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Abstract

A Ramsey-like theorem is a statement of the form “For every 2-coloring
of [N]2, there exists an infinite set H ⊆ N such that [H]2 avoids some
pattern”. We prove that none of these statements are computably trivial,
by constructing a computable 2-coloring of [N]2 such that every infinite
set avoiding any pattern computes a diagonally non-computable function
relative to ∅′. We also consider multiple notions of weaknesses based of
variants of immunity, and characterize the Ramsey-like theorems which
preserve these notions or not, based on the shape of the avoided pattern.
This is part of a larger study of the reverse mathematics of Ramsey-like
theorems.

1 Introduction

Among the theorems studied in reverse mathematics, Ramsey’s theorem for
pairs and two colors plays an important role, as it is historically the first
statement proven to escape the structural phenomenon known as the “Big
Five” [37, 29]. Ramsey’s theorem for pairs and two colors (RT2

2) states that for
every 2-coloring of [N]2 — the set of the unordered pairs over N —, there exists
an infinite set H ⊆ N such that [H]2 is monochromatic. The meta-mathematical
study of Ramsey’s theorem for pairs and its consequences motivated the discovery
of many tools in computability theory, proof theory and combinatorics, among
others [35, 4, 26, 28, 34].

In this article, we study a generalization of RT
2
2 to a family of statements

RT
2
2(p) stating that every coloring f : [N]2 → 2 admits an infinite subset H ⊆ N

avoiding the pattern p, where a pattern p : [ℓ]2 → 2 is a finite 2-coloring for
some ℓ ∈ N, and avoiding the pattern p means that p does not embed to f ↾ [H]2.
These statements are referred to as Ramsey-like theorems. We prove lower
bounds on the statements RT

2
2(p) in a strong sense: there exists a computable

coloring f : [N]2 → 2 such that every infinite set avoiding any pattern computes a
diagonally non-computable function relative to ∅′, that is, a function g : N → N

such that g(e) 6= Φ∅′

e (e) for every e ∈ N. We also prove that RT
2
2(p) does
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not admit probabilistic solutions, in that there exists a computable coloring
f : [N]2 → 2 such that the measure of oracles computing an infinite set avoiding
any pattern is 0. Beyond those uniform lower bounds, our main contributions
is a characterization of which Ramsey-like theorems RT

2
2(p) preserve various

notions of immunity, based on the shape of the pattern p. More precisely, we
consider preservation of ω hyperimmunities [32, 6], preservation of 2-dimensional
hyperimmunity [27] and preservation of ω 2-dimensional hyperimmunities. The
characterization for preservation of ω hyperimmunities is used in a follow-up
article by Le Houérou and Patey [16] to identify the Ramsey-like theorems
equivalent to Ramsey’s theorem for pairs over ω-models.

1.1 Reverse mathematics

Our main motivation is reverse mathematics, but since we mainly consider
separations over ω-models, we shall place ourselves in the standard computability-
theoretic realm, with no induction considerations. Reverse mathematics is
a foundational program started by Harvey Friedman, whose goal is to find
optimal axioms to prove ordinary theorems. It uses sub-systems of second-order
arithmetic, with a base theory, RCA0, standing for Recursive Comprehension
Axiom, which arguably captures “computable mathematics”. See Simpson [37]
for a presentation of early reverse mathematics, with the Big Five phenomenon,
and Dzhafarov and Mummert [8] for a more recent introduction.

Models of second-order arithmetic are of the form M = (M,S,+, ·, <), where
M denotes the sets of integers, S ⊆ P(M) is the collection of sets, +, · are binary
operators and < is a binary relation. The structure (M,+, ·, <) is also called
the first-order part of M, and S its second-order part. When proving a non-
implication over RCA0, one prefers to witness the separation by a model as close
to the standard interpretation as possible. We shall therefore mostly consider
ω-models, that is, structures of the form (ω, S,+, ·, <), where ω is the set of
standard integers, and +, · and < have their usual interpretation. An ω-model
is therefore fully specified by its second-order part, and often identified with it.

Friedman characterized the second-order parts of ω-models of RCA0. A
Turing ideal is a non-empty collection of sets I that is downward-closed under
the Turing reduction (∀X ∈ I ∀Y ≤T X Y ∈ I) and closed under the effective
join (∀X,Y ∈ I X ⊕ Y ∈ I), where X ⊕ Y = {2n : n ∈ X} ∪ {2n+ 1 : n ∈ Y }.
An ω-model satisfies RCA0 if and only if its second-order part is a Turing ideal.
From now on, we shall always assume that the ω-models satisfy RCA0.

1.2 Ramsey’s theorem for pairs

As stated earlier, RT2
2 holds an important place in reverse mathematics, as it

belongs to its own subsystem. Its study was shaped by numerous seminal papers
and long-standing open questions. Jockusch [18] studied arithmetic bounds for
Ramsey’s theorem for pairs, by proving that every computable instance of RT2

2

admits a Π0
2 solution, while there exists a computable instance with no Σ0

2

solution. By instance, we mean a coloring f : [N]2 → 2, while a solution to f
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is an infinite homogeneous set. Seetapun [35] then showed that RT
2
2 does not

imply the arithmetic comprehension scheme over RCA0 by proving so-called cone
avoidance of RT2

2, that is, for every non-computable set C and every computable
instance of RT2

2, there exists a solution H such that C 6≤T H. Cholak, Jockusch
and Slaman [4] extensively studied RT

2
2 both from a computability-theoretic

and proof-theoretic viewpoint, and introduced the decomposition in terms of
stability and cohesiveness. Then, Liu [26] proved that RT

2
2 does not imply

weak König’s lemma over RCA0 using PA avoidance. Nowadays, the reverse
mathematics of Ramsey’s theorem for pairs are relatively well understood, but
few important open problems remain, such as the characterization of its first-
order consequences [23].

In order to better understand the strength of Ramsey’s theorem for pairs and
its role in the Big Five phenomenon, multiple of its consequences were studied,
among which the Erdős-Moser theorem [9] and the Ascending Descending Sequen-
ce principle. A set H is transitive for a coloring f : [N]2 → 2 if for every
x < y < z ∈ H and every i < 2, f(x, y) = i and f(y, z) = i implies f(x, z) = i.
The Erdős-Moser theorem (EM) is a statement from graph theory stating that
every coloring admits an infinite transitive set. The Ascending Descending
Sequence principle (ADS) says that every infinite linear order admits an infinite
ascending or descending sequence. Bovykin and Weiermann (and Montálban) [2]
showed that RT

2
2 admits a natural decomposition in terms of EM and ADS.

Indeed, given an instance f : [N]2 → 2 of RT
2
2, see it as an instance of EM,

to get an infinite transitive set G = {x0 < x1 < . . . } ⊆ N. Such a transitive
set induces a linear order L = (N, <L) as follows: for every i <N j, let i <L j
iff f(xi, xj) = 0. For every infinite L-ascending or L-descending sequence H,
the set {xi : i ∈ H} is an infinite f -homogeneous set. Lerman, Solomon and
Towsner [25] and Hirschfeldt and Shore [12] proved that this decomposition is
non-trivial, in that neither EM nor ADS implies RT

2
2 over RCA0.

1.3 Ramsey-like theorems

Both the Erdős-Moser theorem and the Ascending Descending Sequence principle
can be seen as weakening of Ramsey’s theorem for pairs, formulated in terms of
avoidance of forbidden patterns. As mentioned, a pattern is a 2-coloring of pairs
over a finite initial segment of N, i.e. a function p : [ℓ]2 → 2 for some ℓ ≥ 1. Then
ℓ is called the length of the pattern p, written |p|. Let p be a pattern of length ℓ,
and f : [N]2 → 2 be a coloring. We say that a finite set F = {x0 < · · · < xℓ−1}
f -realizes p if for every σ ∈ [ℓ]2, f({xi : i ∈ σ}) = p(σ). We say that H ⊆ N f -
avoids the pattern p if no subset ofH f -realizes p. The Erdős-Moser theorem can
then be rephrased as “For every coloring f : [N]2 → 2, there exists an infinite set
f -avoiding the two patterns of Figure 1.” The Ascending Descending Sequence
principle can be seen as the dual statement “For every coloring f : [N]2 → 2
avoiding the patterns of Figure 1, there exists an infinite homogeneous set.”

In this article, we only consider Ramsey-like theorems of the first kind, that
is, the following family of statements:
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a b c0 0

1

a b c1 1

0

Figure 1: The two graphs represent the patterns p0 : [3]2 → 2 and p1 : [3]2 → 2,
respectively defined as follows: p0(0, 1) = p0(1, 2) = 0, p0(0, 2) = 1, p1(0, 1) =
p1(1, 2) = 1 and p1(0, 2) = 0. The domain {0, 1, 2} corresponding to the set of
vertices is renamed {a, b, c} for readability.

Statement 1.1. For every pattern p, RT2
2(p) is the statement “Every coloring

f : [N]2 → 2 has an infinite set f -avoiding p.”

First, note that Ramsey’s theorem for pairs does not seem to be cast in
this setting, as it states the existence of an infinite set avoiding either of the
two constant patterns of length 2. We shall however see through Lemma 3.5
that for every pair of patterns p, q, there exists another pattern p ⊎ q such that
the existence of an infinite set avoiding p⊎ q is equivalent to the existence of an
infinite set avoiding p or q. Thus, every disjunctive pattern avoidance statement
belongs to this family of Ramsey-like theorems.

Patey [33] first introduced a more general family of Ramsey-like theorems
where arbitrary many patterns can be avoided simultaneously, and characterized
the patterns admitting strong cone avoidance. Ramsey-like theorems for patterns
of size 3 and their dual statements were studied independently by multiple
authors. See Cervelle, Gaudelier and Patey [3, Section 1.2] for a survey. In
this article, our main contributions are of two kind. First, we prove uniform
lower bounds to the family of Ramsey-like theorems: A function g : N → N

is diagonally non-computable relative to X (or X-DNC) if for every e ∈ N,
g(e) 6= ΦX

e (e).

Main Theorem 1.2. There exists a computable coloring f : [N]2 → 2 such
that every infinite set H ⊆ N avoiding any pattern for f computes a ∅′-DNC
function.

