e that will be in state

“1” at stage y, which gives f(x, y) = 1. Since WX
e is infinite, there is one such

y in WX
e .

We are now ready to prove our first main theorem.

Main Theorem 1.4. For every model M |= RCA0 + BΣ0
2 + ¬IΣ0

2 and every
set Z ∈ M, there is a BRT2

2-instance f ∈ M with no ∆1(f ⊕ Z)-definable
solution.

Proof. Let M = (M,S) |= RCA0 + BΣ0
2 + ¬IΣ0

2 and Z ∈ S. In particular, there
exists some X ∈ S and some proper Σ2(X)-cut I ⊆M bounded by some k ∈M ,
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and some cofinal Σ2(X) definable function g : I → M with approximations
(gs)s∈M (see Section 3.1). Note that g is uniformly ∆1(X) in X. As mentioned
in Section 3.1, we assume that for every s ∈ M , gs : k → M is increasing, and
for every x ≤ y < k, gs(x) ≤ gs(y). Furthermore, if s > 0, then gs(x) < s.

For every b, n ∈ N, let f bn : [M ]2 → 2 be the ∆1(X ⊕ Z)-colorings defined
in Lemma 3.4. For every i < k, let f i : [M ]2 → 2 be defined by stages as follows:

Construction: At stage s: for every i < k, let bis ≤ s be the last b ≤ s
such that the value of gb(i) has changed, if it exists, otherwise, bis = 0. Then let

f i(x, s) = f
bis
gs(i)

(x, s) for every x < s .

Finally, let f : [M ]2 → 2 be defined by f(x, y) = 1 iff there exists some i < k
such that f i(x, y) = 1 for every x < y ∈ N.

Claim 1: For every i < k, there is no f i-homogeneous set for color 1 of
size 3. Notice first that for every n, b ∈ N, we have f bn(x, y) = 0 when x < b,
therefore, if f i(x, y) = 1 for some x, y ∈ N, then byi must be smaller than x and
therefore be equal to bxi . This means that every f i-homogeneous set for color 1
if also homogeneous for some coloring f bn, hence that no such set of size three
can exists, by our assumptions on the f bn.

Claim 2: There is some ℓ ∈ M such that there is no f -homogeneous set
for color 1 of size ℓ. Since M |= IΣ0

1, the finite Ramsey’s theorem for pairs
and k colors is true in M. Let ℓ ∈ M be such that every finite coloring h :
[F ]2 → k admits some h-homogeneous subset of size 3 if cardF ≥ ℓ. If some
set F = {x0, . . . , xℓ−1} was f -homogeneous for color 1, then, by definition of
f , the coloring h : [F ]2 → 2 sending every pair xa, xb to some i < k such that
f i(xa, xb) = 1 would be well-defined, and by definition of ℓ, there would exists
some i < k and some f i-homogeneous set for the color 1 of size 3, contradicting
Claim 1.

Claim 3: There is no M-infinite f -homogeneous and ∆1(X ⊕ Z)-set for
color 0 in S. Assume otherwise, and let e ∈ M be such that WX⊕Z

e is M -
unbounded and f -homogeneous for color 0. By definition of g, there exists
some i ∈ I such that g(i) > e, and let s ∈ N be the smallest stage such
that gs(i) = g(i). Pick some x, y ∈ WX⊕Z

e such that s ≤ x < y such that

fsg(i)(x, y) = 1, then, we have f i(x, y) = f
bis
gs(i)

(x, y) = fsg(i)(x, y) = 1, hence

f(x, y) = 1 and WX⊕Z
e is not f -homogeneous for color 1.

Corollary 3.5. RCA0 + BΣ0
2 ⊬ BRT2

2.

Proof. Let M be a countable model of IΣ1 + BΣ2 + ¬IΣ2. Let M = (M,S)
be the model whose second-order part S consists of the ∆1-definable sets with
parameters in M . By Friedman [15], M |= RCA0 + BΣ0

2, but by Main Theo-
rem 1.4, M ̸|= “for every coloring f : [N]2 → 2 and every ℓ ∈ N such that there
is no f -homogeneous set for color 1 of size ℓ, there is an infinite f -homogeneous
set for color 0.”
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Corollary 3.6. The statement “BRT2
2 is computably true” is equivalent to IΣ0

2

over RCA0.

Proof. Let M = (M,S) |= RCA0 + IΣ0
2 and let f ∈ S be an instance of BRT2

2.
By Friedman [15], Mf = (M,∆1-Def(f)) |= IΣ0

2, where ∆1-Def(f) denotes
the ∆1(f)-definable subsets of M . By Proposition 2.1, Mf |= BRT2

2, so there
is some H ∈ ∆1-Def(f) such that Mf |= “H is an BRT2

2-solution to f”. In
particular, H ∈ S, so M |= “there is a ∆1(f)-definable BRT2

2-solution to f .”
Thus, M |= “BRT2

2 is computably true”.
Suppose now that M |= RCA0+ “BRT2

2 is computably true”. By Hirst [19],
RCA0 ⊢ BRT2

2 → BΣ0
2, so M |= BΣ0

2. Then, by Main Theorem 1.4, M |=
IΣ0

2.

Note that the previous argument is very general: if IΣ0
2 implies a Π1

2-problem P
over RCA0, then RCA0 + IΣ0

2 ⊢ “P is computably true”. One could also have
simply noticed that the proof of Proposition 2.1 yields a computable solution.

4 ADS does not imply BRT2
2

The goal of this section is to prove Main Theorem 1.5 and derive its conse-
quences, among which the fact that ADS does not imply BRT2

2 over RCA0. The
statement ADS was introduced by Hirschfeldt and Shore [18] and later studied
by many authors [27, 31, 9].

Statement (Ascending Descending Sequence). ADS is the statement “Every
linear order L = (N, <L) admits an infinite L-ascending or L-descending se-
quence.”

Following the standard decomposition of RT2
2 into its stable and cohesive

version, Hirschfeldt and Shore [18] proved that ADS is equivalent to SADS+COH
over RCA0, where SADS and COH are defined below. Given a linear order L =
(N, <L), an element x ∈ N is small (large) if for all but finitely many y ∈ N,
x <L y (x >L y). A linear order is stable if every element is either small or
large.

Statement (Stable Ascending Descending Sequence). SADS is the statement
“Every stable linear order L = (N, <L) admits an infinite L-ascending or L-
descending sequence.”1

Given an infinite sequence of sets R⃗ = R0, R1, . . . , an infinite set C is R⃗-
cohesive if for every n ∈ N, C ⊆∗ Rn or C ⊆∗ Rn, where ⊆∗ means almost
included.

Statement (Cohesiveness). COH is the statement “Every countable sequence
of sets admits an infinite cohesive set.”

1The statement SADS was originally defined by Hirschfeldt and Shore [18] only for linear
orders of type ω+ω∗. Indeed, the remaining stable order types ω+k and k+ω∗ admit trivial
solutions over RCA0. The two definitions are therefore equivalent over RCA0.
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Over RCA0 + BΣ0
2, the cohesiveness principle can be better understood as a

∆0
2-version of weak König’s lemma, that is, the statement “For every ∆0

2 infinite
binary tree T ⊆ 2<N, there is a ∆0

2-path P ∈ [T ]” (see Jockusch and Stephan [20]
for a computability-theoretic version, and Belanger [2] for a formalized version).

