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1. INTRODUCTION

Fix ¢ : [N]> = r, an r-coloring of the pairs of natural numbers.
An ordered list of distinct integers, ag,ai,as...a;_1,a;,ai11... 1S a
monochromatic path for color k, if, for all i« > 1, c¢({a;—1,a;}) = k.
The empty list is considered a path of any color k. Similarly the list
of one element, ag, is also considered a path of any color k. For any
monochromatic path of length two or more the color is uniquely de-
termined. Paths can be finite or infinite. Since all paths considered in
this article are monochromatic we will drop the word monochromatic.

Definition 1.1. Let ¢ be an r-coloring of [NJ? ([n]?). A path decompo-
sition for c is a collection of r paths Fy, Py, ..., P,—; such that P; is a
path of color j and every integer (less than n) appears on exactly one
path.

Improving on an unpublished result of Erdés, Rado [10] published a
theorem which implies:

Theorem 1.2 (Rado Path Decomposition, RPD, or RPD,.). FEuvery
r-coloring of the pairs of natural numbers has a path decomposition.

In Section 2, we provide three different proofs of this result. The
first proof makes use of an ultrafilter on the natural numbers. This
ultrafilter proof is clearly known but, as far as we are aware, unpub-
lished. The remaining proofs are interesting new modifications of the
ultrafilter proof.

All of the proofs presented are highly non-computable. In Sec-
tion 3, we show that a non-computable proof is necessary. A coloring
c¢: [N]? — r is stable if and only if lim, c({x,y}) exists for every z. We
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show there is a computable stable 2-coloring ¢ of [N]? such that any
path decomposition for ¢ computes the halting set. In Section 4, we
give a non-uniform proof of the fact that the halting set can compute
a path decomposition for any computable 2-coloring.

In Section 5 we show that if our primary AJ construction from Sec-
tion 4 fails then it is possible to find a path decompostion which is
as simple as possible: one path is finite and the other computable.
But even with this extra knowledge, we show, in Theorem 5.6, that
there is no uniform proof of the fact that the halting set can compute
a path decomposition for any computable 2-coloring. In Theorem 5.7,
we improve this to show no finite set of AJ indices works.

In Section 7 we show that the halting set can also compute a path
decomposition for stable colorings with any number of colors. The
rest of Section 7 discusses Rado Path Decomposition within the con-
text of mathematical logic and, in particular, from the viewpoint of
computability theory and reverse mathematics. In Section 6, we dis-
cuss two differences between Rado Path Decomposition and Ramsey
Theorem for pairs.

Most of the sections can be read in any order, although Section 5
relies on Section 4, and Section 7 relies on Section 2.

Our notation is standard. Outside of Section 7, and possibly Sec-
tion 5, our use of computability theory and mathematic logic is minimal
and very compartmentalized. One needs to be aware of the halting set
and the first few levels of the arithmetic hierarchy. A great reference for
this material is Weber [13]. For more background in reverse mathemat-
ics, including all notions discussed in Section 7, we suggest Hirschfeldt

[5]

Our interest in the RPD was sparked by Soukup [!1]. Thanks!

2. SOME PRroors or RPD

In this section we will provide several proofs of RPD. We need to
start with some notation and definitions. The union of pairwise disjoint
sets is written as Xy U X5 ... X;. Two sets are equal modulo finite,
X =*Y, if and only if their symmetric difference XAY is finite. If
XoUX;...UX, =" Z then every possible intersection of the X;’s is
empty and their union is equivalent modulo finite to Z. If Z = N then
XoU Xy ...UX; is a partition of N.

Definition 2.1. A collection U of subsets of N is an wultrafilter (on
N) if and only if ) ¢ U, U is closed under superset, U is closed under
intersection, and, for all X C N, either X € U or its complement
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X € U. An ultrafilter is non-principal if and only if, for all @ € N,
{a} ¢ U.
We will call a subset X of N large if and only if X € U.

Remark 2.2. The two key facts that we will need about a non-principal
ultrafilter U are as follows.

(1) U does not have finite members. (This statement follows by an
casy induction on the size of the finite set.)
(2) If
XoUX;...UX;="N

then ezactly one of the X; is large. (No more than one of
these sets of can be large, because if X;; and X, are distinct
then they have an empty intersection. Assume that for all j,
X,; € U. Tt follows that Nj<i X,; =" € U. But no finite set
can be a member of a non-principal ultrafilter, giving us the
desired contradiction.)

For the rest of this section a coloring ¢ : [N]? — 7 will be fixed.

2.1. Ultrafilter Proof. The existence of a non-principal ultrafilter on
the natural numbers is a strong assumption that unfortunately cannot
be shown in Zermelo Fraenkel set theory, see Feferman [2]; the axiom
of choice is sufficient see Jech [(]. Nevertheless, we give a proof of
RPD that uses this assumption, because we believe that it provides
insight into the combinatorics of this statement. Later in this section
we will give alternative proofs of RPD that do not use a non-principal
ultrafilter.

Let U be a non-principal ultrafilter. We will denote the set of neigh-
bors of m with color i by

N(m,i) ={n:c({m,n}) =i}.

Note that N(m,i) is computable in our coloring ¢. Furthermore, if
we fix m then the sets N(m,i) where i < r form a partition of N. By
Remark 2.2 for every m there is a unique j < r such that N(m,j) is
large. Let A; = {m : N(m,j) is large}. The sets A; where j < r also
partition N. If m € A; then we will say that m has color j. It follows
that every natural number is assigned in this way a unique color.

For any pair of points m < n in A;, N(m,j) N N(n,j) is large.
So there are infinitely many v € N(m,j) N N(n,j). For all such v,
¢(m,v) = ¢(v,n) = j. Note that any such v is likely much larger than
m and n and not necessary in A;.
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Construction. We will construct our path decomposition Py, P, ..., P._1
in stages. Let Pjo = () for all j < r. The path P; is the empty path of
color j. Assume that for each j < r, P;, is a finite path of color j such
that if P;, is nonempty then its last member is of color j (i.e. in A;).
Assume also that every ¢ < s appears in one of the P;,. If s already
appears in one of the r paths, then let P; 1 = P;, for all j < r.
Otherwise, s has some color k. For j # k, let Pj 41 = Pjs. If Py is
empty, then let Py 1 = {s}. Otherwise, let e be the end of the path
Py 5. There is a v not appearing in any of the finite paths P, ; such that
v e N(e, k) N N(s,k). Add v and s to the end of Py, in that order to
get Py s41. To complete the construction we set P; = lim, P; 5 for every
J < r. The desired path decomposition is given by Py, Py, ....P._y. [

The proof described above is very close to the well known ultrafilter
proof of Ramsey’s theorem for pairs. To illustrate this we include this
proof below. An infinite set H is homogenous for ¢ if and only if ¢([H]?)
is constant. Ramsey’s theorem for pairs is the statement that every r-
coloring of the pairs of natural numbers has an infinite homogeneous
set.

Remark 2.3 (Proof of the existence of a homogenous set for ¢). Recall
that Ao, A1, ... A,_1 gives a partition of N. Fix the unique j such that
A; is large. We can thin A, to get an infinite homogenous set H of
color j as follows: we build an infinite sequence {h,, },en of elements in
A; by induction so that H = {hg, hy,...} is as desired. Let hy be the
least element of A;. Suppose that we have constructed a homogeneous
set {ho,...,h;} € A;. Since AjN(,<; N(hg,7) is the finite intersection
of large sets, it is also large and hence infinite. We define h;,; to be
the least member of A; N[, N(hk,7) that is larger than h;.