In particular, such a coloring admits no Σ0
2 infinite set avoiding any pattern,

as there is no Σ0
2 ∅′-DNC function. Note that for every set X, there exists a

probabilistic algorithm to compute an X-DNC function: given n ∈ N, let g(n)
be a value picked at random within [0, 2n+2). Then the probability of failure
is bounded by

∑

n 2−n−2 = 0.5. Our next lower bound shows that there is no
probabilist algorithm avoiding a pattern in general, as there exists a coloring
such that the class of the sets avoiding any pattern is of measure 0 :

Main Theorem 1.3. There is a computable coloring f : [N]2 → 2 such that
the measure of oracles computing an infinite set avoiding any pattern for f is 0.

Our second main contribution is the characterization of which Ramsey-like
theorems admit some notion of preservation, in a sense that we define now.
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1.4 Preservation of immunities

Many statements studied in reverse mathematics are Π1
2 sentences which can

be seen as mathematical problems, in terms of instances and solutions. A proof
that a problem P does not imply another problem Q over RCA0 usually consists
of creating an ω-model by iteratively adding solutions to instances of P, while
avoiding adding solutions to a fixed instance of Q. For this, it is useful to identify
a property which is preserved by P, but not by Q.

Definition 1.4. A weakness property is a non-empty class of sets which is
downward-closed under the Turing reduction.

There exist many natural weakness properties, such as being ∆0
n for some n ≥

1, being of low degree, or even not computing the halting set. Any Turing ideal
is a weakness property, but most natural weakness properties are not closed
under effective join. For instance, the join of two low sets can compute the
halting set.

Definition 1.5. A problem P preserves a weakness property W ⊆ 2N if for
every Z ∈ W and every Z-computable P-instance X, there is a P-solution Y
to X such that Y ⊕ Z ∈ W.

Intuitively, a problem P preserves a weakness property if every weak instance
admits a weak solution, in the appropriate relative form. By a classical argument
(see [31, Section 3.4]), if P preserves W, then for every Z ∈ W, there exists an
ω-model of RCA0 +P containing Z. It follows that if P preserves W but Q does
not, then there is an ω-model of RCA0 + P which is not a model of Q.

The weakness properties considered to separate theorems from Ramsey theory
are usually formulated in terms of variants of immunity. An infinite set A ⊆ N is
immune if it does not contain any infinite computable subset. If an instance of a
Ramsey-like theorem RT

2
2(p) admits no computable solution, then any solution

is immune, as the class of solutions is closed under infinite subsets. We shall
consider two variants of immunity, inducing many preservation properties.

Definition 1.6. An array is a collection of non-empty finite sets ~F = 〈Fn :
n ∈ N〉 such that minFn > n for every n ∈ N. An array is c.e. if the function
which to n maps a canonical code of Fn is computable. An infinite set A ⊆ N

is X-hyperimmune if for every X-c.e. array ~F , there is some n ∈ N such that
X ∩ Fn = ∅.

Hyperimmunity is a strong form of immunity, as one cannot even approximate
an infinite subset by blocks. There exists a characterization of the Turing degrees
of hyperimmune sets in terms of function domination. A function f : N → N

dominates g : N → N if f(n) ≥ f(n) for every n ∈ N. A function f is X-
hyperimmune if it is not dominated by any computable function. The degrees
computing an X-hyperimmune set and those computing an X-hyperimmune
function coincide.
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Definition 1.7. Fix k ∈ N ∪ {N}. A problem P preserves k hyperimmunities
if for every set Z, every family of Z-hyperimmune functions 〈fs : s < k〉, and
every Z-computable P-instance X, there exists a P-solution Y to X such that
each fs is Y ⊕ Z-hyperimmune.

Preservation of k hyperimmunities is a scheme of preservations in the sense
of Definition 1.5. Thus, if a problem P preserves k hyperimmunities for some k ∈
N ∪ {N} but Q does not, then P does not imply Q over RCA0. These notions
were formally introduced by Patey [32], although the ideas were already present
in the combinatorics of Lerman, Solomon and Towsner [25]. They were later
systematically studied by Downey et al. [6]. In particular, preservation of 2
or more hyperimmunities is the most convenient tool to separate a statement
from Ramsey’s theorem for pairs and two colors. Patey [32] proved that EM

preserves ω hyperimmunities, while RT
2
2 (and ADS) does not even preserve 2

hyperimmunities. Our last main theorem is a characterization of which Ramsey-
like theorems preserve ω hyperimmunities. The notions of irreducible and
divergent pattern will be defined in Section 3.

Main Theorem 1.8. Let p be a pattern. RT
2
2(p) preserves ω hyperimmunities

if and only if p contains a sub-pattern which is simultaneously divergent and
irreducible.

The relevance of this theorem is justified by a follow-up paper by Le Houérou
and Patey [16] in which they prove that RT

2
2(p) implies RT

2
2 over ω-models if

and only if RT2
2(p) does not preserve ω hyperimmunities.

We also prove similar characterization theorems for other notions of preserva-
tions, namely, preservation of k 2-dimensional hyperimmunities, defined by Liu
and Patey [27] to separate theorems from the Erdős-Moser theorem. Although
this notion might seem much more ad-hoc, it is arguably the natural property
induced by the combinatorics of EM. This will in particular used in Section 7 to
separate from EM an asymmetric version of the Erdős-Moser theorem (HEM), in
which the solution needs to be transitive for only one color. This statement HEM,
together with the Chain AntiChain principle (CAC), forms another decomposition
of RT

2
2. This decomposition is of particular interest, as CAC is the strongest

consequence of RT2
2 for which the first-order part is known (see Chong, Slaman

and Yang [5]).

1.5 Organization of the paper

We start by proving in Section 2 two uniform lower bounds on the strength
of RT

2
2(p) for any pattern p. Then, we study basic properties of Ramsey-like

theorems in Section 3, and define in particular the join operator ⊎. Then,
Sections 4 to 6 are devoted to the characterization of which Ramsey-like theorems
preserve ω hyperimmunities, one 2-dimensional hyperimmunity and ω 2-dimen-
sional hyperimmunities, respectively. Last, Section 7 studies an asymmetric
version of the Erdős-Moser theorem, namely, HEM.
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2 Avoiding any pattern

We now prove two lower bounds to the strength of Ramsey-like theorems, in
terms of diagonally non-computable functions and probabilistic algorithms. It
follows that none of the Ramsey-like theorems are computably trivial, that is,
for every pattern p, there exists a computable coloring f : [N]2 → 2 with no
computable infinite set avoiding p. Interestingly, both lower bounds are uniform,
in that the constructed coloring does not depend on the choice of p.

Definition 2.1. A function f : N → N is diagonally non-X-computable (X-
DNC) if for every e ∈ N, f(e) 6= ΦX

e (e).

Diagonally non-computable degrees play an important role in computability
theory. They admit many characterizations, in terms of effective immunity
([17]), fixpoint-free functions ([17]), infinite subsets of random sequences ([21,
11], see [7, Theorem 8.10.2]) or Kolmogorov complexity ([22]), among others. We
shall actually use here the characterization in terms of fixpoint-free functions.

Definition 2.2. A function g : N → N is X-fixpoint free (X-FPF) if for every
e ∈ N, WX

f(e) 6= WX
e .

By Jockusch [17], the degrees computing an X-DNC function and those
computing an X-FPF function coincide. Given a pattern p of size at least 2,
we let p− be the restriction of p to the domain [|p| − 1]2. We are now ready to
prove our first main theorem.

Main Theorem 1.2. There exists a computable coloring f : [N]2 → 2 such
that every infinite set H ⊆ N avoiding any pattern for f computes a ∅′-DNC
function.

Proof. Let us build the function f : [N]2 → 2 using a no-injury priority construc-
tion in the style of Jockusch [18, Theorem 3.1]. Each requirement will be of
the form Rp,e, where p is a pattern and e a Turing index. The requirements
are ordered using the Cantor pairing function 〈p, e〉, the least pair being the
requirement of higher priority. At each stage s, the construction will define the
value of f for each pair {x, s} with x < s. Within a stage s, each requirement
Rp,e will put a restrain on at most |p| − 1 many elements x < s. Let h : N → N

be the following computable function:

h(〈p, e〉) =
∑

〈q,i〉<〈p,e〉

|q−|

Given a requirement Rp,e acting at a stage s, h(〈p, e〉) represents the maximum
number of elements x < s restrained by a requirement of higher priority. The
function f will satisfy the following requirements, for every pattern p of size at
least 2, and every code e:

Rp,e: Either p− appears at most h(〈p, e〉) many times in W ∅′

e with
pairwise disjoint blocks of elements or there is no infinite set H ⊇
W ∅′

e avoiding the pattern p.
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For each e and s, let W ∅′

e [s] = {x < s : Φ
∅′[s]
e (x)[s] ↓}. Note that W ∅′

e [s] ≤ s.
The (e, s)-age of an element x is the biggest t ≤ s such that x ∈ W ∅′

e [r]
for every r ∈ {s − t, . . . , s}. Given a pattern p, a Turing index e and an
approximation stage s, let Fp,e,s be the set of h(〈p, e〉)+1 many pairwise disjoint
(e, s)-oldest blocks of elements realizing p−, if they exist. If not, then Fp,e,s is not
defined. In particular, {Fp,e,s}s∈N is such that if p− appears at least h(〈p, e〉)+1

many times in W ∅′

e with pairwise disjoint blocks of elements, then lims Fp,e,s

exists and contains such witnesses.

Construction. We construct f by stages. At the beginning of each stage, all
the restraints are released. At stage 0, f0 is the empty function. At stage s > 0,
suppose fs−1 is defined over [{0, . . . , s− 1}]2. We define fs(x, s) for every x < s
as follows:

For each 〈p, e〉 < s, if Fp,e,s is defined, then pick a block Ep,e ∈ Fp,e,s which
does not contain any element restrained by a requirement of higher priority.
Then, put a restraint on all the elements of Ep,e.