4.1 Strategy to prove Main Theorem 1.5

Before going into the technicalities, let us first outline the proof of Main Theo-
rem 1.5. It is divided into the following steps:

Step 1. Consider any countable model M0 = (M,S0) of RCA0 + BΣ0
2 + ¬IΣ0

2

topped by some set Z0. By Main Theorem 1.4, M0 contains a stable instance f
of BRT2

2 with no ∆1(Z0)-definable solution. Let A = {x ∈ M : ∀∞yf(x, y) =
0}. The set A is ∆2-Def(M0) and Z0-immune. Actually, the proof of Main
Theorem 1.4 shows that A satisfies a stronger notion of immunity, that we call
for now sufficient Z0-immunity.

Step 2. Given a countable model Mn = (M,Sn) of RCA0 + BΣ0
2 topped by

a set Zn, and any sufficiently Zn-immune set A ⊆ M , we shall prove that for
every instance L of SADS in Mn, there is a solution G such that A is sufficiently
G⊕Zn-immune, and Mn[G] |= RCA0 +BΣ0

2. Then, let Mn+1 = Mn[G] be the
ω-extension of Mn topped by Zn+1 = G⊕ Zn (Proposition 4.4).

Step 3. Given a countable model Mn = (M,Sn) of RCA0 + BΣ0
2 topped by

a set Zn, and any sufficiently Zn-immune set A ⊆ M , we shall prove that for
every instance R⃗ of COH in Mn, there is a solution G such that A is sufficiently
G⊕Zn-immune, and Mn[G] |= RCA0 +BΣ0

2. Then, let Mn+1 = Mn[G] be the
ω-extension of Mn topped by Zn+1 = G⊕ Zn (Proposition 4.17).

Step 4. Apply iteratively Step 2 and Step 3 to obtain an infinite sequence of
countable models M0,M1, . . . of RCA0 +BΣ0

2 such that for each n ∈ ω, Mn+1

is topped by Zn, ω-extends Mn and A is sufficiently Zn-immune, where A is
the ∆2(M0) set defined in Step 1. A union of models of RCA0 + BΣ0

2 is again
a model of RCA0 + BΣ0

2, and if the instances of SADS and COH are properly
listed, then N =

⋃
n Mn is a model of SADS + COH, hence of ADS. Moreover,

A is sufficiently immune relative to every set in N , so the instance of BRT2
2

defined in Step 1 has no solution in N , hence N ̸|= BRT2
2.

4.2 Combinatorics of ADS

In order to get a better grasp of the appropriate notion of immunity to con-
sider, let us dig into the combinatorics of ADS. There exists mainly two forcing
constructions to build solutions to ADS. The first one is asymmetric, and was
used by Hirschfeldt and Shore [18, Proposition 2.26] to prove that ADS does
not imply the existence of DNC functions over RCA0. A function g : N → N is
diagonally non-X-computable (X-DNC) if for every e ∈ N, g(e) ̸= ΦX

e (e). The
second forcing construction is symmetric, and was defined by Lerman, Solomon
and Towsner [27] and later used by Patey [31] to give an alternative proof of
[18, Proposition 2.26].
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The combinatorics of ADS are already witnessed by stable linear orders, so
let us fix a computable stable linear order L = (N, <N). If it is of order type
ω+k or k+ω∗, then there is an infinite computable L-ascending or L-descending
sequence, so let us assume that it is of order type ω+ω∗. Let U0 and U1 be its
sets of L-small and L-large elements, respectively. Note that U0 ⊔ U1 = N and
both sets are ∆0

2.
The natural notion of forcing for building solutions to L is of disjunctive

nature. A condition is a pair (σ0, σ1) such that σ0 and σ1 are finite L-ascending
and L-descending sequences, respectively. To ensure extensibility of each initial
segment, one furthermore requires that σ0 ⊆ U0 and σ1 ⊆ U1. Because of this
restriction, being a condition is a ∆0

2 predicate. A condition (τ0, τ1) extends
(σ0, σ1) if σi ⪯ τ i for both i < 2.

Thankfully, one can define a computable notion of split pair, which is a
pair (σ0, σ1) such that σ0 is L-ascending, σ1 is L-descending, and maxL σ

0 <L
minL σ

1. The core of the combinatorics of ADS lies in the following fact:

Lemma 4.1. If (σ0, σ1) is a condition and (τ0, τ1) is a split pair such that
σi ⪯ τ i for both i < 2, then either (τ0, σ1) or (σ0, τ1) is a valid condition
extending (σ0, σ1).

Proof. Since maxL σ
0 <L minL σ

1, either τ0 ⊆ U0 or τ1 ⊆ U1.

Let us explain how the combinatorics above enable to have a short c.e.
description of large subsets of G-c.e. sets, where G is the constructed solution.
Fix a condition p = (σ0, σ1) and two Turing indices e0, e1 ∈ N. Let a0, a1 : N →
N be defined as follows: for every t ∈ N, Wa0(t) and Wa1(t) search for a split

pair (τ0, τ1) below p such that cardW τ0

e0 ≥ t and cardW τ1

e1 ≥ t. If such a split

pair exists, then Wa0(t) = W τ0

e0 and Wa1(t) = W τ1

e1 . By the combinatorics above,
for every t, if such a pair exists, then there is an extension q of p forcing either
Wa0(t) ⊆WG0

e0 or Wa1(t) ⊆WG1

e1 . Otherwise, there is an extension q of p forcing

either cardWG0

e0 < t or cardWG1

e1 < t. Last, note that p, e0 and e1 being fixed,
the functions a0 and a1 have a growth in O(t) for an appropriate numbering.

Such combinatorics are particularly useful when dealing with preservation
of effective notions of immunity.

Definition 4.2. Fix a function h : N → N and a set Z. A set A is said to be
h-effectively Z-immune if for every Turing index e ∈ N, |WZ

e | ≥ h(e) implies
WZ

e ̸⊆ A.

We simply say that A is effectively Z-immune if it is h-effectively immune
for a Z-computable function h. Arslanov, Nadirov and Solov’ev [1] proved
that every effectively immune set computes a DNC function, and conversely,
Jockusch [22] proved that every DNC function computes an effectively immune
set, witnessed by the identity function. Let A be such an effectively immune set.
By slightly modifying the above argument, using Kleene’s fixpoint theorem, one
can easily obtain indices a0 and a1 such that Wa0

and Wa1
search for a split

pair (τ0, τ1) below p such that cardW τ0

e0 ≥ a0 and cardW τ1

e1 ≥ a1. Then, if such
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a split pair exists, there is an extension q forcing Wa0 ⊆ WG0

e0 or Wa1 ⊆ WG1

e1 ,

hence forcing WG0

e0 ̸⊆ A or WG1

e1 ̸⊆ A.
In our setting, the appropriate notion of immunity will be the following

variant of effective immunity. Let (n, a) 7→ 2n(a) be the tetration function
defined inductively as follows: 20(a) = a and 2n+1(a) = 22n(a).

Definition 4.3. Fix a set Z, an unbounded ∆2(Z) set B and some standard
n ∈ ω. A set A ⊆M is B-block Z-immune with cost n if for every b ∈ B, and
every x < b, |WZ

x | ≥ 2n(b) implies WZ
x ̸⊆ A.