2.2. Cohesive Proof. As noted, above we would like to remove the
use of the non-principal ultrafilter from the proof of RPD. For this we
will extract the specific relationship that & had with the sets N(m, j).

Remark 2.4. Reflecting on the above construction, we see that the
important things about largeness were that

(1) for every m there is a unique j < r such that N(m,j) is large,
(2) large sets are not finite, and
(3) the intersection of two large sets is large.

Definition 2.5. An infinite set C is cohesive with respect to the se-
quence of sets {X,, }nen if and only if for every n either C' C* X, or

CCcrX,.
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Lemma 2.6. There is a set C' that is cohesive with respect to the
sequence {N(m, j)}j<rmen-

Proof. Once again we will use a stagewise construction. We will con-
struct two sequences of sets: {Cs}seny and {Rs}sen. The first sequence
will be increasing and the second decreasing with respect to the sub-
set relation. Start with Cy = () and Ry = N. Fix some indexing of
all pairs (m,i). Inductively assume that, for all (m,i) < s, either
Ry C N(m,i) or Ry C N(m,i), Cs is finite, R is infinite, and Cj
and R, are disjoint. At stage s+ 1, let ¢, be the least element of R,.
Let Csyqp = Cs U {cs}. Assume that s = (m,i). Since Ry is an in-
finite set, at least one of Ry N N(m,i) or Ry N N(m,i) is infinite. If
Ry N N(m,i) is infinite let R,y = (R, N N(m,4)) — {cs}. Otherwise
let Ryp1 = (RS N N(m,i)) —{cs}. C =limgCy = {co,cq,...} is the
desired cohesive set. 0

Fix such a set C'. We can now redefine largeness by using C' instead
of an ultrafilter. Call a set X [large if and only if C' C* X. This new
notion of largeness has the three key properties outlined above with
respect to the sets N(m,i): for every m there is a unique j < r such
that N(m,j) is large, because C' cannot be a subset of two disjoint
sets, even if we allow a finite error; large sets are not finite, because
C is infinite; and the intersection of two large sets is large, because
if CC* X and C C*Y then C C* X NY. We can now repeat the
original construction using this notion of largeness to produce a path
decomposition.

2.3. Stable Colorings. Recall that a coloring ¢ is stable if and only
if for every m the limit lim,, ¢({m, n}) exists. Rephrasing this property
in terms of sets of neighbors, we get that there is a unique 7 < r
such that N(m, j) is cofinite. So to construct a path decomposition for
stable colorings we do not even need a cohesive set. We can redefine
large to mean cofinite and use once again the original construction.

2.4. Generic Path Decompositions. In this section we will provide
a forcing-style construction of a path decomposition. To avoid confu-
sion with our ultrafilter proof, our construction will use sequences of
conditions rather than poset filters.

Conditions are tuples (P, P ... P._1, X) such that

(1) X C N is infinite,
(2) P; is a finite path of color j for every j < r,
(3) no integer appears on more than one of the paths, and



6 CHOLAK, IGUSA, PATEY, SOSKOVA, AND TURETSKY

(4) if P; is nonempty and e; is its last element then X C* N(e;, j)
so e; has color j with respect to X).
J

It follows that (0,0,...,0,N) is a condition, because it trivially sat-
isfies the third requirement. A condition (]30, P,....B_, X ) extends
(Po, P, ..., P._1,X) if and only if, for all j, P; is an initial subpath of
pj, and X C X.

Given a sequence of conditions (C;);en such that for every i, Cjiq
extends C;, we think of this sequence as approximating a tuple of paths
as follows.

If C; = (Pi, Pj,..., P |, X%, then the sequence (C;) approximates
the tuple of paths (Py, Py, ... P._;) where P; = lim; Pl

Such a tuple of paths need not be a path decomposition, since it
might happen that some integer does not appear on any of the limit
paths. The purpose of the X values in the conditions will be to en-
sure that the approximated paths do form a path decomposition if the
sequence (C;) is generic (defined below).

A set of conditions D is dense if every condition is extended by a
condition in D. A sequence (C;) meets D if there is some i such that
C; €D.

Given any collection of dense sets, a sequence is (C;) generic for
that collection if it meets every D in that collection. Note that if we
have a countable collection of dense sets D; then it is straightforward
to build a generic sequence for that collection, by inductively choosing
each ;1 to extend C; and be in D, ;.

Let D; be the set of conditions (FPy, P, ..., P,_1, X) such that i is on
some path P;. The lemma below shows that D; is dense. Any generic
for {D;} gives a path decomposition for c.

Lemma 2.7. For every i the set D; is dense.

Proof. Fix i and a condition (FPy, Py, ..., P,_1,X). If 7 is on one of the
paths P; then we are done. Otherwise, X is an infinite set, so there
must be a j such that N (i, j) N X is infinite. If k # j then let P, = Py.
Let X = XN N(i, 7). If P; is empty let f’] be 7. Otherwise let e be the
end of Pg. Since (Py, Py, ..., P._1,X) is a condition, there is a v such
that v € N(e,j) N N(i,5). Let P; be P; with v and i added to the end
in that order. It follows that (]50, P,...P._, X ) is a condition in D;
extending (P, P, ..., P_1, X). O

The generic construction is very much in the style of Rado’s original
proof.
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3. PATH DECOMPOSITIONS WHICH COMPUTE THE HALTING SET

Recall the halting set K = {e|(3s)p.s(e)d} is the set of codes e for
programs which, when started with input e, halt after finitely many
steps. The halting set is one of the first examples of a set that is not
computable. The goal of this section is to show the following theorem.

Theorem 3.1. There is a computable stable 2-coloring ¢ such that any
path decomposition of ¢ computes the halting set.

We devote the rest of the section to the proof of this theorem. For
colors we will use RED and BLUE. Once again a coloring c is stable if,
for all m, lim,, ¢(m,n) exists.

We will give a computable stagewise construction for ¢. The goal
will be to construct ¢ so that:

(1) The BLUE path in any path decomposition is infinite;

(2) Any path decomposition can compute the elements of K via the
following algorithm: If e is a natural number then the construc-
tion will associate a marker m, to e in a way that is computable
from any path decomposition for ¢. We enumerate the BLUE
and RED paths until all numbers = < m, have appeared on one
of the two paths. Let ¢ be the next element on the BLUE path.
Then e € K if and only if ¢, ;(e) is defined (i.e. ¢, (e) halts after
< t many steps).

Each z € N will have a default color. Initially it will be BLUE. The
default color of a number might be changed once during the construc-
tion to RED. At stage s, we will define ¢({z, s}) for every z < s and
we will always set this value to be the current default color for z. So
our construction will produce a stable coloring. To achieve our first
goal, it will be sufficient to ensure that for infinitely many intervals
[k, 2k 4+ 1] the default color BLUE is never changed. This is because
if all elements in the interval [k, 2k + 1] are colored BLUE with every
greater number, then, in any path decomposition, the BLUE path must
contain a node in this interval: if m is in this interval and on a RED
path then the next and previous nodes on this RED path must be a
number less than &, so the RED path can only contain at most k of the
nodes in this interval. The length of this interval is k + 1, so at least
one of the nodes in this interval must be BLUE. This idea is reflected
in the way we associate markers m. to elements e.