Note that maxEp,e ≤ s. Also note that if p− appears at least h(〈p, e〉) + 1

many times in W ∅′

e with pairwise disjoint blocks of elements, then, as mentioned
above, Fp,e,s is defined for cofinitely many stages s, and by a cardinality argument,
such a block Ep,e ∈ Fp,e,s exists, as there are at most h(〈p, e〉) elements restrained
by requirements of higher priority. When Fp,e,s stabilizes, the elements restrained
by higher priority arguments might still change infinitely often if, for instance,
W ∅′

i = ∅ for some i < e. It follows that even after the stabilization stage, the
choice of Ep,e within Fp,e,s might change infinitely often.

Let ai be the i-th element of Ep,e in the natural order over the integers, for
i ≥ 0. Let f(ai, s) = p(i, |p| − 1). Since Ep,e realizes p−, E ∪ {s} realizes p.
Then, assign any color to the unassigned pairs to complete fs over [{0, . . . , s}]2.
This completes the construction of f .

Verification. We claim that f satisfies all the requirements. Indeed, fix
some 〈p, e〉 such that p− appears at least h(〈p, e〉) + 1 many times in W ∅′

e with
pairwise disjoint sets of elements. Then, there is some t such that for every s ≥ t,
Fp,e,s contains such witnesses. Let H be an infinite superset of W ∅′

e . Pick
s ∈ H larger than t and let Ep,e ∈ Fp,e,s be the set chosen at stage s. Then by
construction, Ep,e ∪ {s} is a subset of H realizing p, so H does not avoid the
pattern p.

We now claim that every infinite set avoiding any pattern for f computes a
∅′-DNC function. We proceed by induction over an enumeration of the avoided
pattern p, monotonous in the size of the patterns. Let H be an infinite set
avoiding p. For the base case, H cannot avoid the unique pattern p with only
one node, so the property vacuously holds. Let p be a pattern with at least two
nodes. We consider two cases:

• Case 1: H contains arbitrarily many pairwise disjoint subsets realizing
|p−|. Then, for all e ∈ N, let Ge be a union of h(〈p, e〉) + 1 such subsets.
Since Ge can be extended into H an infinite set avoiding p, and contains
h(〈p, e〉) + 1 pairwise disjoints subsets realizing p−, it cannot be equal to
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W ∅′

e by Rp,e. Consider the function g : N → N such that for every e ∈

N, W ∅′

g(e) = Ge. Such a function exists since Ge is finite, hence ∅′-c.e.

Moreover, the function g is H-computable. This yields that for all e,
W ∅′

g(e) 6= W ∅′

e . The function g is an H-computable fixpoint-free function

relative to ∅′, proving H computes a DNC function relative to ∅′ (see
Jockusch [17]).

• Case 2: Case 1 does not hold, i.e. finitely many disjoints subsets of H
realize p−. Then let t be such that no subset of H \ {0, . . . , t} realizes
p−, and let Ĥ be H \ {0, . . . , t}. Then, no subset of Ĥ realizes p−, hence,
by induction hypothesis Ĥ computes a ∅′-DNC function, and since H
computes Ĥ, H also computes a ∅′-DNC function.

From a reverse mathematical viewpoint, the previous construction uses BΣ0
2

to obtain a robust formalization of computation relative to the jump, and uses
once IΣ0

2 over the size of the avoided pattern in the verification. Thus, if one
considers a fixed pattern of standard size, we obtain the following proposition.
Here, n-DNC is the statement “For every set X, there is an X(n−1)-DNC
function”.

Proposition 2.3. RCA0 + BΣ0
2 ⊢ RT

2
2(p) → 2-DNC.

Note that the previous lower bound does not rule out the existence of a
probabilistic algorithm to find solutions to computable instances of RT

2
2(p),

as there exists a probabilistic algorithm to compute a ∅′-DNC function (see
Section 1.2). More precisely, for every set X, the measure of oracles computing
an X-DNC function is 1. We now prove that this lower bound is not tight, in
that there exists a computable coloring such that no probabilistic algorithm can
compute an infinite set avoiding any pattern.

Theorem 2.4. There is a computable coloring f : [N]2 → 2 such that the
measure of oracles computing an infinite set avoiding any pattern for f is 0.

Proof. The coloring f : [N]2 → 2 is built using a finite-injury priority construction,
satisfying the following requirements for every pattern p and every Turing
index e:

Rp,e: µ({X ∈ 2N : WX
e is finite or f -realizes p}) ≥ 1

2|p| .

We first claim that if all R-requirements are satisfied, then f satisfies the
statement of the theorem, using the contrapositive. Suppose that the measure
of oracles computing an infinite set avoiding any pattern for f is positive. Then,
since there are countably many patterns and countably many functionals, there
is some pattern p and some Turing index e such that the measure of oracles X
such that ΦX

e is infinite and f -avoids p is positive. Indeed, a countable union of
classes of measure 0 is again of measure 0. By the Lebesgue density theorem,
there is some string σ ∈ 2<N such that the measure of oracles X such that Φσ·X

e

9



is infinite and f -avoids p is more than 1 − 1
2|p| . Let a be a Turing index such

that ΦX
a = Φσ·X

e . Then the requirement Rp,a is not satisfied.

The strategies are given a priority order based on Cantor’s pairing function
〈p, e〉, the smaller value being of higher priority. Each requirement Rp,e will be
given a movable marker mpe

, starting at 0, such that if Rq,i is of greater priority
than Rp,e, then mq,i ≤ mp,e. Moreover, at any stage s, mp,e is greater than any
value restrained by Rp,e or any requirement of higher priority.

State of Rp,e. Each strategy Rp,e will be given a state, which is a finite
sequence 〈F0, . . . , Ft−1〉 of non-empty finite sets, with t ≤ |p| and such that
maxFi < minFi+1. Such sequence will satisfy the following properties:

(P1) For every x0 ∈ F0, . . . , xt−1 ∈ Ft−1, {x0, . . . , xt−1} f -realizes p ↾t

(P2) µ({X : WX
e ∩ Fi 6= ∅}) > 1 − 1

2|p|

Over time, new sets will be stacked to this list, which will be reset only if a
strategy of higher priority injures it. Initially, each strategy is given the empty
sequence as state.

Strategy for Rp,e. A requirement Rp,e requires attention at stage s if
its state has length less than |p| and there is a finite set D ⊆ 2≤s such that
∑

σ∈D 2−|σ| > 1 − 1
2|p| and for every σ ∈ D, W σ

e [s] ∩ [mp,e, s] 6= ∅. In other

words, Rp,e requires attention at stage s if the measure of oracles X such that
WX

e [s] outputs an element in [mp,e, s] is greater than 1 − 1
2|p| .

If Rp,e receives attention at stage s and is in state 〈F0, . . . , Ft−1〉 (by convention,
if the state is the empty sequence, t = 0), then, letting Ft = [mp,e, s], its new
state is 〈F0, . . . , Ft〉. The marker mp,e is moved to s+ 1, and the markers of all
strategies of lower priorities is moved further, accordingly. All the strategies of
lower priorities are injured, and their state is reset to the empty sequence. If
t < |p| − 1, then for every i ≤ t, all the elements of Fi commit to have limit
p(i, t+ 1).

Construction. The global construction goes by stages, as follows. Initially,
f is nowhere-defined. At stage s, suppose f is defined on [{0, s− 1}]2. If some
strategy requires attention at stage s, letting Rp,e be the strategy of highest
priority among these, give it attention and act accordingly. In any case, for
every x < s, if x is committed to have some limit c < 2, then set f(x, s) = c.
Otherwise, set f(x, s) = 0. Go to the next stage.

Verification. One easily sees by induction on the strategies that every
strategy acts finitely often, and therefore each strategy is finitely injured by a
strategy of higher priority. It follows that each requirement has a limit state
and that mp,e reaches a limit value.

We claim that each requirement Rp,e is satisfied. Let s be stage after which
mp,e reaches its limit value. In particular, the state of Rp,e also reached its
limit, and none of the strategies of higher priority require attention after s.
Suppose first that the limit state of Rp,e has length less than |p|. This means
that Rp,e does not require attention attention after stage s, so the measure of
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oracles X such that WX
e outputs an element greater than or equal to mp,e is at

most 1− 1
2|p| . Thus, µ({X ∈ 2N : WX

e is finite }) ≥ 1
2|p| , and the requirement is

therefore satisfied. Suppose now that the limit state of Rp,e has length |p|. By
(P2), for each i < |p|, µ({X : WX

e ∩ Fi 6= ∅}) > 1 − 1
2|p| . It follows that

µ({X : (∀i < |p|)WX
e ∩ Fi 6= ∅}) > 1 −

|p|

2|p|
= 1/2

Thus, by (P1), µ({X ∈ 2N : WX
e f -realizes p}) ≥ 1

2 , so Rp,e is again satisfied.
This completes the proof of Theorem 2.4.

3 General properties

This section introduces some basic operators and definitions relative to patterns.
This lays the groundwork necessary for the following sections. Let us first
remark that the computational strength of a pattern lies in its variation of color,
and not in the colors themselves. In the case of 2-colorings, every pattern p
has a dual pattern p, obtained by flipping the color of every pair : ∀x, y <
|p|, p(x, y) = 1 − p(x, y).

Lemma 3.1. For every pattern p, RCA0 ⊢ RT
2
2(p) ↔ RT

2
2(p̄).

Proof. We prove RT
2
2(p) → RT

2
2(p̄) as both statements play a symmetric role.

Let f : [N]2 → 2 be an instance of RT
2
2(p). Let g : [N]2 → 2 be defined by

g(x, y) = 1 − f(x, y). Every infinite set g-avoiding p also f -avoids p̄.

Another relation of importance between patterns is the subpattern relation:
a pattern q is a subpattern of p if there exists an injective function g : |q| → |p|
such that for all x, y < |q|, q(x, y) = p(g(x), g(y)).

Lemma 3.2. Let p and q be two patterns. If q is a sub-pattern of p, then RT
2
2(q)

implies RT
2
2(p).

Proof. Let f : [N]2 → 2 be a coloring and H be an infinite set f -avoiding q.
Since q is a sub-pattern of p, any set f -realizing p contains a subset f -realizing q,
so H f -avoids p.

Remember that Ramsey-like theorems are non-disjunctive statements. As
such, the formalism seems to capture a very restrained family of statements
from Ramsey theory, as many of them are naturally stated in a disjunctive form.
For instance, Ramsey’s theorem for pairs states the existence of an infinite set
avoiding any of the two constant patterns of size 2. Thankfully, the following
join operator enables to cast disjunctive statements into the framework.