4.3 Effective constructions over BΣ0
2 + ¬IΣ0

2

The proofs of Propositions 4.4 and 4.17 are done by effectivizations of forcing
constructions over non-standard models. By an isomorphism theorem of Fiori-
Carones, Ko lodziejczyk, Wong and Yokoyama [13], there are some deep reasons
why, given a Π1

2-problem P, any ω-extension of a model of RCA0+BΣ0
2+¬IΣ0

2 into
a model of RCA0 +BΣ0

2 +P should be through a first-jump control construction
effective in any PA degree over ∅′. This will be in particular the case in our
construction.

Effective constructions in models of arithmetic with restricted induction raise
some new issues. Indeed, given a countable model M = (M,S), suppose one
builds a set G ⊆ M satisfying a countable sequence of requirements (Re)e∈M

using an effectivized forcing argument. Let (P,≤) be the associated notion of
forcing. In order to effectivize the argument, each condition p ∈ P is given a
code ⟨p⟩ ∈ N and the decreasing sequence of conditions must be represented by
a ∅′-effective decreasing sequence of codes.

In the standard setting, that is, M = ω, one can consider each require-
ment Re individually, prove a density lemma saying that every condition p has
an extension q forcing Re, and then build an infinite descending sequence of
conditions p0 ≥ p1 ≥ . . . such that pn+1 forces Rn. On the other hand, if
M |= BΣ0

2 + ¬IΣ0
2, it might be the case that the decreasing sequence is defined

only on a proper Σ0
2-cut I ⊆ M , that is, only (pi)i∈I is defined and only the

requirements (Ri)i∈I are satisfied. Note that in this case, the sequence of codes
(⟨pi⟩)i∈I is unbounded in M , otherwise the cut I would admit a ∆0

2-description,
contradicting the fact that M |= BΣ0

2.
To overcome this issue, instead of proving a density lemma for each re-

quirement Re individually, we will prove a stronger lemma, stating that for
every k ∈ M and every condition p, there is an extension q forcing Re for ev-
ery e < k simultaneously. Then, using this density lemma, build a decreasing
sequence of conditions p0 ≥ p1 ≥ . . . such that pi+1 forces Re for every e < ⟨pi⟩
simultaneously. Even if the sequence is only defined on a proper cut I, all the
requirements (Re)e∈M will be forced. This technique is known as Shore blocking.
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4.4 The SADS step

We now prove the existence of ω-extensions which add solutions to instances
of SADS while preserving the fact that the instance of BRT2

2 has no solution.

Proposition 4.4. Let M = (M,S) |= RCA0 +BΣ0
2 be a countable model topped

by some set Y . Let B be an M -unbounded ∆2(Y ) set and fix n ∈ ω. Then,
for every set A ⊆ M that is B-block Y -immune with cost n and every instance
L = (M,<L) of SADS in S, there exists some M -unbounded set G ⊆ M and
some M -unbounded ∆2(Y ) set B̂ such that:

• G is L-monotonous

• Y ′ ≥T (G⊕ Y )′ and in particular M[G] |= RCA0 + BΣ0
2

• A is B̂-block (G⊕ Y )-immune with cost n+ 2.

Proof. The following proof is adapted from [25, Proposition 3.17].
Let L = (M,≤L) be an instance of SADS in S, let U0 ⊆M and U1 ⊆M be

the sets of elements that have a finite amount of predecessors and successors,
respectively. By assumption, U0 ⊔U1 = M , and U0 and U1 are both ∆2(Y ). If
either U0 or U1 is M -bounded, then there exists some M-infinite Y -computable
L-monotonous sequence and we can take G to be such a sequence, hence, from
now on, both U0 or U1 will be assumed to be M -unbounded.

For simplicity of notation, the elements b ∈ B will all be assumed to be of

the form 22
k

for some k ∈M , which will then be used to construct B̂ such that
B̂ ⊆ {log2(log2(b)) : b ∈ B}. The general case requires some care in handling
integer parts and inequalities, but does not change the argument.

We will define two sets G0 or G1 using an infinite ∆1(Y ′) decreasing sequence
of conditions and then pick G to be equal to one of them. We will also define two
∆1(Y ′) sets Bi for i < 2 so that, if G = Gi, then A is Bi-block (G⊕Y )-immune
with cost n+ 2.

Definition 4.5. A condition is a pair (σ0, σ1) with σ0 an M -finite L-ascending
sequence included in U0 and σ1 an M -finite L-descending sequence included in
U1. We have (τ0, τ1) ≤ (σ0, σ1) if τ0 ⪰ σ0 and τ1 ⪰ σ1.

Being a condition is a ∆2(Y )-predicate, while the extension relation is ∆1.
We define a weaker notion of pair which is ∆1(Y ):

Definition 4.6. A split pair is a pair (σ0, σ1) of strings such that σ0 is an
M -finite L-ascending sequence, σ1 is an M -finite L-descending sequence, and
maxL σ

0 <L minL σ
1.

As mentioned in Section 4.2, the core property of split pairs (σ0, σ1) comes
from the fact that if σi ̸⊆ U i for some i < 2, then σ1−i ⊆ U1−i. In particular, if
(σ0, σ1) is a condition and (τ0, τ1) is a split pair such that σ0 ⪯ τ0 and σ1 ⪯ τ1,
then either (τ0, σ1), or (σ0, τ1) is a valid condition extending (σ0, σ1).

Definition 4.7. Let (σ0, σ1) be a condition, e, x ∈M and i < 2, we write:
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• (σ0, σ1) ⊩i ΦGi⊕Y
e (x) ↓ if Φσi⊕Y

e (x) ↓.

• (σ0, σ1) ⊩i ΦGi⊕Y
e (x) ↑ if for every split pair (τ0, τ1) ≤ (σ0, σ1) with

τ1−i = σ1−i, we have Φτ i⊕Y
e (x) ↑.

The relation (σ0, σ1) ⊩i ΦGi⊕Y
e (x) ↓ is ∆1(Y ) and the relation (σ0, σ1) ⊩i

ΦGi⊕Y
e (x) ↑ is Π1(Y ), both uniformly in their parameters. The formulas ΦGi⊕Y

e (x) ↓
and ΦGi⊕Y

e (x) ↑ are universally Σ1(Gi ⊕ Y ) and Π1(Gi ⊕ Y ) respectively and
the above definition induces a forcing relation on these classes of formulas.

We want our construction to force for some i < 2 the following requirements
for every k ∈M :

• Ri
k: (Gi ⊕ Y )′ ↾k is decided, that is, there exists some σ′ ∈ 2k such that

(Gi ⊕ Y )′ ↾k= σ′.

• Si
k: there exists some ℓ > 22

k

in B, such that, for every x < log2(log2(ℓ)),

if |WGi⊕Y
x | ≥ 2n(ℓ), then, there exists some e < ℓ such that |WY

e | ≥ 2n(ℓ)

and WY
e ⊆WGi⊕Y

x (in particular, since A is B-block Y -immune with cost

n, this implies that WY
e ̸⊆ A, hence that WGi⊕Y

x ̸⊆ A).