We will say that a number k is fresh at stage s if and only if k is
larger than any number mentioned/used at any stage t where ¢ < s.
All markers m, are initially undefined, i.e. m. 1. At each stage s before
we proceed with the definition of ¢(x, s) for x < s we first update the
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markers: for the least e where m. s_; is not defined, we will select a
fresh number £k and define m, s = 2k +2. (Note that this means that if
n is fresh after stage s then n > 2k + 2.) Unless we say otherwise (see
below) at all later stages ¢ we will keep m.; = m.s. It will follow that
lim, m, s = m, exists.

We also update the default colors as follows. For every e < s we
check if e s—1(€)T, @es(e)l, and m. s is defined. If so we change the
default color of all z € [m, s, s+ 1] to RED and make all m; s undefined
for all ¢« > e. If we can show that this construction satisfies our first
goal, then we can easily argue that it also satisfies the second: Fix any
path decomposition and assume that ¢ is the first element on the BLUE
path after all numbers z < m, have shown up on one of the two paths.
Suppose further that ¢.(e) halts in s many steps. We must show that
t > s. If at stage s we have that m, , is not defined then ¢ > m, > s.
If m. s is defined and we assume that ¢ < s + 1 then ¢ has color RED
with every number that has not yet appeared on either path and so
the BLUE path cannot be extended. It follows that the BLUE path is
finite, contradicting our assumption.

For every e the value of the marker m, s can be cancelled at most e
many times and then stays constant, so limgm, s = m, does exist. It is
furthermore computable from any path decomposition by the following
procedure. The marker for 0 is never cancelled, so mg = mg;. If we
know the value of m, then we run the construction until we see the
first stage tp such that m, = me,. It follows that after stage ty we can
cancel m.1 only for the sake of e. We can also figure out if e € K by
looking for the first ¢; on the BLUE path after all numbers z < m, have
shown up on one of the two paths and checking whether or not ¢.(e)
halts in ¢; steps. Let ¢t = max(to, 1)+ 1. We claim that mei1¢ = meqq.
If e ¢ K then m.,q is not cancelled at any stage greater than ¢, and is
defined by stage t. If e € K then m.,; can possibly be cancelled after
stage to but no later than at stage t; and so once again its final value
will be defined by stage .

Finally, by induction on e, we will show that there are e intervals
[k, 2k +1] where the default color BLUE for all = in the interval is never
changed and 2k +1 < m,. Assume inductively this is true for all ¢’ < e
and let s be the stage when mey1 s = meyq is defined. By construction
Met1s 15 defined as 2kc.yq + 2 for some fresh k.yq > m.. The default
color for all z in the interval [k..1,2k..1 + 1] is never changed from
BLUE. O
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4. 2-COLORINGS

As we will see in this section 2-colorings are very special. For this
section we will use BLUE and RED as our colors. Perhaps the start-
ing point for all theorems about path decompositions is the following
theorem.

Theorem 4.1 (Gerencsér and Gyérfas [3]). Every 2-coloring ¢ of [n)?
has a path decomposition.

Proof. We prove this statement by induction on n. Clearly the state-
ment is true for [2]. Assume c is a 2-coloring of [n + 1]?. In particular
¢ induces a 2-coloring on the subgraph [n]?.

By induction there is a path decomposition of [n]%. So there is a
RED path, P, and a BLUE path, P,, such that, if i < n, then 7 is on
exactly one of P, or P,.

If P, is empty then P, and {n} is a path decomposition for c. Simi-
larly if P, is empty.

Let x, be the end of the RED path and let z;, be the end of the
BLUE path. Look at the color of the edge between x, and n. If it is
RED then add n to the end of P, to get a path decomposition for c.
Similarly, if the color of the edge between x;, and n is BLUE then add
n to the end of P,.

Otherwise look at the color of the edge between x, and x;. If this is
RED add zp, n (in that order) to the end of the RED path and remove
xp from the end of the BLUE path. We will say that x;, switches to
RED. 1f ¢({x;, zp}) is BLUE then add x,,n (in that order) to the end of
the BLUE path and remove z, from the end of the RED path. In this
case x, switches switches to BLUE. In all cases we have obtained a path
decomposition of [n + 1], thereby completing the inductive step. [

We are going to extend this theorem to the following:

Theorem 4.2. If ¢ : [N]*> — 2 then there is a AS Path Decomposition.
In particular, if ¢ is computable then it has a path decomposition that
1s computable from the halting set K.

The rest of this section is devoted to the proof of this theorem. This
proof will be nonuniform. We will also discuss other issues along the
way. Our first goal is to understand why we cannot simply iterate
Theorem 4.1 infinitely often to get such a proof. We need to examine
the path constructed in Theorem 4.1 very closely.

Definition 4.3. Suppose P, is a BLUE path and P, a RED path. Then
the pair (Py, P.) is a one-step path extension of (B,, P,) if exactly one
of the following holds:
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(1) P, is P, with one additional element at the end and P, = P,, or

(2) P, is P, with one additional element at the end and P, = P,, or

(3) P, is the path P, with the last element z, removed and P, is P,
with z;, and some integer x added in that order at the end, (in
this case x;, switches to RED), or

(4) P, is the path P, with the last element z, removed and P, is P,
with x, and some integer x added in that order at the end, (in
this case z, switches to BLUE).

(Py, P,) is a path extension of (P, P,) if it can be obtained from
(P,, P,) by a sequence of one-step path extensions. Also, if (P, P,) is
a path extension of (P, B,), P. = P,, and z is the last element of P,
then we say that (151), Pr) is a BLUE path extension of (P, P,) to x.

We similarly define a RED path extension of (P, P,) to z.

Note that if « is on one of P} or P, and (Py, P,) is a path extension,
then z is on one of P, or P..
The proof of Theorem 4.1 shows:

Lemma 4.4. Given any two finite disjoint paths P, and P. and an
integer n not on either path, we can computably in c find a one-step
path extension (Py, P.) such that n appears on exactly one of these
paths.

We cannot generalize this lemma for more than 2 colors. In fact,
Theorem 4.1 fails for more than 2 colors.

Theorem 4.5 (Pokrovskiy [9]). Given any r > 2 there are infinitely
many m such that there is a r-coloring ¢ of [m|* without a path decom-
position.

As our first attempt to prove Theorem 4.2, we will iterate Lemma 4.4
infinitely often to build paths P, , and P,, by stages. Start with
Pyo = P,o = (. At stage s + 1, apply Lemma 4.4 to P, and P,
and the least integer not on either path n to get P, 11 and P 4.
Once we have constructed these sequences, we need a way to extract
from them two paths P, and P, and then try to argue that they form
a path decomposition. We can do this if the position of every number
eventually stabilizes. This idea is captured by the following definition.

Definition 4.6. Suppose that, for every natural number s,

Py = xf,..., 27 is a finite BLUE (RED) path. We define the BLUE
(RED) path limg Py = x¢,21,...,%p,... by z, = limgz? as long as
limg z; exists for all + < n. If there is an ¢ < n for which lim x;] does
not exist, then we leave x,, undefined.
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Given the sequences {F; s }seny and { P, }sen, we know that every n
eventually appears on one of P, ; and F, s at some stage s and remains
on either P,; and P,; at all stages t > s. So if every n only switches
between the two sides finitely often then the pair P, and P, is a path
decomposition. The limit will exist, although we might not have an
explicit way to compute the limit.