Definition 3.3. Let p and q be two patterns. Then join p⊎ q is the pattern of
size |p| + |q| − 1 defined for every x < y < |p| + |q| − 1 by

(p ⊎ q)(x, y) =







p(x, y) if y < |p|
q(x− |p| + 1, y − |p| + 1) if x ≥ |p| − 1
p(x, |p| − 1) if x < |p| − 1 and y > |p| − 1

11



In other words, the join p⊎ q is obtained by merging the right-most node of
the graph of p with the left-most node of the graph of q, and letting every arrow
between some node x of p and some node y of q have the value p(x, |p| − 1).

Example 3.4. The following pattern of length 4

a b c di j ℓ

k j

k

is the join of the following two patterns

a b ci j

k

c dℓ

The following lemma, of central importance, states that the strength of
avoiding a pattern of the form p ⊎ q can be understood in terms of avoidance
of p and q.

Lemma 3.5. Let p and q be two patterns. Let f : [N]2 → 2 be a 2-coloring
and H be an infinite set and avoiding p ⊎ q. Then there is an infinite f ⊕H-
computable subset Y ⊆ H which avoids either p, or q.

Proof. Suppose first that for every finite subset F ⊆ H which avoids pattern
p there is some z ∈ H \ F such that F ∪ {z} avoids p. Then, by a greedy
construction, one can f ⊕H-compute an infinite subset of H which avoids p.

Contrarily, suppose that there exists a finite set F ⊆ H which avoids p such
that for every z ∈ H, the set F ∪{z} does not avoid p. By multiple applications
of the pigeonhole principle, there exists an infinite f ⊕ H-computable subset
Z ⊆ H such that minZ > maxF and such that for every x ∈ F , the function
f(x, ·) is constant over Z.

Now, suppose q occurs in Z, as a finite set Q ⊆ Z. Then, by construction,
there exists a finite set P ⊆ F such that P ∪ {minQ} contains p, and such that
for all x ∈ Q and z ∈ P , f(x, y) = f(x,minQ). This would make p ⊎ q occur
in F ∪ Z ⊆ H, contradicting assumption. This yields that q does not occur
in Z.

Note that given a join pattern p⊎q, some colorings will yield sets avoiding p,
and others q. As such, the previous lemma does not prove that RT2

2(p⊎q) implies
RT

2
2(p) ∨ RT

2
2(q), but rather that RT

2(p ⊎ q) implies the disjunctive statement
“For every 2-coloring of pairs f , there exists an infinite set f -avoiding either p
or q.”

Every pattern is the join of itself and the trivial pattern of length 1. By
Lemma 3.5, the avoidance of a pattern of the form p ⊎ q is reduced to the
avoidance of the patterns p and q. As a consequence, the patterns which
cannot be expressed as a join of two smaller patterns should receive a particular
attention. This motivates the following definition:
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Definition 3.6. A pattern is reducible if it is of the form p⊎ q, with |p|, |q| ≥ 2.
Otherwise, it is irreducible.

The following technical lemma is essentially an explicit formulation of the
notion of irreducibility by unfolding the definition. It will be useful in the later
sections.

Lemma 3.7. A pattern p : [ℓ]2 → 2 is irreducible if and only if for every
2-partition F ⊔ G = ℓ such that F 6= ∅, cardG ≥ 2, and F < G, there is
some x ∈ F and y, z ∈ G such that p(x, y) 6= p(x, z).

Proof. Suppose first p = p0 ⊎ p1, with ℓi = |pi| ≥ 2. Partition ℓ0 + ℓ1 −
1 as [0, ℓ0 − 1) and [ℓ0 − 1, ℓ0 + ℓ1 − 1). Note that card[0, ℓ0 − 1) ≥ 1 and
card[ℓ0 − 1, ℓ0 + ℓ1 − 1) ≥ 2. By definition of p0 ⊎ p1, for all x ∈ [0, ℓ0 − 1) and
y, z ∈ [ℓ0 − 1, ℓ0 + ℓ1 − 1), (p0 ⊎ p1)(x, y) = p0(x, ℓ0 − 1) = (p0 ⊎ p1)(x, z).

Suppose now there is a partition F ⊔ G as in the statement of the lemma.
Let p0 = p ↾F∪{minG} and p1 = p ↾G. We claim that p = p0 ⊎ q1. First, note
that |p| = |p0| + |p1| − 1. For all x < y < |p|, we have that

• if x < y < |p0|, p(x, y) = p0(x, y);

• if |p0| − 1 ≤ x < y < |p0| + |p1| − 1, p(x, y) = p1(x− |p0| + 1, y− |p0| + 1);

• if x < |p0| − 1 ≤ y, p(x, y) = p(x, |p0| − 1) = p0(x, |p0| − 1). The first
equality holds since x ∈ F , |p0| − 1, y ∈ G and by assumption on the
2-partition F ⊔G = ℓ.

This proves p = p0 ⊎ p1.

The following lemma states, as expected, that the join operator is associative.
Therefore, we will omit the explicit parenthesis when a pattern is obtained by
multiple joins.

Lemma 3.8. The join operator ⊎ is associative.

Proof. Let p0, p1, p2 be three RT
2
2 patterns. Let q0 denote (p0 ⊎ p1) ⊎ p2 and q1

denote p0 ⊎ (p1 ⊎ p2). Let x, y ≤ |p0| + |p1| + |p2| − 2

• If x < y < |p0|, q0(x, y) = (p0 ⊎ p1)(x, y) = p0(x, y) = q1(x, y);

• if |p0| ≤ x < y < |p0| + |p1| − 1, q0(x, y) = (p0 ⊎ p1)(x, y) = p1(x− |p0| +
1, y − |p0| + 1) = q1(x, y);

• if |p0| + |p1| − 1 ≤ x < y < |p0| + |p1| + |p2| − 2, q0(x, y) = p2(x − |p0| −
|p1|+ 2, y− |p0| − |p1|+ 2) = (p1 ⊎ p2)(x− |p1|+ 1, y− |p1|+ 1) = q1(x, y);

• if x < |p0| ≤ y < |p0|+|p1|−1, then q0(x, y) = (p0⊎p1)(x, y) = p0(x, |p0|−
1) = q1(x, y);

• if x < |p0| and |p0|+|p1|−1 ≤ y, then q0(x, y) = (p0⊎p1)(x, |p0|+|p1|−2) =
p0(x, |p0| − 1) = q1(x, y);
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• if |p0| ≤ x < |p0|+ |p1|−1 ≤ y, then q0(x, y) = (p0⊎p1)(x, |p0|+ |p1|−2) =
p1(x− |p0| + 1, |p1| − 1) = (p1 ⊎ p2)(x− |p0| + 1, y − |p0| + 1) = q1(x, y).

Recall that, given a pattern p of size at least 2, p− is its restriction to the
domain [|p| − 1]2. We shall see in the later sections that there exists a close
relation between computing an infinite set avoiding a pattern p, and computing
an infinite set such that every set realizing p− has the wrong limit. It will
therefore be often useful to think of a pattern p as the pattern p− together with
a specification of a limit of the elements, given by p(·, |p| − 1).

Definition 3.9. A pattern p : [ℓ]2 → 2 is convergent if there is some i < 2 such
that for every x < ℓ− 1, p(x, ℓ− 1) = i. Otherwise, p is divergent.

Example 3.10. The following pattern p is divergent as p(a, c) = 1 6= 0 = p(b, c).
We claim that p is irreducible. Indeed, the unique 2-partition F ⊔G = {a, b, c}
satisfying F 6= ∅, cardG ≥ 2, and F < G is F = {a} and G = {b, c}. But then
p(a, b) 6= p(a, c).

a b c0 0

1

Actually, this pattern and its dual are the only two patterns of length 3 which
are divergent and irreducible.

The following lemma shows that divergence is preserved among the join
operator.

Lemma 3.11. Let p and q be two patterns such that at least one of them is
divergent. Then p ⊎ q is also divergent.

Proof. Suppose p is divergent, i.e., there exists x, y < |p| such that p(x, |p|−1) 6=
p(y, |p| − 1). This yields by definition of the join that (p ⊎ q)(x, |p| + |q| − 2) 6=
(p ⊎ q)(y, |p| + |q| − 2)

Now suppose q is divergent, i.e., there exists x, y < |q| such that q(x, |q|−1) 6=
q(y, |q| − 1). This yields by definition of the join that (p ⊎ q)(x + |p| − 1, |p| +
|q| − 2) 6= (p ⊎ q)(y + |p| − 1, |p| + |q| − 2)

4 RT
2
2 and countable hyperimmunities

Recall that a problem P preserves ω hyperimmunities if for every set Z, every
countable collection of Z-hyperimmune functions f0, f1, . . . and every Z-computable
P-instance X, there is a P-solution Y to X such that every fi is Y ⊕ Z-
hyperimmune. The notion of preservation of ω hyperimmunities was used to
separate the Erdős-Moser theorem from Ramsey’s theorem for pairs in reverse
mathematics [25, 32]. The goal of this section is to prove the following characterization
theorem:
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Main Theorem 1.8. Let p be a pattern. RT
2
2(p) preserves ω hyperimmunities

if and only if p contains a sub-pattern which is simultaneously divergent and
irreducible.

Note that if every computable instance of a problem P admits a solution
of computably dominated degree, and the proof relativizes, then P preserves
ω (and in fact even uncountably many) hyperimmunities. However, by Main
Theorem 1.2, there exists a computable coloring such that every infinite set
avoiding any pattern computes a ∅′-DNC function, and by Miller (see Khan
and Miller [20], every ∅′-DNC function is of hyperimmune degree. One therefore
cannot prove Main Theorem 1.8 by building computably dominated solutions.

The proof of Main Theorem 1.8 is divided into Theorem 4.1 and Theorem 4.17.

Theorem 4.1. Let p be a divergent, irreducible pattern. Then RT
2
2(p) preserves

ω hyperimmunities.

Note that Theorem 4.1 is not strong enough, in that there are patterns
which are convergent or reducible patterns p for which RT

2
2(p) preserves ω

hyperimmunities.