• T i
k : ∃x > k, x ∈ Gi

For this, we will use a pairing argument, and ensure that for every k ∈ M , the
following requirements are forced: R0

k ∨ R1
k, R0

k ∨ S1
k , S0

k ∨ R1
k, S0

k ∨ S1
k , and

T 0
k ∧ T 1

k .
In what follows, (σ0, σ1) ⊩i Ri

k means that there exists some σ′ ∈ 2k such

that (σ0, σ1) ⊩i ΦGi⊕Y
e (e) ↓ for every e < k such that σ′(e) = 1 and (σ0, σ1) ⊩i

ΦGi⊕Y
e (e) ↑ for every e < k such that σ′(e) = 0. Similarly (σ0, σ1) ⊩i Si

k means

that there exists some ℓ > 22
k

in B such that for every x < log2(log2(ℓ)), either

(σ0, σ1) forces |WGi⊕Y
x | < 2n(ℓ) or forces |WGi⊕Y

x | ≥ 2n(ℓ), and in that case

(σ0, σ1) also forces WY
e ⊆WGi⊕Y

x for some e < ℓ such that |WY
e | ≥ 2n(ℓ). The

requirement T 1
k is already a Σ1(G) formula, and the forcing relation has already

been defined for such formulas.

Definition 4.8. Fix a condition (σ0, σ1). A (σ0, σ1)-tree is a binary tree T ⊆
2<M labelled by a family of split pairs (σ0

ρ, σ
1
ρ)ρ∈T such that for all ρ ∈ T :

• σ0 ⪯ σ0
ρ and σ1 ⪯ σ1

ρ ;

• For every µ ∈ T and every i < 2, if ρ · i ⪯ µ then σi
ρ ⪯ σi

µ ;

A node µ is said to be valid if for every ρ · i ⪯ µ, then σi
ρ ⊆ U i. Being valid is

a ∆2(Y ) condition.

Definition 4.9. Let T a (σ0, σ1)-tree

• A node (σ0
ρ, σ

1
ρ) in T satisfies a pair of Σ1(Y )-formulas (φ0(G0, x), φ1(G1, x))

if φ0(σ0
ρ, |ρ| − card ρ+ 1) and φ1(σ1

ρ, card ρ+ 1) holds (where card ρ is the
cardinal of ρ seen as a set, to be distinguished from the length |ρ| of ρ as
a string).
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• T satisfies (φ0(G0, x), φ1(G1, x)) if every node of T satisfies it.

Lemma 4.10. For every pair (φ0(G0, x), φ1(G1, x)) of Σ1(Y ) formulas and
every condition (σ0, σ1), there is a maximal Σ1(Y ) (σ0, σ1)-tree T satisfying it.

Proof. Same as [25, Lemma 3.22].

The tree T obtained in [25, Lemma 3.22] is given by the limit of a uniformly
Y -computable increasing sequence (Ts)s∈M of M -finite (σ0, σ1)-trees. This se-
quence can be uniformly Y -computed in the pair (φ0(G0, x), φ1(G1, x)) and in
the condition (σ0, σ1). Thus, there exists some computable function e : M →M
such that WY

e(⟨⌜φ0⌝,⌜φ1⌝,σ0,σ1,ρ,i,x⟩) searches the split pair (σ0
ρ, σ

1
ρ) in position ρ

of the corresponding (σ0, σ1)-tree T , and, if such a split pair exists, outputs the

elements of W
σi
ρ⊕Y

x .

Lemma 4.11. Let (σ0, σ1) be a condition, (φ0(G0, x), φ1(G1, x)) be a pair of
Σ1(Y ) formulas, and T be anM -finite maximal (σ0, σ1)-tree satisfying (φ0(G0, x),
φ1(G1, x)). Then there is an extension (σ̂0, σ̂1) ≤ (σ0, σ1) and some p0, p1 ∈M
such that the following holds:

• (σ̂0, σ̂1) ⊩0 φ0(G0, p0) and (σ̂0, σ̂1) ⊩1 φ1(G1, p1)

• (σ̂0, σ̂1) ⊩0 ¬φ0(G0, p0 + 1) or (σ̂0, σ̂1) ⊩1 ¬φ1(G1, p1 + 1).

The extension (σ̂0, σ̂1) is uniformly Y ′-computable in (σ0, σ1).

Proof. Same as [25, Lemma 3.23].

The pair (σ̂0, σ̂1) constructed in the previous lemma has the property that
both σ̂0 and σ̂1 are elements of some split pairs appearing in T , hence there
exists some ρi such that σ̂i = σi

ρi
for every i < 2.

Lemma 4.12. Let k ∈ M and (σ0, σ1) be a condition. Then, for every re-
quirements U0

k ∈ {R0
k,S0

k} and U1
k ∈ {R1

k,S1
k}, there exists some extension

(σ̂0, σ̂1) ≤ (σ0, σ1) and some i < 2 such that (σ̂0, σ̂1) ⊩i U i
k. Such an extension

is uniformly Y ′-computable in U0
k ,U1

k and (σ0, σ1).

Proof. We will define two Σ1(Y )-formulas Φt(G, x) and Ψt(G, x) as follows:
Let Φt(G, x) be the formula: ∃e0 < e1 < · · · < ex−1 < t such that

ΦG⊕Y
ei (ei) ↓ for every i < x, and let Ψt(G, x) be the formula: ∃e0 < e1 <

· · · < ex−1 < t such that |WG⊕Y
ei | ≥ 2n+2(t) for every i < x.

Consider the function S : M → M which maps t to the biggest value taken
by e(⌜φ0⌝, ⌜φ1⌝, σ0, σ1, ρ, i, x) for every φ0, φ1 ∈ {Φt,Ψt}, every ρ ∈ 2≤2(t−1),
every i < 2 and every x < t.

Assuming a reasonable encoding of e and of Φt and Ψt, this function grows
slower than t 7→ 22

t

, indeed, all the possible parameters of e either directly
depends from t (such as ⌜φ0⌝ and ⌜φ1⌝), or are smaller than t (such as x) or
are in 2≤2(t−1) (like ρ), hence, in any case they can be encoded using αt bits
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for some α ∈ ω and the same holds for the corresponding value taken by e.

Hence, there exists some some element ℓ in B such that ℓ > 22
k

and such that

ℓ′ := log2(log2(ℓ)) satisfies S(ℓ′) < 22
ℓ′

= ℓ.
For every i < 2, let φi(G, x) be the formula Φℓ′(G, x) if U i

k = Ri
k and

Ψℓ′(G, x) otherwise.

Let T be the maximal Σ1(Y ) (σ0, σ1)-tree T satisfying (φ0(G, x), φ1(G, x))
obtained in Lemma 4.10. Since Φℓ′(G, ℓ

′ + 1) and Ψℓ′(G, ℓ
′ + 1) cannot hold,

as there are only ℓ′ Turing indexes smaller than ℓ′, the tree T cannot have a
depth bigger than 2(ℓ′−1). Indeed, any ρ ∈ T of length > 2(ℓ′−1) would make
either |ρ| − card ρ+ 1 or card ρ+ 1 bigger than ℓ′, contradicting the fact that T
satisfies (φ0(G, x), φ1(G, x)).

Therefore, T , as a binary tree, has less than 22ℓ
′−1 elements, and the increas-

ing sequence (Ts)s∈M of computable tree approaching T must have a final stage
after which the approximation stabilize and is equal to T , hence T is M -finite.

Therefore, by Lemma 4.11, there exists some extension (σ̂0, σ̂1) ≤ (σ0, σ1),
some i < 2 and some pi ≤ ℓ′ such that:

• (σ̂0, σ̂1) ⊩i φi(G
i, pi)

• (σ̂0, σ̂1) ⊩i ¬φi(G
i, pi + 1).