However, it is possible for an n to switch infinitely often. It is, in
fact, even possible to build a ¢ such that every number n switches
sides infinitely often. For such a ¢, it would be the case that the
lim sup, | P, s| = oo but the lim, P, ; is empty, and likewise for P,.

We have to alter our approach. We will still build our path decom-
position as the stagewise limit of path extensions, although they will
no longer be one-step path extensions. At each stage s we will have
disjoint finite paths B, s and P, ;. The pair (P 511, Prs+1) Will be a path
extension of (P, P,s). The integers z, s and x5 will be the ends of
these paths at stage s. When the stage is clear, we will abuse notation
and drop the s in z, ; and x; ;. We will need the following:

Definition 4.7. Suppose (P, P.) is a one-step path extension of
(B, P,) obtained by Case (3) (i.e. x; switches to RED and is followed
by x on PT.) We say that x;, strongly switches to RED if there is no
BLUE path extension to z. We similarly define what it means for z,
to strongly switch to BLUE.

We say (P,, P,) forms a strong one-step path extension of (Py, P,)
if the pair (P,, P,) is a one-step path extension of (P,, P,) via either
Cases (1) or (2), or via Cases (3) or (4) with a strong switch.

We say that (P,, P,) forms a strong path extension of (Py, P,) if it
can be obtained from (P, P.) by a sequence of strong one-step path
extensions.

The following lemma is the key combinatorial property that will
provide stability to constructions that are performed using strong path
extensions.

Lemma 4.8. If n strongly switches to RED then n can never switch
back to BLUE by a path extension. The RED path up to n s stable.

Before we prove Lemma 4.8, we require a more basic order-
preservation lemma concerning path extensions.

Lemma 4.9. Assume (151), ]5,,) is a path extension of (P, P.). Assume
that n and m are two numbers such that one of the following holds.

e n appears before m in P,.
e m appears before n in B,.
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e n appears in P, and m appears in P,.
Then one of the following holds.

e n appears before m in I?T.
e m appears before n in B,. .
e n appears in P, and m appears in B,.

Proof. The proof is an easy induction argument using the fact that
only the last element of a path can ever switch to the other path. Any
time the elements attempt to switch which path they are on, the latter
element must switch before the earlier element. 0

We now proceed to prove Lemma 4.8.

Proof (Lemma /.8). Assume not. Let (Pyo, Pro), (Po1, Pr1), (Pr2, Pr2),
(Py3, P, 3) be finite paths such that

(1) (P, Py 1) is a one-step path extension of (P, Pro) in which n
strongly switches to RED,

(2) (Py2, Pr2) is a path extension of (B, P.1) in which n never
switches,

(3) (Py3, P, 3) is a one-step path extension of (P2, P.2) in which n
switches to BLUE.

Let m be the element following n in P, ;.

By definition of a strong switch, we have that there is no BLUE path
extension of (B, Po) to m. In particular, there is no BLUE path from
n to m that does not involve any integers (besides n) from B, or P, .

By hypothesis, n is in P, 3, so by Lemma 4.9, m must appear before
n in vag.

But then P, 3 has both n and m in it, and thus there is a BLUE path
from n to m. This provides a contradiction provided that we can prove
that this path P does not involve any integers besides n from P, or
P.y.

To show this, note that n and m are the last two elements of F, ;.
In particular, every element of P, appears before n in P, ;, and so
by Lemma 4.9, if it is in P, 3, it must appear after n. (This does not
happen, although we do not need this fact for this proof.) Likewise,
every element, besides n, of P, is in ;. Therefore, by Lemma 4.9,
it must appear before m in B, 3.

Note that we now have that if n strongly switches to RED, then the
RED path up to n is stable: n can never switch back to BLUE, and so
nothing can be added to or removed from the RED path before n. [
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Below we will modify the initial construction and require that all
switches are strong. This avoids the problem of instability discussed
above. We will from now on use only strong path extensions.

We note here that if our goal was only to provide another proof of
Theorem 1.2, then we would be done. The analogue of Lemma 4.4
is not true with strong one-step extensions, but it is true with strong
extensions, so we could simply use the initial construction with strong
extensions to provide a path decomposition for ¢. However, this process
might not produce a A§ path decomposition for the following reason.

If there are infinitely many strong RED switches, but only finitely
many BLUE switches, then the RED path is stabilized in a way that
allows it to be computed in a A§ manner, but the BLUE path can only
be computed in a A§ manner. It is A§ to recognize a strong switch,
but it is A§ to recognize that an element will never strongly switch in
the future. We will discuss this in more detail in Section 4.4. For now,
the key point is that we must sacrifice some of the simplicity of the
construction in order to provide a construction that can be carried out
by a computationally weaker oracle.

We now describe our construction explicitly. As suggested in the
above paragraph, the construction will depend on whether the number
of strong BLUE switches is finite or infinite and similarly for RED.
This leads us to a case-by-case analysis of our path decomposition.
In Section 5 we will show that there is no uniform way to produce a
A$§ path decomposition, which implies that there is no way to prove
Theorem 4.2 without some sort of case-by-case analysis.

The following allows us to define our cases nicely.

Definition 4.10. For a coloring ¢, we will say that we can always
strongly RED switch if for every pair (P, P.) of disjoint finite BLUE
and RED paths, there is a strong path extension (P, P,) of (P, P,)
such that there was a strong RED switch at some point during the
path extension between (B, P.) and (P, P,).

We define being able to always strongly BLUFE switch similarly.

Lemma 4.11. If the pair (B,, P,) witnesses that we cannot always
strongly RED switch and (B, P,) is a strong path extension of (P, P.),
then (Py, P,) also witnesses that we cannot always strongly RED switch.

Proof. Strong path extension is transitive. If there is a path extension
of (Py, P.) that includes a strong RED switch, then that same path
extension is also a path extension of (P, P.) that includes a strong
RED switch. O
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Our construction of a path decomposition breaks down into three dif-

ferent procedures depending on whether or not we can always strongly
BLUE and RED switch.

4.1. We can always strongly BLUE and RED switch. We will
inductively define (B, P, ) by multiple stages at once. For each s,
(Py.s41, Prs+1) will be a strong path extension of (P, s, P.5)-

Start with P,g = P.o = 0.

Let k the least stage where (P, P, ;) has yet to be defined. Let x
be the least integer not in the paths P, ;1 and P, ,_;. If there is a
BLUE path extension to x, let (P, P,x) by that path extension. If
this fails, try the same for RED. If both fail, switch either z; or x,
as in Lemma 4.4 to get P, and P, ;. It follows that this switch is a
strong switch. Next we stabilize some initial segment of our paths: Let
(Pyj+1, Prit1) be a strong path extension of (P, P, x) that includes
a RED switch, and let (P42, Prri2) be a strong path extension of
(Pyjt1, Prry1) that includes a BLUE switch.

We then repeat for the next integer not yet on either path.

All switches are strong switches, and by Lemma 4.8, the limits of
these paths exist. Since every integer is placed on our paths at some
stage, and since every integer can be moved at most once, we have that
every integer is on exactly one of the two limiting paths.

Therefore this construction gives a path decomposition.

4.2. We cannot always strongly RED switch. Let (P, P, o) wit-
ness that we cannot always RED switch, and furthermore assume that
among all such witnesses the length of P, is minimal.