Remark 4.2. The following pattern p is reducible, but RT
2
2(p) is equivalent

to EM, and therefore preserves ω hyperimmunities.

a b c d0 1 1

0 0

0

Indeed, it is the join of the following two patterns q and r.

c d0 a b c1 1

0

Thus, q being a sub-pattern or r, by Lemma 3.5, RT2
2(p) implies RT

2
2(r), which

is equivalent to EM. On the other hand, r being a sub-pattern of p, RT
2
2(r)

implies RT2
2(p) by Lemma 3.2. This example should not be considered as a flaw

in the definition of irreducibility. Indeed, this simply says that avoiding p is a
too weak invariant for the proof of preservation of ω hyperimmunities.

The proof of Theorem 4.1 is done using a variant of Mathias forcing. It
requires several technical definitions and lemmas, that we now detail. Even
with non-stable colorings, every finite set of elements can be “stabilized” by
restricting the integers to an appropriate reservoir.

Definition 4.3. Let E and F be two non-empty sets such that E < F . Let
f : [N]2 → 2 be a coloring and g : N → 2 be a partial coloring with dom g ⊇ E.
We say F f -stabilizes E with witness g if for all x ∈ E and y ∈ F , f(x, y) = g(x).
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Working with Mathias conditions for which the initial segments avoids the
pattern p is not a sufficiently strong invariant to preserve hyperimmunities. We
shall therefore define a stronger notion of avoidance based on the decomposition
of p into p− and the function x 7→ p(x, |p| − 1).

Definition 4.4. Let p : [ℓ]2 → 2 be a pattern with ℓ ≥ 2 and f : [N]2 → 2 and
g : N → 2 be two colorings. A set X (f, g)-avoids p if it f -avoids p, and for every
subset F = {x0 < · · · < xℓ−2} ⊆ X which f -realizes p−, there is some i < ℓ− 1
such that g(xi) 6= p(i, ℓ− 1).

The following lemma relates the notion of (f, g)-avoidance to the notion
of f -avoidance. Note that if p is a divergent pattern, then for every pair of
colorings f : [N]2 → 2 and g : N → 2, every g-homogeneous set f -avoiding p
also (f, g)-avoids p.

Lemma 4.5. Let p be a pattern. Fix two colorings f : [N]2 → 2 and g : N → 2.
Let E < F be two sets such that F f -stabilizes E with witness g. Then E
(f, g)-avoids p iff for every y ∈ F , E ∪ {y} f -avoids p.

Proof. Let ℓ = |p|. Suppose first that E (f, g)-avoids p, and fix and y ∈ F .
Suppose for the contradiction that E ∪ {y} does not f -avoid p. Let H =
{x0, . . . xℓ−1} ⊆ E ∪ {y} f -realize p. Since E (f, g)-avoids p, then E f -avoids p,
so xℓ−1 = y. In particular, H ∩E f -realizes p−, so since E (f, g)-avoids p, there
is some i < ℓ − 1 such that g(xi) 6= p(i, ℓ − 1). Since F f -stabilizes E with
witness g, then g(xi) = f(xi, xℓ−1), so H does not f -realize p.

Suppose now that E ∪ {y} f -avoids p for every y ∈ F , and let H =
{x0, . . . , xℓ−2} ⊆ E f -realize p−. Consider y ∈ F . Since H ∪ {y} f -avoids
p, there exists i ≤ ℓ− 2 such that f(xi, y) 6= p(i, ℓ− 1), i.e., since F f -stabilizes
E with witness g, g(xi) = f(xi, y) 6= p(i, ℓ− 1).

The following lemma gives a sufficient condition to preserve (f, g)-avoidance
by considering the union of two sets. It is precisely where we need the irreducibility
assumption in Theorem 4.1.

Lemma 4.6. Let p be an irreducible pattern. Fix two colorings f : [N]2 → 2
and g : N → 2. Let E < F be two sets such that F f -stabilizes E with witness g,
and E and F both (f, g)-avoid p. Then E ∪ F (f, g)-avoids p.

Proof. Let ℓ = |p|. We first show that E∪F f -avoids p. LetH = {x0, . . . xℓ−1} ⊆
E ∪ F f -realize p. Since E (f, g)-avoids p, then by Lemma 4.5, H ∩ (E ∪ {x})
f -avoids p for every x ∈ F , so cardH ∩ F ≥ 2. Since F (f, g)-avoids p, then F
f -avoids p, so H ∩ E 6= ∅. Let A = {i : xi ∈ H ∩ E} and B = {i : xi ∈ H ∩ F .
In particular, A 6= ∅ and cardB ≥ 2. Since p is irreducible, then by Lemma 3.7,
for the 2-partition A ⊔ B = ℓ, there is some i ∈ A and j, k ∈ B such that
p(i, j) 6= p(i, k). Since F f -stabilizes E, then f(xi, xj) = f(xi, xk), so H does
not f -realize p.

We now show that for every subset H = {x0, . . . xℓ−2} ⊆ E ∪ F which f -
realizes p−, there is some i < ℓ − 1 such that g(xi) 6= p(i, ℓ − 1). Since E and
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F both (f, g)-avoid p, H ∩ E and H ∩ F are both non-empty. Let A = {i :
xi ∈ H ∩ E} and B = ℓ \ A. In particular, A 6= ∅ and cardB ≥ 2, so since p is
irreducible, then by Lemma 3.7, there is some i ∈ A and j < k ∈ B such that
p(i, j) 6= p(i, k).

Suppose k < ℓ − 1. Since H f -realizes p−, then f(xi, xj) = p(i, j) and
f(xi, xk) = p(i, k). Since F f -stabilizes E and xj , xk ∈ E, f(xi, xj) = f(xi, xk),
so p(i, j) = p(i, k), contradiction.

Suppose now k = ℓ − 1. Since F f -stabilizes E with witness g, then
f(xi, xj) = g(xi). Since H f -realizes p−, then f(xi, xj) = p(i, j), so g(xi) =
p(i, j) 6= p(i, ℓ− 1). This completes the proof of the lemma.

We are now ready to define the notion of forcing used in Theorem 4.1 and
study its combinatorial properties. We shall prove Theorem 4.1 in a unrelativized
form, so in what follows, fix a computable 2-coloring of pairs f : [N]2 → 2.

Definition 4.7. A condition is a Mathias pair (σ,X) such that :

• X f -stabilizes σ with some witness g : σ → 2;

• σ (f, g)-avoids p;

• X is computably dominated.

The partial order on conditions is induced by Mathias extension, that is,
(τ, Y ) ≤ (σ,X) if σ � τ , Y ⊆ X and τ \ σ ⊆ X. Every filter F induces a
set GF :=

⋃

(σ,X)∈F σ. The following lemma implies that for every sufficiently
generic filter F , the set GF is infinite.

Lemma 4.8. Let c = (σ,X) be a condition and x ∈ X. There exists Y ⊆ X
such that (σ ∪ {x}, Y ) is an extension of c.

Proof. Let Y = X ∩ (x,∞) be an infinite X-computable subset of X on which
f(x, ·) is constant. In particular, Y is computably dominated since Y ≤T X.
We now prove that σ∪{x} also (f, g′)-avoids p, with g′ extending g properly by
letting g(x) be the limit color of f(x, ·) on Y . Note that {x} f -stabilizes σ with
witness g′ and that since p is divergent, |p| > 2 and thus {x} (f, g′)-avoids p.
By Lemma 4.6, σ ∪ {x} does (f, g′)-avoid p.

Let c = (σ,X) be a condition, and let ϕ be a Σ0
1 or Π0

1 formula. We say c
forces ϕ denoted c 
 ϕ(G) if for every sufficiently generic filter F containing c,
ϕ(GF ) holds.

We shall use the forcing question framework to preserve hyperimmunities
(see Patey [30, Chapter 3]). For this, we need to define a Σ0

1-preserving, Σ0
1-

compact forcing question.

Definition 4.9. Let ∃xϕ(G, x) be a Σ0
1-formula, c = (σ,X) be a condition. We

define the forcing question ?⊢ as follows : c ?⊢∃xϕ(G, x) if for all 2-coloring
ĝ : N → 2, there exists x ∈ N and a finite set ρ ⊆ X which (f, ĝ)-avoids p such
that ϕ(σ ∪ ρ, x) holds.
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The following lemma states that the relation defined above satisfies the
specifications of a forcing question for Σ0

1-formulas:

Lemma 4.10. Let c be a condition and ϕ a Σ0
1 formula.

• If c ?⊢ϕ(G), there exists d ≤ c such that d 
 ϕ(G);

• If c ?0ϕ(G), there exists d ≤ c such that d 
 ¬ϕ(G);

Proof. Let c = (σ,X).

• Suppose c ?⊢ϕ(G), hence, for all 2-partition ĝ : N → 2, there exists a
finite set ρ ⊆ X which (f, ĝ)-avoids p, and such that ϕ(σ ∪ ρ) holds. By
a compactness argument, there exists n ∈ N such that for all 2-partition
ĝ : [0, n] → 2, there exists a finite set ρ ⊆ X∩{0, . . . , n} which (f, ĝ)-avoids
p, and such that ϕ(σ ∪ ρ) holds. Let Y ⊆ X be an infinite X-computable
set f -stabilizing [0, n] with witness ĝ : n → 2. Since Y ≤T , then Y is
computably dominated. Let ρ ⊆ X ∩ {0, . . . , n} be a finite set (f, ĝ)-
avoiding p, and such that ϕ(σ ∪ ρ) holds. Note that ĝ ⊇ g, so σ (f, ĝ)-
avoids p, and by Lemma 4.6, σ ∪ ρ (f, ĝ)-avoids p. In all, d := (σ ∪ ρ, Y )
is a valid condition extending c, and is such that d 
 ϕ(G).

• Suppose c ?0ϕ(G), hence, there exists a 2-partition ĝ : N → 2, such
that every finite set ρ ⊆ X either does not (f, ĝ)-avoid p or is such that
¬ϕ(σ ∪ ρ) holds. Consider the Π0

1 class of every such functions ĝ. By the
computably dominated basis theorem (see Jockusch and Soare [19]), there
exists such a function ĝ such that ĝ ⊕ X is computably dominated. Let
Y ⊆ X be a ĝ-homogeneous and ĝ⊕X-computable infinite set. Since p is
divergent and Y is ĝ-homogeneous, then every set which f -avoids p also
(f, ĝ)-avoids p. Therefore, the condition d := (σ, Y ) forces ¬ϕ(G).