There are two cases:

Case 1: If U i
k = Ri

k, then φi(G, x) = Φℓ′(G, x), and, since (σ̂0, σ̂1) ⊩i

φi(G
i, pi), there exist indices e0 < · · · < epi−1 < ℓ′ such that Φσ̂i⊕Y

ex (ex) ↓ for
every x < pi. Since (σ̂0, σ̂1) ⊩i ¬φi(G

i, pi + 1), then, for every y < ℓ′ not equal
to one of the ex, the condition (σ̂0, σ̂1) forces ΦG⊕Y

y (y) ↑. Hence, the condition

(σ̂0, σ̂1) forces Ri
k as ℓ′ ≥ k.

Case 2: If U i
k = Si

k, then φi(G, x) = Ψℓ′(G, x), and, since (σ̂0, σ̂1) ⊩i

φi(G
i, pi), there exist indices e0 < · · · < epi−1 < ℓ′ such that |W σ̂i⊕Y

ex | ≥
2n+2(ℓ′) = 2n(ℓ) for every x < pi. Since (σ̂0, σ̂1) ⊩i ¬φi(G

i, pi + 1), then, for

every y < ℓ′ not equal to one of the ex, the condition (σ̂0, σ̂1) forces |WGi⊕Y
y | <

2n+2(ℓ′).
Let x < pi and let ρi be index of T such that σ̂i = σρi

. Since the

depth of T is smaller than 2ℓ′ − 1, ρi ∈ 2≤2(ℓ′−1) and, by definition of ℓ′,

e(⌜φ0⌝, ⌜φ1⌝, σ0, σ1, ρi, i, ex) < 22
ℓ′

= ℓ. By definition of the function e, W σ̂i⊕Y
ex

equals WY
e(⟨⌜φ0⌝,⌜φ1⌝,σ,τ,ρi,i,ex⟩), hence,

|WY
e(⟨⌜φ0⌝,⌜φ1⌝,σ0,σ1,ρi,i,ex⟩)| ≥ 2n+2(ℓ′) = 2n(ℓ)

and (σ̂0, σ̂1) ⊩i W
Y
e(⟨⌜φ0⌝,⌜φ1⌝,σ,τ,ρi,i,ex⟩) ⊆ WGi⊕Y

ex . Hence, (σ̂0, σ̂1) forces Si
k.

Construction As in [25, Proposition 3.17], we shall construct two sets G0

and G1, being approached by a decreasing sequence (σ0
s , σ

1
s) of conditions, as
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well as their jump G0′ and G1′ being approached by sequences (σ0
s
′
) and (σ1

s
′
).

We will also approach each Bi by sequences (Bi
s)s∈M .

Let σ0
0 = σ1

0 = σ0
0
′

= σ1
0
′

= B0
0 = B1

0 = ∅. Assume that σ0
s , σ

1
s , σ

0
s
′
, σ1

s
′
, B0

s

and B1
s are defined for some s ∈M , and let

ks = 1 + max{|σ0
s |, |σ1

s |, |σ0
s
′|, |σ1

s
′|, |B0

s |, |B1
s |}

We will satisfy one of the five requirements R0
ks

∨ R0
ks

, S0
ks

∨ R1
ks

, R0
ks

∨ S1
ks

,
S0
ks

∨ S1
ks

or T 0
ks

∧ T 1
ks

, depending on the value of s modulo 5. There are two
cases:

Case 1: The requirement is of the form U0
ks

∨ U1
ks
, with U i

ks
∈

{Ri
ks
,Si

ks
}. In that case, by Lemma 4.12, there exists some i < 2 and some

extension (σ̂0, σ̂1) ≤ (σ0
s , σ

1
s) forcing U i

ks
, we then let σ0

s+1 = σ̂0 and σ1
s+1 = σ̂1.

Then, if U i
ks

= Ri
ks

, let σi
s+1

′
be such that (σ̂0, σ̂1) ⊩ (Gi ⊕ Y )′ = σi

s+1
′

and

let σ1−i
s+1

′
, B0

s+1 and B1
s+1 unchanged. If U i

ks
= Si

ks
, let Bi

s+1(x) = 0 for ev-

ery x ∈ [|Bi
s|, log2(log2(ℓ))) and Bi

s+1(log2(log2(ℓ))) = 1, where ℓ is the bound

obtained from the fact that (σ̂0, σ̂1) ⊩i Si
ks

and let σ0
s+1

′
, σ1

s+1
′

and B1−i
s+1 un-

changed.

Case 2: The requirement is of the form T 0
ks

∧ T 1
ks
. Since both U0

and U1 are M -unbounded, there exists some condition (τ0, τ1) ≤ (σ0
s , σ

1
s) with

card τ i > cardσi
s for every i < 2. Let σ0

s+1 = τ0 and σ1
s+1 = τ1 and leave σ0

s+1
′
,

σ1
s+1

′
, B0

s+1 and B1
s+1 unchanged.

The formula ϕ(s) stating that this construction can be pursued for s steps
(There exists a sequence (σ0

0 , . . . , B
1
0), . . . , (σ0

s , . . . , B
1
s ) such that...) is equiv-

alent to a Σ2(Y ) formula, thanks to the fact that the construction is Y ′-
computable. Since we are not necessarily in a model of IΣ0

2, there is no guarantee
that ϕ(s) holds for every s ∈ M , and in some cases, if will actually only hold
on a proper cut I. Nevertheless, the sequence of value (ks)s∈I obtained during
the construction must be M -unbounded, otherwise the formula ϕ(s) would be
equivalent to a ∆2(Y ) formula that would holds for every s ∈M by BΣ0

2 (which
is equivalent to I∆0

2), contradicting the fact that the sequence is M -bounded.
Since this sequence is not M -bounded, for every k ∈ M , the requirements
R0

k ∨R1
k, R0

k ∨ S1
k , S0

k ∨R1
k, S0

k ∨ S1
k , and T 0

k ∧ T 1
k are satisfied (to satisfy one

of these requirements, it is sufficient to satisfy it for a value ks ≥ k), hence, for
every k ∈M either (R0

k∧S0
k∧T 0

k ) or (R1
k∧S1

k∧T 1
k ) is satisfied, and, there exists

some side i < 2 such that the requirements Ri
k,Si

k and T i
k are simultaneously

satisfied for every k ∈M .
Let G =

⋃
s∈I σ

i
s and B̂ =

⋃
s∈I B

i
s. G is L-monotonous as the σi

s are L-
monotonous and compatible, G is M -unbounded as the requirements T i

k are

satisfied for every k ∈ M . By construction, we get that (G ⊕ Y )′ =
⋃

s∈I σ
i
s
′
,

hence Y ′ ≥ (G ⊕ Y )′ as the sequence (σi
s
′
)i∈I is Y ′-computable. Finally, A

is B̂-block (G ⊕ Y )-immune with cost n + 2, indeed, every b ∈ B̂ was added
because some requirement Si

ks
was forced (which happened M -unboundedly
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many times, hence B is M -unbounded), hence there exists some ℓ ∈ B such
that b = log2(log2(ℓ)) and for every x < b, if |WG⊕Y

x | ≥ 2n(ℓ) = 2n+2(b) then
WY

e ⊆ WG⊕Y
x and |WY

e | ≥ 2n(ℓ) for some e < ℓ, which implies that WY
e ̸⊆ A

and therefore WG⊕Y
x ̸⊆ A by the B-block Y -immunity with cost n of A.