Now consider (P, Ps) and z the least number not on these two
finite paths. If there is a BLUE path extension, to x, use that extension
for (Pyj41, Prg+y1). If this fails try to do the same for RED.

We claim that one of the two options listed above will always work.
Towards a contradiction, suppose that both fail. To add z we must
switch (like in Theorem 4.1). Call the resulting pair (P, P,). Then
(]5b, ]5r) is a strong extension of (P, P, s). So if x, switches to RED
then it strongly RED switches. This is not possible, by our choice of
(Poo; Pro)-

It follows that c({zp,z,.}) = BLUE and x, strongly switches
to BLUE. By Lemma 4.11, since (]55,}5T) is a strong extension of
(Pys, P,s), it must also witness that we cannot always RED switch.
Note that PT is shorter than P, ;, so by the minimality of P, (, we know
that P, # P.o. So z, was added to the RED path at some stage
t <s.



RADO PATH DECOMPOSITION THEOREM 15

Hence there is no BLUE path from x;; to x, which is otherwise
disjoint from P,; and P,;, as otherwise x, would have been added to
Py,

On the other hand there is a BLUE path from z;, to x;, witnessed
by the fact that x;; and z;, are both on the BLUE path at stage s. (By
induction, our construction has no switches up to this point, so x;; is
still on the blue path at stage s.) We also have that the pair x, x, is
colored BLUE, so there is a BLUE path from z;; to z,, a contradiction.

4.3. We cannot always strongly BLUE switch. This case is dealt
with in the same way as the previous one.

4.4. The use of the oracle ¢’. The existence of a path from x to n is
existential in the coloring. The lack of a path from z to n is universal in
the coloring. So deciding if “P, and P, is a one-step path extension of
P, and P, and x; strongly switches to RED” is universal in the coloring
and so computable in ¢'.

As aresult, ¢ can be used as an oracle to implement both of the above
constructions. In the case where we can always strongly RED and
BLUE switch, we can then use ¢’ to compute both of the paths because
both paths are stabilized by strong switches, and ¢’ can recognize the
strong switches. In the case where we cannot strongly RED (BLUE)
switch, we can also use ¢ to compute both of the paths because both
paths are already stable: no numbers ever switch from one path to the
other.

Note that Definition 4.10 is II3 in the coloring. Our division of cases
depends on the truth of this statement and the witness to its failure.
This is finite information but as a result the proof is not uniform in
c. In Theorem 5.6, we will show that this nonuniformity cannot be
removed.

The more naive construction, always greedily adding the next el-
ement by a strong extension with no case-by-case breakdown, can be
implemented uniformly by ¢, but the construction could potentially re-
sult in infinitely many RED switches and finitely many BLUE switches
(or vice-versa). In this case, the RED path would be computable from
¢ because the strong RED switches would stabilize it. On the other
hand, the BLUE path would not necessarily be computable from ¢’: the
statement that an initial segment of the BLUE path has stabilized is
universal in the construction (“for all future steps of the construction,
none of these elements ever RED switch”) and so is II in the coloring.
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Thus, the naive construction could potentially produce a path decom-
position in which one of the two paths was computable from ¢”, but
not ¢

In our proof of Theorem 4.2, if we can always switch then both the
BLUE and RED paths are infinite. But if we cannot always switch one
of the paths might be finite. In that case the constructed paths are
both computable from the coloring. In Theorem 5.1, we will see by a
more delicate case breakdown that this actually always happens. Thus,
although our strongly switching proof does not work for all colorings,
it does work for all “difficult” colorings: colorings for which there is no
computable solution.

5. UNIFORMITY

In the above section, we have provided a nonuniform A§ construction
and a uniform AJ construction of a path decomposition. Furthermore,
Theorem 4.2 showed that, in general, we cannot hope for a construction
that is simpler than AY, so the complexity of the construction cannot
be reduced. Here we address the question of whether the nonuniformity
of the AJ construction can be reduced.

Theorem 5.1 shows that if our primary construction for Theorem 4.2
fails, then there must be a path decomposition for ¢ in which one of
the two paths is finite and the other is computable from c.

Theorem 5.6 shows that there is no uniform A9 path decomposition.
Theorem 5.7 improves this to show we cannot even get by with a finite
set of possible AY indices for our path composition. Thus, nonunifor-
mity is unavoidable.

In light of this, the result in Theorem 5.1 is the closest possible thing
to a reduction of nonuniformity: All of the noncomputable cases are
handled by a single uniform AY construction, which cannot have its
complexity reduced due to Theorem 4.2, and all of the nonuniform
cases (unavoidable, by Theorem 5.7) are handled by computable con-
structions that are as simple as possible, with one path finite and the
other computable.

5.1. When we cannot always strongly BLUE and RED switch.

Theorem 5.1. There is a computable function f with the property that
for any e, if e is an index for a computable coloring c, then either f(e)
is an index for a AY path decomposition for c, or there is a computable
path decomposition for c in which one of the two paths is finite.

Note that this theorem relativizes: there is a uniform way to take a
coloring ¢, and attempt to produce a A§ path decomposition so that
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either the attempt succeeds, or there is a c-computable path decompo-
sition for ¢ in which one of the two paths is finite.

Proof. The proof hinges on the case analysis from the proof of Theo-
rem 4.2.

In the case where we can always strongly BLUE and RED switch, the
proof is uniform: we alternate between adding the next element, adding
a RED switch, and adding a BLUE switch, and our A§ path decom-
position is simply the path decomposition stabilized by the switches.
Our function f will be the function corresponding to attempting to do
that construction.

It remains to show that if we cannot always RED switch, then there
is always a c-computable path decomposition in which one of the two
paths is finite. (The case where we cannot always BLUE switch will
follow by symmetry.)

As in the proof of Theorem 4.2, let (B, P.) witness that we can-
not always RED switch, and furthermore assume that among all such
witnesses the length of P, is minimal. Let x; and z, be the endpoints
of the paths Py, P.o. We split our proof into two cases.

Case 1: Assume that for every n € N, and for every BLUE extension
(Py, P.o) of (Pyo, Pro), if n is not on either B, or P, , then there is a
BLUE path extension of (P, P.o) to n.

In this case, we will use P, as our RED path, and grow our BLUE
path to cover the rest of N. We use a basic greedy algorithm.

At stage s, let (D5, P,o) be the pair of paths that we have, and let
ns be the smallest number not on either path. We search for a BLUE
path extension of (B, P, o) to ng, and when we find such an extension,
we let (P11, Pro) be the first such extension that we find.

By hypothesis, we will always find such an extension, and this algo-
rithm clearly covers all of N in the limit.

Case 2: Assume Case 1 does not hold. Let (P, P,o) be a BLUE
path extension of (P, P.o), and ng € N so that there is no BLUE
path extension of (B 1, Pro) to ny.

We claim that in this case, we actually have that for every n € N,
and for every RED extension (F,,, P.) of (P, 1, Pry), if n is not on either
P, or P, then there is a RED path extension of (F;,, P.) to n. Thus
we may use the RED analogue of the previous algorithm. The proof of
this claim will be somewhat circuitous.

First we show that there is no n such that (B, 1, P,o) has both a RED
extension to n and a BLUE extension to n. After this we will show that
actually either there is no n such that (P, 1, P.o) has a BLUE extension
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to n or there is no n such that (B, 1, P.o) has a RED extension to n.
We will then show that the first case is true. Finally, from there, we
will show that for every n € N, and for every RED extension (B, , P,)
of (Py1, Pro) there is a RED path extension of (B, P.) to n.