The following lemma states that the forcing question ?⊢ is Σ0
1-preserving.

Lemma 4.11. Let c = (σ,X) be a condition and ϕ be a Σ0
1 formula. The

sentence “c ?⊢ϕ(G)” is Σ0
1(X).

Proof. By a compactness argument, c ?⊢ϕ(G) is equivalent to the Σ0
1(X) sentence

“there exists n ∈ N such that for all for all 2-partition ĝ : [0, n] → 2, there exists
x ∈ N and a finite set ρ ⊆ X which (f, ĝ)-avoids p, and such that ϕ(σ ∪ ρ, x)
holds.”

The following lemma states that the forcing question ?⊢ is Σ0
1-compact.

Lemma 4.12. Let ∃xϕ(G, x) be a Σ0
1 formula and c = (σ,X) be a condition

such that c ?⊢∃xϕ(G, x). Then, there exists ℓ such that c ?⊢∃xϕ(G, x) ∧ x ≤ ℓ.
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Proof. As stated in the previous proof, c ?⊢∃xϕ(G, x) implies that there is
some n ∈ N such that for all for all 2-partition ĝ : [0, n] → 2, there exists
xĝ ∈ N and a finite set ρ ⊆ X which (f, ĝ)-avoids p, and such that ϕ(σ ∪ ρ, xĝ)
holds. Consider ℓ = max{xĝ | ĝ : [0, n] → 2}. Then, for all 2-partition there
exists x ≤ ℓ and a finite set ρ ⊆ X which (f, ĝ)-avoids p, and such that ϕ(σ∪ρ, x)
holds.

The following lemma is the standard diagonalization lemma which holds for
every notion of forcing admitting a Σ0

1-preserving, Σ0
1-compact forcing question

for Σ0
1-formulas (see Patey [30, Chapter 3]). We reprove it for the sake of

completeness.

Lemma 4.13. Let c be a condition, h be a hyperimmune function, and e be a
Turing index. There exists an extension d ≤ c such that d 
 ∃xΦe(G, x) ↓< h(x)
or d 
 Φe(G) ↑.

Proof. Suppose c ?0Φe(G, x) ↓ for some x ∈ N. Then, by Lemma 4.10, there
exists d ≤ c such that d 
 Φe(G, x) ↑. Now, suppose that for every x ∈ N,
c ?⊢∃a∃tΦe(G, x)[t] = a. Then, by Lemma 4.12, for all x, there exists ℓx such
that c ?⊢∃tΦe(G, x)[t] ≤ ℓx holds. By Lemma 4.11, the function x 7→ ℓx is
partial X-computable, and by hypothesis, it is total. Since X is computably
dominated, x 7→ ℓx does not dominate f . This yields that there exists x such
that ℓx < h(x). By Lemma 4.10, there exists d ≤ c such that d 
 Φe(G, x) ↓< ℓx
for that x, and thus d 
 Φe(G, x) ↓< h(x).

We are now ready to prove Theorem 4.1.

Proof of Theorem 4.1. Let h0, h1, . . . be a countable sequence of hyperimmune
functions and f : [N]2 → 2 be a computable coloring. Let F be a sufficiently
generic filter for the associated notion of forcing. By Lemma 4.8, the set GF is
infinite, and by definition of a forcing condition, GF f -avoids p. Moreover, by
Lemma 4.13, hi is GF -hyperimmune for every i ∈ N. This completes the proof
of Theorem 4.1.

Corollary 4.14. Let p be a pattern containing as a sub-pattern a divergent,
irreducible pattern. Then RT

2
2(p) preserves ω hyperimmunities.

Proof. Immediate by Theorem 4.1 and the fact that if q is a sub-pattern of p,
then every RT

2
2(q)-solution is an RT

2
2(p)-solution.

The remainder of this section is devoted to the proof of the reciprocal, that is,
if a pattern does not contains any sub-pattern which is simultaneously divergent
and irreducible, then it does not preserve ω hyperimmunities simultaneously.
Actually, we shall prove that it does not even preserve 2 hyperimmunities
simultaneously (Corollary 4.18).

For this, we need a stronger notion of appearance, which does not only state
that the pattern p appears in the set, but that p− appears with the right limit,
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in the sense defined below. A coloring f : [N]2 → 2 is stable if for every x ∈ N,
limy f(x, y) exists.

Definition 4.15. Let f : [N]2 → 2 be a stable coloring and p : [ℓ]2 → 2 be
a pattern of size ℓ. We say that a finite set F = {x0 < · · · < xℓ−2} strongly
f -realizes p if F f -realizes p− and for every i < ℓ − 1 and all but finitely
many y ∈ N, f(xi, y) = p(i, ℓ − 1). We say the pattern p strongly f -appears in
a set H if there exists a finite subset F ⊆ H which strongly f -realizes p.

Remark 4.16. Note that if H is infinite, and p strongly f -appears in H, then
p f -appears in H. Indeed, consider a finite set R strongly f -realizing p in H
(such exists by definition of strong f -appearance), and let t ∈ H be such that
every element of R has reached its f -limit from t on, t included (such t exists
by infinity of H). Then R ∪ {t} f -realizes p.

Theorem 4.17. Let p be a pattern with |p| ≥ 2, such that all of its sub-patterns
are convergent or reducible, and let A be a ∆0

2 bi-hyperimmune infinite set. Let
f : [N]2 → 2 be a ∆0

2 approximation of A. For every infinite set H such that A
and A are H-hyperimmune, the pattern p strongly f -appears in H.

Proof. Let us prove the desired result by induction on the size of p. Let H be
an infinite set such that A and A are H-hyperimmune.

First, suppose that p is convergent. If |p| = 2, then trivially, for every k ∈ N,
p− f -appears in H ∩ (k,∞). If |p| > 2, then by induction hypothesis, for
every k ∈ N, p− strongly f -appears in H ∩ (k,∞), so by Remark 4.16, p− f -
appears in H ∩ (k,∞). Since f is computable, one can find H-computably an
infinite array F0, F1, · · · ⊆ H such that each block f -realizes p−. Now, suppose
w.l.o.g. that p(0, |p| − 1) = 0. Then, by H-hyperimmunity of A there exists
some n ∈ N such that such that Fn ⊆ A. Since f is a ∆0

2-approximation of A,
for all x ∈ Fn, limy∈N f(x, y) = 0. This yields that Fn strongly f -realizes p, so
p strongly appears in H.

Suppose now that p is not convergent. By assumption, p is then reducible.
As such, by Lemma 3.7 there exists a partition F ∪G of |p| such that cardF > 0,
cardG ≥ 2, F < G, and such that for all x ∈ F , and ∀y, z ∈ G, p(x, y) = p(y, z).
Let z = minG. By induction hypothesis, p ↾F∪{z} strongly appears in H and for
every k ∈ N, p ↾G strongly appears in H∩(k,∞). Let R = {x0, . . . , x|F |−1} ⊆ H
be strongly f -realizing p ↾F∪{z}. Let k be large enough so that all elements of R
have reached their limit and S = {x|F |, . . . , x|p|−1} ⊆ H ∩ (k,∞) be strongly
f -realizing p ↾G.

We first claim that R ∪ S f -realizes p− = p ↾F∪G− . Let i < j ∈ F ∪ G−.
If j ∈ F , then since R f -realizes p ↾F , f(xi, xj) = p(i, j). If i ∈ G−, then
since S f -realizes p ↾G− , f(xi, xj) = p(i, j). If i ∈ F and j ∈ G−, then since R
strongly f -realizes p ↾F∪{z}, f(xi, xj) = p(i, z). However, since p is reducible,
p(i, z) = p(i, j), so f(xi, xj) = p(ij). It follows that R ∪ S f -realizes p−.

We now claim that R∪S strongly f -realizes p. Let i ∈ F∪G−. If i ∈ F , since
p is reducible, p(i, z) = p(i, |p| − 1). Since R strongly f -realizes p ↾F∪{z}, for
cofinitely many y, f(xi, y) = p(i, z) = p(i, |p| − 1). If i ∈ G−, since S strongly
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f -realizes p ↾G, for cofinitely many y, f(xi, y) = p(i, |p| − 1). It follows that
R ∪ S strongly f -realizes p.

Corollary 4.18. Let p be a pattern with |p| ≥ 2, such that all of its sub-patterns
are convergent or reducible. Then RT

2
2(p) does not preserve 2 hyperimmunities,

as witnessed by a stable coloring.

Proof. Suppose for the contradiction that RT
2
2(p) preserves 2 hyperimmunities.

Let A be a ∆0
2 bi-hyperimmune set, of ∆0

2-approximation f : [N]2 → 2, and let H
be an infinite set f -avoiding p and such that A and A are both H-hyperimmune.
By Remark 4.16, H strongly f -avoids p, so by Theorem 4.17, p does not contain
any sub-pattern which is both divergent and irreducible.

We are now ready to prove Main Theorem 1.8.

Proof of Main Theorem 1.8. Suppose first p contains a divergent and irreducible
sub-pattern. Then by Corollary 4.14, RT

2
2(p) preserves ω hyperimmunities.

Suppose now that p does not contain such a sub-pattern. Then by Corollary 4.18,
RT

2
2(p) does not preserve 2 (and a fortiori ω) hyperimmunities.

5 EM and 2-dimensional hyperimmunity

In this section, we prove a similar characterization theorem for a variant of
hyperimmunity called 2-dimensional hyperimmunity. As mentioned in Section 1.4,
this variant might seem much more ad-hoc than hyperimmunity, but it is arguably
the natural combinatorial notion obtained by designing an invariant property
not preserved by the Erdős-Moser theorem. It defined and successfully used
by Liu and Patey [27] to prove that the free set theorem does not imply EM

over ω-models. In an follow-up paper, Le Houérou and Patey [16] proved that
if a Ramsey-like theorem does not preserve ω hyperimmunities, then it implies
RT

2
2 over ω-models. We conjecture that, similarly, if a Ramsey-like theorem

does not preserve one 2-dimensional hyperimmunity, then it implies EM over
ω-models.