In the proof of Proposition 4.4, the construction of the sets G and B̂ does
not depends on the set A. Therefore, for any other set Ã ⊆ M that is B-block
Y -immune with cost n, we also get that Ã is B̂-block (G⊕Y )-immune with cost
n+ 2.

4.5 Combinatorics of COH

In order to prove the counterpart of Proposition 4.4 for COH, let us focus on
the combinatorics of COH. As mentioned, there is a correspondence between
COH and WKL for ∆0

2-functionals, which can be formalized over RCA0 + BΣ0
2.

It is important to elaborate on this correspondence to get a better grasp on the
specificities of the COH step.

Given a uniformly computable sequence of sets R⃗ = R0, R1, . . . , the con-
struction of an R⃗-cohesive set can be understood as the interleaving of two
kinds of operations: the growing operation which consists of adding new ele-
ments to the cohesive set, and the cohesiveness operation which, given a set Rn,
decides whether the remainder of the construction should commit to adding only
elements from Rn or from Rn. The possible sequences of cohesiveness decisions
can be represented as the infinite paths through a Σ1(R⃗) binary tree as follows:

Definition 4.13. For every instance R⃗ = R0, R1, . . . of COH and every ρ ∈
2<M , we write R⃗ρ :=

⋂
ρ(i)=0Ri ∩

⋂
ρ(i)=1Ri and let T (R⃗) to be the Σ1(R⃗)-tree

{ρ ∈ 2<M : ∃x(x > |ρ| ∧ x ∈ R⃗ρ)}.

Note that a node ρ is extensible in T (R⃗) iff R⃗ρ is infinite. Any infinite R⃗-

cohesive set C gives a ∆2(C)-definition of a path P through T (R⃗) by letting x ∈
P iff C ⊆∗ Rx. Conversely, Jockusch and Stephan [20] showed that every degree

whose jump computes a path through T (R⃗) computes an infinite R⃗-cohesive set.

It follows that there exists a natural notion of forcing for producing R⃗-
cohesive sets, using a restriction of computable Mathias forcing to reservoirs
which are boolean combinations of the sets of the instance. This notion of
forcing is parameterized by a fixed path P ∈ [T (R⃗)].

Definition 4.14. A condition is a pair of binary strings (σ, ρ) such that ρ ≺ P .

One can think of a condition (σ, ρ) as the computable Mathias condition

(σ, R⃗ρ\{0, . . . , |σ|}). The notion of extension is defined accordingly: a condition

(τ, µ) extends (σ, ρ) if σ ⪯ τ , ρ ⪯ µ and τ \ σ ⊆ R⃗ρ.
By many means, the situation for COH is much simpler than for SADS: the

notion of forcing for COH admits a first-jump control very similar to Cohen forc-
ing or computable Mathias forcing. In particular, it is non-disjunctive. There is
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however a new difficulty: the set of conditions is P -computable, and therefore
the overall construction will be P ⊕ ∅′-computable instead of ∅′-computable.
One can easily prove that the use of P is necessary. Indeed, if a computable
instance R⃗ of COH admits a solution of low degree d, then d′ computes a path
through T (R⃗), hence the tree admits a ∅′-computable path, and therefore there

is a computable R⃗-cohesive set.
Working in a model M = (M,S) |= RCA0 +BΣ0

2 +¬IΣ0
2 topped by a set Y ,

the statement “the construction can be pursued for s steps” will be Σ1(P ⊕Y ′)
instead of Σ2(Y ). The corresponding cut I will be Σ1(P ⊕ Y ′), and if P is
arbitrary, the sequence of value (ks)s∈I will not necessarily be M -unbounded,
as this would yield a ∆1(P ⊕ Y ′)-definition of I, which is not a contradiction.
One must therefore ensure that M[P ⊕ Y ′] |= I∆0

1 to make the construction
work. Thankfully, this is the case if the path P is chosen with some care.

Let RCA∗
0 be the theory P− together with the ∆0

1-induction scheme, the
∆0

1-comprehension scheme, and the statement of the totality of the exponential
(exp). In particular, RCA∗

0 ⊢ BΣ0
1, and if M = (M,S) is a model of RCA0 +

BΣ0
2, then M′ = (M,∆2-Def(M)) is a model of RCA∗

0. The theory RCA∗
0 was

introduced by Simpson and Smith [36], who proved the following theorem:

Theorem 4.15 (Simpson–Smith [36]). Every countable model of RCA∗
0 can be

ω-extended into a model of RCA∗
0 + WKL.

This is exactly what we need to prove the existence of a path P such that
M[P ⊕ Y ′] |= I∆0

1.

Lemma 4.16. Let M = (M,S) |= RCA0 + BΣ0
2 be a countable model topped

by some set Y . For every instance R⃗ of COH in S, there exists some path
P ∈ [T (R⃗)] such that M[P ⊕ Y ′] |= RCA∗

0.

Proof. Since M |= RCA0 + BΣ0
2, M[Y ′] |= RCA∗

0. The tree T (R⃗) is ∆1(Y ′)
and is therefore contained in M[Y ′]. Furthermore, by ∆1(Y ′)-induction (which
holds since M[Y ′] |= RCA∗

0), one can prove that for every k ∈ M , there is

some ρ of length k such that R⃗ρ is M -unbounded. It follows that T (R⃗) is M -
unbounded and is therefore an instance of WKL in M[Y ′]. Since M[Y ′] |= RCA∗

0,

by Theorem 4.15, there exists some path P in T (R⃗) such that M[P ⊕ Y ′] |=
RCA∗

0.

4.6 The COH step

We now prove the existence of ω-extensions which add solutions to instances
of COH while preserving the fact that the instance of BRT2

2 has no solution.

Proposition 4.17. Let M = (M,S) |= RCA0+BΣ0
2 be a countable model topped

by some set Y . Let B be an M -unbounded ∆2(Y ) set and fix n ∈ ω. Then, for

every set A ⊆ M that is B-block Y -immune with cost n, every instance R⃗ of
COH in S and every path P ∈ [T (R⃗)] such that M[P ⊕Y ′] |= RCA∗

0, there exists
some M -unbounded set G ⊆M and some M -unbounded P ⊕ Y ′-computable set
B̂ such that:
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• G is R⃗-cohesive

• P ⊕ Y ′ ≡T (G⊕ Y )′ and in particular M[G] |= RCA0 + BΣ0
2

• A is B̂-block (G⊕ Y )-immune with cost n+ 2.

Proof. We will define the set G using an infinite ∆1(P⊕Y ′) decreasing sequence
of Mathias-like conditions. As in Proposition 4.4, we will assume that all the

elements of B are of the form 22
k

for some k ∈M .

Definition 4.18. A condition is a pair of M -finite binary strings (σ, ρ) such
that ρ ≺ P . We have (σ2, ρ2) ≤ (σ1, ρ1) if σ2 ⪰ σ1, ρ2 ⪰ ρ1 and σ2 − σ1 ⊆
R⃗ρ1

(where σ2 − σ1 is the difference between the sets corresponding to the two
sequences).

As mentioned, one can think of a condition (σ, ρ) as a Mathias condition

(σ, R⃗ρ). Requiring that ρ ≺ P ensures that R⃗ρ is M-infinite. When increasing
the length of ρ, we make progress in cohesiveness. Note that being a condition
is a ∆1(P ) predicate, as it simply requires checking that ρ ≺ P , while the
extension relation is ∆1(Y ).