During these proofs, we will repeatedly use the following facts.

(1) (Pya,Prp) is a witness to the fact that we cannot always RED
switch.

(2) P.ohas minimal length among the RED paths of such witnesses.

(3) There is no BLUE path extension of (B, 1, Pro) to ng.

The first two facts follow from the fact that (P, P, o) is a BLUE path
extension of (P, P,). The third is from our hypothesis in Case 2.

Claim 5.2. There is no n such that (Py,1, P.o) has both a RED exten-
ston ton and a BLUE extension to n:

Proof. Assume not, and let n; be such an n. Replacing n; if necessary,
we may assume that the BLUE path extension to n; and the RED path
extension to n; do not intersect before n;. Consider the edge from n,
to ng.

If this edge is BLUE, then we can add ng to the end of the BLUE
extension to ny, creating a BLUE path to ng. This contradicts fact (3).

If the edge is RED, then consider the path extension (Pb,ff’r) of
(P, Prp) in which B, is created by the BLUE path extension to nj,
and If’r is created by the RED path extension to ny, but with n; removed
from the end. Let = be the last element of ]sr. Now we have that the
edge from x to ny is RED, the edge from n; to ng is RED, and there
is no BLUE path extension from (Pb, ]5T) to mg. So we can strongly
switch ny to RED. This contradicts fact (1). O

Claim 5.3. Either there is no n such that (Py1, Pro) has a nontriv-
ial BLUE extension to n or there is no n such that (Py1, P.o) has a
nontrivial RED extension to n.

A path extension (P, P,) of (P,, P,) is nontrivial if (P,, P,) # (Py, P,).

Proof. Assume not, and let ny,ny be such that (P, P o) has a non-
trivial BLUE extension to n; and a nontrivial RED extension to ns.
Consider the edge between n; and ny. If the edge is RED, then we
can use it with the RED path to ny to create a RED path to n,. But
then (P, 1, P,o) has both a RED extension to n; and a BLUE extension
to ny, contradicting Claim 1. If the edge is BLUE, we can similarly
conclude that (P, 1, P,o) has both a RED and a BLUE extension to na,
again contradicting Claim 5.2. U
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Claim 5.4. There is no n such that (Py1, P.o) has a nontrivial BLUE
extension to n.

Proof. Again, assume not. Then by Claim 5.3, there is no n such
that (Py1, P.o) has a nontrivial RED extension to n. In particular,
(Py1, Prp) does not have a RED extension to ng. By fact (3), (Py1, Pro)
also does not have a BLUE extension to ng. It follows, by Lemma 4.4,
that we can add ng by a switch, and the switch must be a strong switch.

The switch cannot be a strong RED switch by fact (1). Also, the
switch cannot be a strong BLUE switch because if we performed a
strong BLUE switch on (P, P, o), it would create a strong path ex-
tension in which we decreased the length of the RED path. This contra-
dicts fact (2), recalling that by Lemma 4.11, any strong path extension
of (Py1, Pro) must also witness that we cannot always RED switch. O

Claim 5.5. For every n € N, and for every RED extension (Py1, P,)
of (Po1, Pro), if n is not on either P,y or P,, then there is a RED path
extension of (Py1, P.) to n.

Proof. Let (Py1, P;) be a RED extension of (P4, P,o), and let ny be
an element of N that is on neither P,; nor P,. Assume there is no
RED extension of (B, 1, P.) to n. By Claim 5.4, there is also no BLUE
extension of (B, 1, P.) to n, because extending the RED path cannot
make it any easier to find a BLUE extension. Then, by Lemma 4.4,
to add ny to (Py1, P.), we must do a switch, and the switch must be
strong.

We split our proof into two cases:

If (Py1, P) = (P, Prp), then the proof proceeds exactly as the proof
of Claim 5.4. The switch cannot be a strong RED switch by fact (1),
and the switch cannot be strong BLUE switch by fact (2).

If (Py1,P.) # (Po1,Pro), then the switch still cannot be a strong
RED switch by fact (1), recalling again that by Lemma 4.11, any strong
path extension of (P, P, ) must also witness that we cannot always
RED switch. The switch also cannot be a BLUE switch, because for
the switch to be a BLUE switch, the edge from the end of the P, to
the end of P. must be BLUE, contradicting Claim 5.4. 0

This completes of Theorem 5.1. U

Note that if we are in Case 2 of the above construction, we have no
way of knowing whether we will find the x we are looking for, so we
cannot know when to switch to the construction for Case 1. This does
not concern us. We are only proving that there is a computable path
decomposition with one path finite, not that the path decomposition
can be found uniformly.
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5.2. No Uniform AY index.

Theorem 5.6. There is no partial computable function f such that if
e is an index for a computable coloring c, then f(e) is an index for a
AY path decomposition for c.

Proof. Let f be a partial computable function. We create a computable
coloring with index e such that if f(e) is defined, then f(e) is not an
index for a AJ path decomposition for c.

Our construction is in stages. During stage s of the construction, for
every t < s, we color the pair {t, s+ 1}.

By the recursion theorem, we may know the index, e, for the coloring
that we are constructing. We begin computing f(e), and while we wait
for it to halt, we color everything BLUE with everything else.

If f(e) halts, then by the limit lemma, we begin approximating the
AY paths P, and P, computed by the f(e)th AJ index. We let P, , and
P, s be the stage s approximations to P, and Fj.

The only facts we will need about the approximations is that if P,
is defined and empty, then there is some s such that for all ¢ > s, P,
is empty and likewise that if P, is defined and nonempty, then there is
some s such that for all £ > s, P, is nonempty and the first element
of P, is the first element of B,.

We define z4 to be the first element of P, s (with = undefined if P,
is empty). We may assume that s < s.

At stage s if B, 5 is empty, we color everything BLUE with s+1. On
the other hand, if P, is nonempty, then let s; be minimal such that
for all t € [sg, s|, x; = xs. Then, if t < s, we color {t,s+ 1} RED, and
if so <t <s-+1, we color {t,s + 1} BLUE.

This completes the construction. We now verify that if f(e) is defined
and if the A set with index f(e) is defined, then it is not a path
decomposition for c.

Assume f(e) and the AY set with index f(e) are defined. We have
two cases. Either P, is empty or it is not empty.

If P, is empty, then there is some sy such that for all s > sy, P,
is empty. But then, after stage s, we only create BLUE edges, so at
most finitely many edges are RED. Thus P, can only be a finite length,
and P, is empty, so P, and P, do not form a path decomposition for c.

If P, is not empty, then it has some smallest element x, and there
is some smallest sy such that for all s > sy, s = x. Note that
S0 > xs, = x. But then no number < s is ever colored BLUE with
any number greater than sy, so in particular if z is in the BLUE path,
then the BLUE path cannot go through any numbers larger than s,
and must be finite. However, every number larger than sg is colored



RADO PATH DECOMPOSITION THEOREM 21

BLUE with every other number larger than sq, so for every ¢t > sg on
the RED path, the next element on the RED path must be < s43. Thus,
the RED path can have length at most 2sy, and is also finite. Again,
P, and P, do not form a path decomposition for c. O

We remark now that the technique of Theorem 5.6 only allows us
to build a coloring ¢ that can defeat any single uniform manner of at-
tempting to produce a AJ path decomposition from c. For the coloring
c that we create, it is not at all difficult to produce a path decomposi-
tion; it is just the case that the f(e)th AY set fails to do so.