Definition 5.1. A bi-family is a collection H of ordered pairs of finite sets
closed under subset product, i.e., if (A,B) ∈ H and C ⊆ A and D ⊆ B, then

(C,D) ∈ H. A bi-array is a collection of finite sets ( ~E, ~F ) = 〈En, Fn,m : n,m,∈

N〉 such that minEn > n, minFn,m > m for every n,m ∈ N. A bi-array ( ~E, ~F )
meets a bi-family H if there is some n,m ∈ N such that (En, Fn,m) ∈ H. A
bi-family H is 2-dimensional C-hyperimmune if every C-computable bi-array
meets H.

Remark 5.2. There exists a natural generalization of the previous definition
to every dimension. In dimension 1, a 1-array is nothing but a traditional
c.e. array. Then, if A is an co-hyperimmune set, the collection H of all finite
subsets of A is a 1-family which is 1-dimensional hyperimmune. The notion of
n-dimensional hyperimmunity is therefore rather a generalization of the notion
of co-hyperimmunity than of hyperimmunity.
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This variant of hyperimmunity induces a family of notions of preservation:

Definition 5.3. Fix k ∈ N ∪ {N}. A problem P preserves k 2-dimensional
hyperimmunities if for every set Z, every family of 2-dimensional Z-hyperimmune
bi-families 〈Hs : s < k〉, and every Z-computable P-instance X, there exists a
P-solution Y to X such that each Hs is 2-dimensional Y ⊕ Z-hyperimmune.

The goal of this section is therefore to characterize the patterns p for which
RT

2
2(p) preserves 1 2-dimensional hyperimmunity. For this, we need to define

the following combinatorial property of a pattern:

Definition 5.4. A pattern p : [ℓ]2 → 2 is i-merging if for every non trivial
2-partition F ⊔G = ℓ− 1 such that F < G, one of the following holds:

1. ∃x ∈ F , p(x, ℓ− 1) = 1 − i

2. ∃x ∈ G, p(x, ℓ− 1) = i

3. ∃x0, x1 ∈ F ∃y0, y1 ∈ G, p(x0, y0) 6= p(x1, y1).

The notion of divergent pattern can be seen as being i-merging for some
i < 2 for the degenerate case of trivial partitions. Indeed, if one considers the
two partitions of ℓ − 1 as ∅ ⊔ ℓ − 1 and ℓ − 1 ⊔ ∅, then there must exist both
x ∈ ℓ − 1 such that p(x, ℓ − 1) = i and x ∈ ℓ − 1 such that p(x, ℓ − 1) = 1 − i.
Also note that every pattern p : [ℓ]2 → 2 is i-merging for some i < 2, more
specifically, it is 1 − p(0, ℓ− 1)-merging and p(ℓ− 2, ℓ− 1)-merging.

Lemma 5.5. Every convergent pattern p of size at least 3 is both 0-merging
and 1-merging.

Proof. Say w.l.o.g. that p is convergent such that p(0, |p| − 1) = p(|p| − 2, |p| −
1) = 0. Then, for all non-trivial partition F ⊔G of ℓ − 1, 0 ∈ F and as such p
is 1-merging, and |p| − 2 ∈ G and as such p is 0-merging.

The reciprocal of the previous lemma does not hold. The remainder of this
section is devoted to the proof of the following theorem:

Theorem 5.6. Let p be a pattern. RT2
2(p) preserves one 2-dimensional hyperim-

munity if and only if p contains two divergent and irreducible sub-patterns p0
and p1 such that p0 is 0-merging and p1 is 1-merging.

Note that p0 and p1 are not necessarily distinct, in which case we shall see
in the next section that RT2

2(p) preserves ω 2-dimensional hyperimmunities. As
for Main Theorem 1.8, the proof of Theorem 5.6 is divided into Theorem 5.7
and Theorem 5.24.

Theorem 5.7. Let p0 and p1 be irreducible, divergent, and respectively 0-
merging and 1-merging patterns, and let H be a 2-dimensional hyperimmune
bi-family. For every computable coloring f : [N]2 → 2, there is an infinite set H
f -avoiding pi for some i < 2 and such that H is 2-dimensional H-hyperimmune.
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The proof of Theorem 5.7 is done using a disjunctive variant of Mathias
forcing. Before defining the notion of forcing, we prove a technical lemma which
gives a sufficient condition to take two sets E and F , and obtain a union F ∪G
which (f, g)-avoids p. In some sense, Lemma 5.8 is similar to Lemma 4.6. The
main difference is that g is not assumed to witness the fact that F f -stabilizes
E. Because of this, p, E and F must satisfy stronger hypothesis.

Lemma 5.8. Let p be a pattern divergent and i-merging for some color i < 2.
Fix two colorings f : [N]2 → 2 and g : N → 2. Let E < F be two sets such that

(1) E is g-homogeneous; F is g-homogeneous for color 1 − i;

(2) For every x0, x1 ∈ E, for every y0, y1 ∈ F , f(x0, y0) = f(x1, y1);

(3) E ∪ F f -avoids p.

Then E ∪ F (f, g)-avoids p.

Proof. Let ℓ = |p|, and let H = {x0, . . . , xℓ−2} ⊆ E ∪ F f -realize p−. First, if
E or F is empty, then E ∪F is g-homogeneous, and since p is divergent, E ∪F
does (f, g)−avoid p. Suppose both are non empty. If E is g-homogeneous for
color 1 − i, then E ∪ F is also g-homogeneous for color 1 − i. As such, since g
is divergent, E ∪ F does (f, g)-avoid p. Now, suppose E is g-homogeneous for
color i. Since p is i-merging , one of the following holds:

• ∃xi ∈ E ∩H such that p(i, ℓ − 1) = 1 − i. Since E is g-homogeneous for
color i, p(i, ℓ− 1) 6= g(xi).

• ∃xi ∈ F ∩ H such that p(i, ℓ − 1) = i. Since F is g-homogeneous for
color 1 − i, p(i, ℓ− 1) 6= g(xi).

• ∃x0, x1 ∈ F ∩ H, ∃y0, y1 ∈ G ∩ H such that p(x0, y0) 6= p(x1, y1). This
third case contradicts item (2) in the hypothesis, so this does not happen.

Since for every H = {x0, . . . , xℓ−2} ⊆ E ∪F f -realizing p−, there is some i such
that p(i, ℓ− 1) 6= g(xi) and E ∪ F f -avoids p, then E ∪ F (f, g)-avoids p.

We shall again prove Theorem 5.7 in an unrelativized form. In what follows,
fix a 2-dimensional hyperimmune bi-family H, and a computable coloring f :
[N]2 → 2. We shall construct two infinite sets G0, G1, such that Gi f -avoids pi
for each i < 2 and H is 2-dimensional hyperimmune relative to either G0 or G1.

Definition 5.9. A condition is a 3-tuple (σ0, σ1, X) where, for both i < 2,

• (σi, X) is a Mathias condition;

• X f -stabilizes [0,max(σ0, σ1)] with some witness g : σ → 2;

• σi (f, g)-avoids pi;

• H is 2-dimensional X-hyperimmune.
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The order over conditions is defined as follows : (σ0, σ1, X) ≤ (τ0, τ1, Y ) if
Y ⊆ X and for every i < 2, σi � τi and τi \ σi ⊆ X. Every sufficiently generic
filter F induces two sets GF,0 and GF,1, defined by GF,i =

⋃

(τ0,τ1,Y )∈F τi.

Given an arithmetic formula ϕ, we write c 
 Φ(Gi) if for every sufficiently
generic filter F containing c, ϕ(GF,i) holds. The following lemma states that if
F is a sufficiently generic filter, then GF,0 and GF,1 are both infinite.

Lemma 5.10. Let c = (σ0, σ1, X) be a condition and x0, x1 ∈ X. There exists
Y ⊆ X such that (σ0 ∪ {x0}, σ1 ∪ {x1}, Y ) is an extension of c.

Proof. Let Y = X ∩ (max(x0, x1),∞) be an infinite X-computable subset of
X which f -stabilizes [0,max(x0, x1)] with some witness ĝ. In particular, H is
still 2-dimensional hyperimmune relative to Y . We now prove that for both i,
σi ∪{xi} also (f, ĝ)-avoids pi. Note that {xi} f -stabilizes σi with witness ĝ and
that since pi is divergent, |pi| > 2 and thus {xi} (f, ĝ)-avoids pi. By Lemma 4.6,
σ∪{xi} does (f, ĝ)-avoid pi. The condition (σ0∪{x0}, σ1∪{x1}, Y ) is the desired
extension of c.

We are now going to define two kind of forcing questions for Σ0
1-formulas: a

non-disjunctive one ?⊢i for each side i < 2 (Definition 5.11) and a disjunctive
one ?⊢ (Definition 5.15). Both kinds will be shown to be Σ0

1-preserving and Σ0
1-

compact. They additionally satisfy a merging lemma (Lemma 5.18) enabling to
prove the diagonalization lemma (Lemma 5.19).

Definition 5.11. Let ϕ be a Σ0
1-formula, c = (σ0, σ1, X) be a condition and

i < 2. We define the forcing question ?⊢i as follows : c ?⊢i ϕ(G) if for all pairs of
2-colorings h0 : N → 2 and h1 : N → 2, there exists a finite h0-homogeneous and
h1-homogeneous set ρ ⊆ X which (f, h0)-avoids pi such that ϕ(σi ∪ ρ) holds.

Remark 5.12. In the previous definition, we asked for ρ to be h0-homogeneous
and to (f, h0)-avoid pi. One could note that since pi is asked to be divergent,
being h0-homogeneous almost already yields (f, h0)-avoiding pi, as long as ρ
f -avoids pi. This means this definition could be a little bit weaker. However,
we will mostly use the fact ρ (f, h0)-avoids pi, so it simplifies argumentation to
directly ask for it in the definition.

Definition 5.11 satisfies the specification of a forcing question, with a proof
similar to that of Lemma 4.10. We shall actually prove a stronger version of the
specifications through Lemma 5.18. For now, we prove that the forcing question
is Σ0

1-preserving.