A sequence τ is said to be compatible with a condition (σ, ρ) if σ ⪯ τ and

τ − σ ⊆ R⃗ρ.

Definition 4.19. Let (σ, ρ) be a condition, and e, x ∈M , we write:

1. (σ, ρ) ⊩ ΦG⊕Y
e (x) ↓ if Φσ⊕Y

e (x)[t] ↓

2. (σ, ρ) ⊩ ΦG⊕Y
e (x) ↑ if for every τ compatible with (σ, ρ), Φτ⊕Y

e (x) ↑.

Note that the relations (σ, ρ) ⊩ ΦG⊕Y
e (x) ↓ and (σ, ρ) ⊩ ΦG⊕Y

e (x) ↑ are
∆0(Y ) and Π1(Y ), respectively.

To ensure that P ⊕ Y ′ ≥T (G⊕ Y )′ and that A is B̂-block (G⊕ Y )-immune
with cost n+ 2, we will also construct (G⊕ Y )′ and B̂ in parallel.

For this, we will need to satisfy three kind of requirements for every k ∈M :

• Rk: there exists some σ′ ∈ 2k such that (G⊕ Y )′ ↾k= σ′.

• Sk: there exists some ℓ > 22
k

in B, such that, for every x < log2(log2(ℓ)),
if |WG⊕Y

x | ≥ 2n(ℓ), then there is some e < ℓ such that |WY
e | ≥ 2n(ℓ) and

WY
e ⊆WG⊕Y

x .

• Tk: ∃x > k, x ∈ G and G ⊆∗ R⃗P ↾k

The notations (σ, ρ) ⊩ Rk and (σ, ρ) ⊩ Sk are defined similarly as in Propo-
sition 4.4.

Lemma 4.20. Let (σ, ρ) be a condition. For every k ∈M , there exists someM -
finite σ′ ∈ 2k and an extension (τ, ρ) ≤ (σ, ρ) such that (τ, ρ) ⊩ (G⊕Y )′ ↾k= σ′.

Proof. Same as [25, Lemma 2.11].
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Lemma 4.21. For every condition (σ, ρ) and every k ∈ M , there exists some
extension (τ, ρ) ≤ (σ, ρ) such that (τ, ρ) ⊩ Sk.

Proof. For every finite set F ⊂M , every x ∈ F and every t ∈M , let WY
e(⟨F,x,t⟩)

search the smallest τ compatible with (σ, ρ) such that |W τ⊕Y
x′ | ≥ 2n+2(t) for

every x′ ∈ F and output the elements of W τ⊕Y
x .

Let S : M →M be the function which send t to the biggest value taken by
e(⟨F, x, t⟩) for every F ⊆ t and x ∈ t. Assuming a reasonable encoding of e, this

function grows slower than t 7→ 22
t

, indeed, every F ⊆ t and every x ∈ t can
be encoded using less than αt bits for some α ∈ ω and the same holds for the
corresponding value taken by e.

Hence, there exists some ℓ ∈ B such that ℓ > 22
k

and such that ℓ′ :=

log2(log2(ℓ)) satisfies S(ℓ′) < 22
ℓ′

= ℓ.
Let S = {F ⊆ ℓ′ : (∀x ∈ F )|WY

e(⟨F,x,ℓ′⟩)| ≥ 2n+2(ℓ′)}, the set S is Σ1(Y ),

non empty (contains ∅) and bounded, hence, by IΣ0
1 we can pick some F ∈ S

maximal for the inclusion.
Since F ∈ S, there exists some τ compatible with (σ, ρ) such that |W τ⊕Y

x | ≥
2n+2(ℓ′) = 2n(ℓ) for every x ∈ F . The condition (τ, ρ) thus forces |WG⊕Y

x | ≥
2n(ℓ) for every x ∈ F and, by the maximality assumption, forces |WG⊕Y

x | <
2n(ℓ) for every x ∈ {0, . . . , ℓ′ − 1} \ F , as otherwise F ∪ {x} would be in S.
Moreover, for every x ∈ F , we have |WY

e(⟨F,x,ℓ′⟩)| ≥ 2n(ℓ) and WY
e(⟨F,x,ℓ′⟩) =

W τ⊕Y
x ⊆WG⊕Y

x .
Thus, (τ, ρ) ⊩ Sk.

Lemma 4.22. For every condition (σ, ρ) and every k ∈ M , there exists some
extension (τ, ρ′) ≤ (σ, ρ) such that (τ, ρ′) ⊩ Tk.

Proof. Since ρ ≺ P , the set R⃗ρ is M-infinite and there exists some τ compatible
with (σ, ρ) such that |τ | ≥ k, making (τ, ρ) ⊩ ∃x ∈ G, x ≥ k. Then taking
ρ′ = P ↾ k ensures that every G in the cone generated by (τ, ρ′) will be such

that G \ τ ⊆ R⃗P ↾k, hence that (τ, ρ′) ⊩ Tk.

Construction: The construction will build the set G using a P ⊕ Y ′-
computable decreasing sequence (σs, ρs) of conditions. In parallel, the sets
(G⊕ Y )′ and B̂ will be approached by sequences (σ′

s) and (Bs) of finite chains.
Let σ0 = ρ0 = σ′

0 = B0 = ∅. Assume that σs, ρs, σ
′
s and Bs have been

defined for some s ∈M and let

ks = 1 + max{|σs|, |ρs|, |σ′
s|, |Bs|}

Using Lemma 4.20, Lemma 4.21 and Lemma 4.22, there exists some exten-
sion (τ, ρ′) ≤ (σs, ρs) forcing Rks

,Sks
and Tks

. Furthermore, such an extension
can be found (P ⊕ Y ′)-effectively. We then let σs+1 = τ , ρs+1 = ρ′, σ′

s+1 = σ′

where σ′ is the sequence obtained from the fact that Rks
is forced and let

Bs+1(x) = 0 for every x ∈ [|Bs|, log2(log2(ℓ))) and Bs+1(log2(log2(ℓ))) = 1
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where ℓ is the bound obtained from the fact that Sks is forced. We then pro-
ceed to the next stage of the construction.

The formula ϕ(s) stating that this construction can be pursued for s steps
(There exists a sequence (σ0, ρ0, σ

′
0, B0), . . . , (σs, ρs, σ

′
s, Bs) such that...) is equiv-

alent to a Σ1(P⊕Y ′) formula, thanks to the fact that the construction is P⊕Y ′-
computable. Since we are not necessarily in a model of IΣ0

1(P ⊕ Y ′), there is
no guarantee that ϕ(s) holds for every s ∈ M , and in some cases, if will actu-
ally only hold on a proper cut I. Nevertheless, the sequence of value (ks)s∈I

obtained during the construction must be M -unbounded, otherwise the formula
ϕ(s) would be equivalent to a ∆1(P ⊕ Y ′) formula that would holds for every
s ∈M as M[P ⊕ Y ′] |= I∆0

1(P ⊕ Y ′) , contradicting the fact that the sequence
is M -bounded. Since this sequence is not M -bounded, for every k ∈ M , the
requirements Rk, Sk and Tk are satisfied (to satisfy one of these requirements,
it is sufficient to satisfy it for a value ks ≥ k).