5.3. No finite set of AJ indices. We show now, by a strengthening
of the argument from Theorem 5.6 that it is impossible to reduce the
nonuniformity to a finite collection of A§ indices.

Theorem 5.7. There is no partial computable function f such that if
e is an index for a computable coloring c, then f(e) is an index for a
finite c.e. set Wy one of whose elements is an index for a AY path
decomposition for c.

Proof. Let f be a partial computable function. We create a computable
coloring with index e such that if f(e) is defined, and if Wy is finite,
then no element of Wy is an index for a Aj path decomposition for
c.

Our construction is in stages. During stage s of the construction, for
every t < s, we color the pair {t,s + 1}.

By the recursion theorem, we may know the index, e, for the coloring
that we are constructing. We begin computing f(e), and while we wait
for it to halt, we color everything BLUE with everything else.

If f(e) halts, then we begin enumerating Wy). Let Wy, be the
stage s approximation to Wy(,).

For each 7 in Wy, let Py; , and P.; ; be the stage s approximations
to the BLUE and RED paths of the ith A approximation to a path
decomposition. We may assume B, ; ; and P, ; ; have no elements larger
than s. Let P,; and P,; be the limits, if they exist, of P,; s and P, ;.

We will use z as a variable for a color (BLUE or RED), as well as
for a letter for a color (b or r). We will write 1 — z to refer to the other
color.

For each i € Wy, we will have two strategies S; and S, ;, which
will work to ensure that if (B,;, P.;) forms a path decomposition for
¢, then P,; (respectively P, ;) is finite. Note that if both S, and S, ;
achieve their goals, then (P, ;, P.;) cannot form a path decomposition
for c.
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At stage s, if every P, ; , with i € Wy is empty, then we continue
to color everything BLUE.

If at least one P, ; s is nonempty, and if there are no currently active
strategies, then we will activate one S, ; such that P, ; has been stably
nonempty for the longest time. More precisely, for each (z,i) such
that ¢ € Wy s, and P, is nonempty, let ¢, ; be minimal such that
Vit € [tys, 8], Prit is nonempty, with first element equal to the first
element of P, ;.. Let ty = ming;(t.;), and let (zo,7) be minimal
among all (x;) such that ¢,; = to. We activate strategy S, .i,-

When this happens, Sy, ;, claims the set [0,s], declaring that
Vt € [0,s] Vs > s, the color of {t,s'} will be 1 — xy. This re-
straint will remain in effect either until the end of the construction, or
until some later stage when the smallest element of P, ;, changes.

If at some point the smallest element of P, ;, changes, we injure
every active strategy in the construction: Every active strategy forgets
its claim set and deactivates. After that, we will probably be back in
the case where there are no active strategies, and we are choosing a
new strategy to activate.

Note that if S, ;, is never injured, then it will have achieved its goal:
P,,.i, has an element in [0, s], and there are no numbers in [0, s] that
are colored xy with any numbers > s, so P, ;, will never be able to
exit the interval [0, s].

Now, assume that at stage s, there are finitely many active strategies
SZOJO? S$1,i17 ceey Sﬂ?k,ik with claim sets [0, So], (S(), 81], ce (Sk—ly Sk].

We say that an inactive strategy S, ; is eligible to act if

0,20

RS Wf(e),sa
e The paths P, and P, include every element of [0, s;], and
e The last element of P, s is larger than s;.

If any strategy is eligible to act, then we will choose one to activate in
the following manner: For each (z,4) such that S, ; is eligible to act,

let Pms be the shortest initial segment of P, ;. that includes every
element of [0, s;| that is in P, ; s, and that ends with an element not
in [0, sg]. Let Pl,x,m be the shortest initial segment of P,_, ;¢ that
includes every element of [0, sg] that is in P, ;4. (The double hat
on P, is is used because P zis may already be defined if (1 — z,1)
also satlsﬁes the properties above. Note that if both are defined, then
P1 25 1S P1 x4, With one extra element at the end.)

Let t,; be mlnlmal such that Vt € [t,;, s], les is an initial segment

of P,;; and Pl_mms is an initial segment of P;_,;,. We think of ¢, ; as
measuring how long S, ;’s reason for acting has been valid.
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Let tpy1 = ming;)(t,:), and let (y,j) be minimal among all (x,1%)
such that ¢, ; = ty+1. We activate strategy 5, ;. So the strategy that is
activated is the one whose reason for acting has been valid the longest.

When this happens, S, ; claims the set (sg,s], declaring that
Vi € (sg,s] Vs > s, the color of {t,s'} will be 1 —y. This re-
straint will remain in effect either until the end of the construction, or
until some later stage when S, ; becomes injured.

~

If at some stage s’ > s, we see that P, is not an initial segment of

P, s or pl—y7j7s is not an initial segment of P_, ; &+, then at that stage,
injure S, ; as well as every strategy that became active after stage s.
The injured strategies all forget their claim sets and deactivate. If this
happens, we say that the reason S, ; activated is no longer valid.
Note again that if S ; is never injured, then it will have achieved its

~

goal as follows. The last element of P, ;s is in (s, s]. Every element of
(sk, s] is colored 1 —y with every element larger than s, so P, ; cannot
exit (sg, s] by moving to a number larger than s. Finally, every number

< s, is already in either Jf’y,j,s or Pl_y,j,s. These are initial segments of
P, ;, Pi_, ; (because otherwise S, ; would be injured) and so P, ; cannot
exit (sk, s| by moving to a number < s, because all of those numbers
are already on one of the two paths. Thus P, ; is unable to have any
elements > s.

At the end of stage s, after determining which, if any, strategy be-
comes activated at stage s, for every t < s, we color {t,s + 1} by
the following algorithm. If ¢ is in any active strategy’s claim set, then
we color {t,s + 1} according to that strategy’s restriction. (Note that
the claim sets of our active strategies are always disjoint.) If ¢ is not
claimed by any strategy, then color {t,s + 1} BLUE.

This completes the construction of c. We now verify that if Wy, is
finite, then for every i € Wy, (P, Pr;i) is not a path decomposition
for c. The verification will consist of two claims. Claim 5.8 was already
verified during the construction.

Claim 5.8. For every (x,1), if at some stage s, S,; becomes active,
and is never injured after stage s, and if (Py;, P.;) forms a path de-
composition for c, then P, ; is finite.

Claim 5.9. If Wy is finite, then for every (x,i), if i € Wy,
(Pyi, Pr;) forms a path decomposition for ¢, and P,; is infinite, then
there is an s such that S,; becomes active at stage s, and is never
injured after stage s.

Proof. Fix some pair (y, j) such that j € Wy, (P, Pr;) forms a path
decomposition for ¢, and P, ; is infinite.
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Let Sugio> Szisins - - - » Ong.i, D€ the strategies which at some point ac-
tivate and never get injured again. If S, ; is one of these strategies,
then we are done, so assume it is not.

For each S;,.,, let s, be the stage when S, ;. is activated for
the last time, never to be injured again. Reordering the S, ;. so
that the s, are in increasing order, we may assume that at stage
sy, the strategies Sy g, Sziirs- - -, On,,, are all active, with claim sets
[0, s0], (S0, S1]; - - -, (Sk—1, S|, that none of the S, ;. will ever be injured
after stage s;, and that no other strategies are active at stage sy.