Thus, this construction defines two sets G =
⋃

s∈I σs and B̂ =
⋃

s∈I Bs that
are (P⊕Y ′)-computable and such that (G⊕Y )′ is also (P⊕Y ′)-computable. We
also get that (G⊕ Y )′ ≥ P , indeed, using (G⊕ Y )′, we can check if G ⊆∗ Ri or
if G ⊆∗ R̄i for every i ∈M and thus find the value of P (i), hence (G⊕ Y )′ ≡T

P ⊕ Y ′ and B̂ is ∆2(G ⊕ Y ). Since the requirements Tk are satisfied, the

set G is M -unbounded and R⃗-cohesive. Finally, for the same reasons as in
Proposition 4.4, we get that A is B̂-block (G⊕ Y )-immune with cost n+ 2.

As in Proposition 4.4, the previous construction makes no reference of the
set A. Thus, for every set Ã ⊆ M that is B-block Y -immune with cost n will
also be B̂-block (G⊕ Y )-immune with cost n+ 2.

Corollary 4.23. Let M = (M,S) |= RCA0 + BΣ0
2 be a countable model topped

by some set Y . Let B be an M -unbounded ∆2(Y ) set and fix n ∈ ω. Then, for

every set A ⊆M that is B-block Y -immune with cost n and every instance R⃗ of
COH in S, there exists some M -unbounded set G ⊆M and some M -unbounded
(G⊕ Y )′-computable set B̂ such that:

• G is R⃗-cohesive

• M[G] |= RCA0 + BΣ0
2

• A is B̂-block (G⊕ Y )-immune with cost n+ 2.

Proof. Immediate by Proposition 4.17 and Lemma 4.16.

4.7 Main result

We are now ready to prove Main Theorem 1.5.

Main Theorem 1.5. Every countable topped model of RCA0 +BΣ0
2 +¬IΣ0

2 can
be ω-extended into a model of RCA0 + ADS + ¬BRT2

2.
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Proof. Let M0 = (M,S0) be a countable model of RCA0 +BΣ0
2 +¬IΣ0

2, topped
by a set Z0 ∈ S0. Let I ⊆ M be a Σ2(Z0)-definable proper cut, witnessing
that M0 |= ¬IΣ0

2, and let B0 ⊆ M be a ∆2(M0)-definable M -unbounded set
with cardinality I. By the proof of Main Theorem 1.4, M0 contains a stable
instance f : [M ]2 → 2 of BRT2

2 with no ∆1(Z0)-definable solution, and such
that the set A = {x ∈M : ∀∞yf(x, y) = 0} is B0-block Z0-immune with cost 2.

Since M is countable, there is a (non necessarily computable) reordering
(Γn)n∈ω of the sequence (Φx)x∈M of all Turing functionals with codes in M .
By Proposition 4.4 and corollary 4.23, define a sequence (Mn)n∈ω of countable
models of RCA0 + BΣ0

2 such that for every n ∈ ω,

(1) Mn+1 is topped by some set Zn+1 and ω-extends Mn;

(2) A is Bn-block Zn-immune with some cost cn ∈ ω;

(3) if n = ⟨0, a, b⟩ and ΓZb
a is an instance L = (M,<L) of SADS, then Mn+1

contains an M -unbounded L-ascending or L-descending sequence;

(4) if n = ⟨1, a, b⟩ and ΓZb
a is an instance R⃗ of COH, then Mn+1 contains an

M -unbounded R⃗-cohesive set.

Let N =
⋃

n∈ω Mn. Then N |= RCA0 + BΣ0
2. By (1), N ω-extends M0. By

(2) A is immune relative to every set in N , so f is an instance of BRT2
2 with no

solution in N . It follows that N ̸|= BRT2
2. By (3) and (4), N |= SADS + COH,

so by Hirschfeldt and Shore [18], N |= ADS.

Corollary 4.24. RCA0 + ADS ̸⊢ BRT2
2

Proof. Let M be a countable model of IΣ1 + BΣ2 + ¬IΣ2. Let M = (M,S)
be the model whose second-order part S consists of the ∆1-definable sets with
parameters in M . By Friedman [15], M |= RCA0+BΣ0

2+¬IΣ0
2. Moreover, M is

countable, and topped by ∅, so by Main Theorem 1.5, there is an ω-extension N
of M such that N |= RCA0 + ADS + ¬BRT2

2. Thus, RCA0 + ADS ̸⊢ BRT2
2.

Corollary 4.25. RCA0 +ADS+¬BRT2
2 is Π1

1-conservative over RCA0 +BΣ0
2 +

¬IΣ0
2.

Proof. Let ϕ = ∀Xψ(X) be a Π1
1-sentence such that RCA0 + BΣ0

2 + ¬IΣ0
2 ̸⊢ ϕ.

By the completeness theorem and the downward Löwenheim-Skolem theorem,
there exists a countable model M = (M,S) |= RCA0 + BΣ0

2 + ¬IΣ0
2 + ¬ϕ. Let

X ∈ S be such that M |= ¬ψ(X) and Y ∈ S be such that IΣ0
2(Y ) fails. Let

M1 = (M,∆1-Def(M,X, Y )). By Friedman [15], M1 |= RCA0+BΣ0
2. Moreover,

since ψ is arithmetic, M1 |= ¬ψ(X), and since Y ∈ M1, M1 |= ¬IΣ0
2. Last, M1

is topped by X ⊕ Y , so one can apply Main Theorem 1.5 to get an ω-extension
N of M1 such that N |= RCA0 + BΣ0

2 + ADS + ¬BRT2
2. In particular, X ∈ N

and N |= ¬ψ(X), so RCA0 + BΣ0
2 + ADS + ¬BRT2

2 ̸⊢ ϕ.
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5 Open questions

We conclude this article with a few remaining open questions. Despite being
provable over a sufficient amount of induction, BRT2

2 is not a Π1
1-sentence, hence

the fact that RCA0 + BΣ0
2 ̸⊢ BRT2

2 does not rule out the possibility that BRT2
2

has the same Π1
1-consequences as BΣ0

2.

Question 5.1. Is RCA0 + BRT2
2 a Π1

1-conservative extension of RCA0 + BΣ0
2?

Since BRT2
2 follows from RT2

2, a negative answer to Question 5.1 would prove
that RCA0 + RT2

2 is not a Π1
1-conservative extension of RCA0 + BΣ0

2, which is a
major open question in reverse mathematics.

Belanger (personal communication) claimed that RCA0 + WKL + BΣ0
2 ⊢

BRT2
2, but the proof was lost. We therefore leave the question open.

Question 5.2. Does RCA0 + WKL + BΣ0
2 ⊢ BRT2

2?

Last, the Chain AntiChain principle (CAC) has very similar features to ADS.
It admits both an asymmetric and symmetric forcing construction, with a notion
of split pairs ([31, Theorem 14]). Hirschfeldt and Shore [18, Corollary 3.11] also
proved that CAC does not imply the existence of a DNC function over RCA0.

Question 5.3. Does RCA0 + CAC ⊢ BRT2
2?

The difficulty of adapting the proof of Proposition 4.4 to a stable partial
order comes the complexity of finding an extension forcing either ¬φ0(G0) or
¬φ1(G1) in the case of the absence of a split pair (σ0, σ1) such that φ0(σ0) and
φ1(σ1) both hold.
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