(They are all active and will never be injured again because sy, is the
max of the s,. There are no other strategies active because Sy, ;, just
became activated at stage si, and, by definition of the S, ;. , if any
other strategy was active, it would get injured again later, but then

this would injure S, ;,, contradicting the choice of s;.)

For each z, let ]5,,:,]- be the shortest initial segment of P, ; that includes
every element of [0, s] that is on P, ;. By assumption, (B, P, ;) forms

~

a path decomposition for c¢. Therefore, in particular, vaj P, ; together
cover all the elements of [0, sy]. Also by assumption, P, ; is infinite, so

let 15%]- be the initial segment of P, ; whose length is one greater than

the length of ﬁy’j,
Let to be minimal such that ¢y > si, 7 € Wy(e) 4, and for all ¢ > 1,

~

P, ; is an initial segment of P, ;;, and Pl,y,j is an initial segment of
Py_, ;. We claim that there will be some stage s > ¢, so that S,
Sarirs -+ Ou,i, are the only strategies active at the beginning of stage
s, and S, ; becomes active at stage s. We also claim that after that
stage s, S, ; will never be injured.

Claim 5.10. There is some s > to s0 that Syyio, Suyiirs-- -5 Supi, ATE
the only strategies active at the beginning of stage s, and S, ; becomes

active at stage s.
Proof. The proof of Claim 5.10 hinges on the following.

Claim 5.11. For every pair (x,1), if (z,i) # (y,J), then there can be
at most one stage s > to such that Sy, iy, Szyivs- - -5 Sup,ip 1€ the only
strategies active at the beginning of stage s, and S,; becomes active at
stage s.

Proof. To see this, assume that s > o, Syg.ips Sarirs - - - > Oupi, are the
only strategies active at the beginning of stage s, and S,; becomes
active at stage s. Assume further that S, ; is injured at stage s’ > s.
Let s” > s' be a stage at which Sy, iy, Sz1,i1s-- -5 Sz, are the only

active strategies.
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Then, at stage s”, even if S,; is eligible to act, ¢,; must be
> §'. This is because tq is larger than the stage at which any of
the Sugios Sarins - - - » Sup.iy, 18 ever injured, and so, at stage s’, when S, ;
was injured, it must have been injured because its reason for acting
was no longer valid. Thus, ¢,; > ', but, by choice of ¢, we know that
Sy ; is eligible to act and ¢, ; < t,. Thus, it is not possible for S, ; to

become active at stage s”, because S, ; is ahead of it in queue. O

Claim 5.10 now follows directly, because, by definition of Sy, i;, Sz1.i1,

-+ Sapin, We know that every S, ; that becomes active after stage sy
must become injured at a later stage. We have that Wy is finite, and
so by Claim 5.11 there can be at most finitely many stages after ¢ty when
Saoios Swrsirs - - - s Oupi, are the only active strategies, and some strategy
other than S, ; becomes active. Each time such a strategy becomes
active at such a time, and later becomes injured, we have another stage
at which Sg o, Sz1,its - - - » Oa,.i, are the only active strategies. By choice
of ty, at each such stage, S ; is eligible to act, so once no other strategy
is able to become active, we must have that S, ; becomes active at a

stage at which Sy i, Sz1iry - - -5 Sap.i, are the only active strategies. [

We conclude the proof of Theorem 5.7 with a proof of the following.

Claim 5.12. Assume S, ; becomes active at a stage s > to such that
Saoios Swrsirs - - - Oupip are the only strategies active at the beginning of
stage s. Then Sy ; is never injured after stage s.

Proof. None of the Sy, iy, Szyivs-- -, Oz, are ever injured after stage
sk, and ty was chosen to be large enough that if S, ; becomes active
at stage s > ty, and if the previously claimed elements at stage s are
[0, sx], then S, ;’s reason for acting will remain valid forever, and so
Sy ; will never injure itself.

Sy; can only be injured by itself or by a strategy that was active
when S, ; became active. It follows that S, ; will not be injured after

stage s. ]

This completes the proof of Claim 5.9, as we have shown that there
must be a stage so that S, ; becomes active at that stage and is never
injured after that stage. 0

Theorem 5.7 now follows from Claims 5.8 and 5.9, because N is
infinite, so any path decomposition of N must have an infinite path.
Considered together, Claims 5.8 and 5.9 say that if Wy, is finite, and
if i € Wy(), then either (Py;, P.;) do not form a path decomposition
for ¢, or both P,; and P,; are finite (in which case they cannot form a
path decomposition for c). O
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6. RPD COMPARED TO RAMSEY’S THEOREM FOR PAIRS

One fact about (infinite) Ramsey’s Theorem that is regularly used
is that for every coloring ¢ : [N]? — 7 and every infinite set X, there is
an infinite homogeneous set H C X. However, a path decomposition
of a set X C N for the restricted coloring ¢ : [X]?> — 7 does not help us
to find a path decomposition for the unrestricted coloring ¢ : [N]* — 7.

There is a proof which uses compactness to show the infinite version
of Ramsey theorem implies the finite version. For example, see Gra-
ham et al. [1]. By Theorem 4.5, we know this compactness argument
fails for the Rado Path Decomposition Theorem. A compactness ar-
gument breaks down since the paths linking numbers below m might
also involve numbers larger than m.

7. COROLLARIES IN MATHEMATICAL LOGIC

The existence of a non-principal ultrafilter on the natural numbers
is a strong assumption that unfortunately cannot be shown in Zermelo

Fraenkel set theory, see Feferman [2]; the axiom of choice is sufficient
see Jech [6]. By independent results of Towsner [12], Enayat [1], and
Kreuzer [8], the ultrafilter proof of Rado Path Decomposition implies

that for every r-coloring ¢ of [N]? there is a path decomposition arith-
metical in ¢, and as a statement of second order arithmetic the Rado
Path Decomposition Theorem holds in AC'A,.

A careful analysis of the cohesive proof shows that a path decompo-
sition can always be found in the jump of the cohesive set C’. The key
issue is that exactly one N(m,j) is large (with respect to our cohesive
set ). It is AY (but not computable in C) to determine which one.

Jockusch and Stephan [7] have showed that d is PA over 0/ if and only
if there is a cohesive set C' such that C’ <7 d. This implies that there
is always a path decomposition computable in ¢”, equivalently there is
a A§ path decomposition. It also implies there is a path decomposition
whose jump is ¢”.

For 2-colorings, Theorem 4.2 shows this bound can be improved to
A§. For stable colorings the bound can also be improved to A§. (Use
the stable proof of RPD and note that determining m’s color is A§.)

Theorem 3.1 shows that we cannot expect to do better than AS. So
for stable and 2-coloring the bound of A§ is tight.

For more than two colors, we do not have an exact calibration of the
effectivity of path decomposition.

Question 7.1. Does every 3-coloring ¢ have a A§ path decomposition?
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Question 7.2. Is there an unstable 3-coloring ¢ such that every path
decomposition is PA over 0/ ¢

Question 7.3. Does increasing the number of colors past 3 have any
effect on the above two questions?

Theorem 3.1 shows as a statement of second order arithmetic the
Rado Path Decomposition Theorem implies ACA,.

One might wonder why we cannot use the generic construction to
answer Question 7.2 by building a path decomposition that avoids the
cone of degrees above 0. The problem is that forcing X¢ statements
(like does ®%(w)|) is ¥ not XF. The ends of finite paths P; must

have color j and determining this is not 3.
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