Lemma 5.13. Let c = (σ0, σ1, X) be a condition and ϕ be a Σ0
1 formula. The

sentence “c ?⊢i ϕ(G)” is Σ0
1(X) for both i < 2.

Proof. Let ϕ ≡ ∃xψ(G, x) be a Σ0
1 condition. By a compactness argument,

c ?⊢i ϕ(G) holds if and only if there exists t ∈ N such that for all 2-colorings
h0, h1 : t → 2, there exists ρ ⊆ X ∩ {0, . . . , t} and x < t such that ρ is h0-
homogeneous, h1-homogeneous, (f, h0)-avoids pi and such that ψ(σi∪ρ, x) holds.
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We now define a notion of Σ0
1-compactness for forcing question. Compactness

of a forcing question means that if a condition answers positively to the question
for a Σ0

1 formula, then we can actually bound the first existential quantifier.

Lemma 5.14. Fix i < 2 and a condition c. For every ∆0
0-formula ϕ(G, x), if

c ?⊢i ∃xϕ(G, x), then there exists t ∈ N such that c ?⊢i ∃x ≤ t ϕ(G, x).

Proof. Let t be the bound given by the proof of Lemma 5.13. Then c ?⊢i ∃x ≤
t ϕ(G, x) holds.

We now define the disjunctive forcing question for pairs of Σ0
1-formulas.

Definition 5.15. Let ϕ0(G) and ϕ1(G) be two Σ0
1-formulas and c = (σ,X) be

a condition. Let c ?⊢ϕ0(G) ∨ ϕ1(G) if for all 2-coloring h : N → 2, there exists
a side i < 2 and a finite set ρ ⊆ X which (f, h)-avoids pi such that ϕi(σi ∪ ρ)
holds.

Again, we prove that the disjunctive forcing question is Σ0
1-preserving and

Σ0
1-compact.

Lemma 5.16. Let c = (σ0, σ1, X) be a condition and ϕ0(G) and ϕ1(G) be two
Σ0

1-formulas. The sentence “c ?⊢ϕ0(G) ∨ ϕ1(G)” is Σ0
1(X).

Proof. Let ϕ0(G) ≡ ∃xψ0(G, x) and ϕ1(G) ≡ ∃xψ1(G, x) be Σ0
1 formulas. By a

compactness argument, c ?⊢i ϕ0(G0) ∨ ϕ1(G1) holds if and only if there exists
t ∈ N such that for all 2-coloring h : t → 2, there exists i < 2, x < t and
ρ ⊆ X ∩ {0, . . . , t} which (f, h)-avoids pi and such that ψi(σi ∪ ρ, x) holds.

Lemma 5.17. Let c be a condition and ϕ0(G, x) and ϕ1(G, x) be two ∆0
0-

formulas. If c ?⊢∃xϕ0(G0, x) ∨ ∃xϕ0(G0, x), then there exists t ∈ N such that
c ?⊢∃x < tϕ0(G0, x) ∨ ∃x < tϕ0(G0, x).

Proof. Again, the bound t in the proof of Lemma 5.16 is such that c ?⊢∃x <
tϕ0(G0, x) ∨ ∃x < tϕ0(G0, x) holds.

We now prove the core merging lemma satisfied by the forcing questions.
In particular, the first item says that one can find a simultaneous witness to
a negative answer from the disjunctive forcing question and a positive answer
from the non-disjunctive forcing questions.

Lemma 5.18. Let ϕ0, ϕ1, ψ0, ψ1 be Σ0
1 formulas, and let c be a condition.

• If c ?⊢i ϕi(Gi) for both i < 2 and c ?0ψ0(G0) ∨ ψ1(G1), then there exists
d ≤ c such that d 
 ϕi(Gi) ∧ ¬ψi(Gi) for some i < 2;

• If c ?0i ϕi(Gi) for some i < 2, then there exists d ≤ c such that d 


¬ϕi(Gi);

• If c ?⊢ψ0(G0) ∨ ψ1(G1), then there exists d ≤ c such that d 
 ψ0(G0) ∨
ψ1(G1).
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Proof. Say c = (σ0, σ1, X).

• Since c ?0ψ0(G0)∨ψ1(G1), the class C of every 2-coloring witnessing that
failure is non-empty. Note that C is a Π0

1(X)-class, and by [27, Corollary
2.7], WKL preserves one 2-dimensional hyperimmunity, so there exists an
element h ∈ C such that H is still 2-dimensional hyperimmune relative
to h⊕X.

Since for both i < 2, c ?⊢i ϕi(G), by compactness, there exists some ℓ ∈ N

such that for both i < 2, the following property (†i) holds: for every pair
of partitions h0 : [0, ℓ] → 2 and h1 : [0, ℓ] → 2, there exists a finite h0-
homogeneous and h1-homogeneous set ρi ⊆ X ∩ [0, ℓ] which (f, h0)-avoids
pi such that ϕi(σi ∪ ρi) holds.

Let Y ⊆ X \ [0, ℓ] be an infinite X ⊕ h-computable subset which is h-
homogeneous and f -stabilizes [0, ℓ], say with witness g′ : [0, ℓ] → 2. Let
i < 2 be such that Y is h-homogeneous for color 1 − i. By (†i), letting
h0 = g′ and h1 = h, there is a finite g′ and h-homogeneous set ρ ⊆ X∩[0, ℓ]
which (f, g′)-avoids pi such that ϕi(σi ∪ ρ) holds.

Note that ρ and Y are both h-homogeneous, but not necessarily of the
same color. Without loss of generality, suppose i = 0.

We first claim that d = (σ0 ∪ ρ, σ1, Y ) is a valid condition. Indeed, by
Lemma 4.6, σ0 ∪ ρ (f, g′)-avoids p0. Moreover, by choice of Y , it f -
stabilizes σ0 ∪ ρ with witness g′. Last, Y is X ⊕ h-computable, hence H
is 2-dimensional hyperimmune relative to Y .

We now claim that d 
 ¬ψi(Gi) for both i < 2. Indeed, let τ ⊆ Y be a
finite set f -avoiding pi. In particular, it is also h-homogeneous for color
1 − i, thus, by Lemma 5.8, ρ ∪ τ (f, h)-avoids pi, hence ¬ψi(σi ∪ ρ ∪ τ)
holds since h ∈ C.

Last, d ⊢ ϕ0(G0) by choice of ρ.

• Suppose c ?0i ϕi(G), and consider the class C of every pair of 2-colorings
witnessing that failure. Note that C is a Π0

1(X)-class, and by [27, Corollary
2.7], WKL preserves one 2-dimensional hyperimmunity : there exists an
element (h0, h1) ∈ C such that H is still 2-dimensional hyperimmune
relative to X ⊕h0⊕h1. Let a, b < 2 be such that Y := X ∩{x : h0(x) = a
and h1(x) = b} is infinite. The condition d := (σ0, σ1, Y ) is a valid
condition below c. We claim that d 
 ¬ϕi(Gi) : for any extension
(τ0, τ1, Z) of d, by construction, letting ρ = τi \ σi, ρ ⊆ Y , and as such
τi is both h0-homogeneous and h1-homogeneous. Moreover, τi hence ρ
f -avoids pi, and since p is divergent, ρ does (f, hi)-avoid pi. Thus ¬ϕi(τi)
will hold.

• Suppose c ?⊢ψ0(G0) ∨ ψ1(G1). By compactness, there exists some ℓ ∈ N

such that the following property (†) holds: for every coloring h : [0, ℓ] → 2,
there exists a side i < 2 and a finite set ρ ⊆ X ∩ [0, ℓ] which (f, h)-avoids
pi such that ψi(σi ∪ ρ) holds.
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Let Y ⊆ X \ [0, ℓ] be an infinite X-computable subset f -stabilizing [0, ℓ],
say with witness g′ : [0, ℓ] → 2. By (†), letting h = g′, there is some i < 2
and a finite set ρ ⊆ X∩[0, ℓ] which (f, g′)-avoids p0 and such that ψi(σi∪ρ)
holds.

Without loss of generality, suppose i = 0. We first claim that d = (σ0 ∪
ρ, σ1, Y ) is a valid condition. Indeed, by Lemma 4.6, σ0 ∪ ρ (f, g′)-avoids
p0. Moreover, by choice of Y , it f -stabilizes σ0 ∪ ρ with witness g′. Last,
Y is X ⊕ h-computable, hence H is 2-dimensional hyperimmune relative
to Y .

Last, d 
 ψ0(G0) by choice of ρ.

We have all the necessary tools to prove the diagonalization lemma for
preservation of a 2-dimensional hyperimmunity, using the existence of Σ0

1-preserving,
Σ0

1-compact forcing questions satisfying the merging lemma (Lemma 5.18).

Lemma 5.19. Let H be a 2-dimensional hyperimmune bi-family, c be a condition
and Φe0 , Φe1 be two 2-array functionals. There exists an extension d of c forcing
either ΦGi

ei
to be partial or H to intersect ΦGi

ei
for some i < 2.

Proof. Say c = (σ0, σ1, X).

• Let ψ(n) be a set Fn such that c ?⊢i ΦGi

ei
(n) ↓⊆ Fn for each i < 2, if

it exists. Note that by Lemma 5.13, the relation c ?⊢i ΦGi

ei
(n) ↓⊆ Fn is

Σ0
1(X) uniformly in n, so ψ(n) is also Σ0

1(X) uniformly in n.

• Let ψ(n;m) be a set Fn,m such that

c ?⊢
∨

i<2

(ΦGi

ei
(n) ↓⊆ ψ(n) ∧ ΦGi

ei
(n,m) ↓⊆ Fn,m)

if it exists. Note that by Lemma 5.16, the relation above is Σ0
1(X)

uniformly in n,m, hence ψ(n;m) is also Σ0
1(X) uniformly in n,m.

Now, three cases can hold :

• Case 1 : ∃nψ(n) ↑. Then, by Lemma 5.14, there is some i < 2 such that
c ?0i ΦGi

ei
(n) ↓, and by Lemma 5.18, there is some extension d ≤ c forcing

ΦGi

ei
(n) ↑.

• Case 2: ∃n,m (ψ(n) ↓ ∧ ψ(n;m) ↑). Then, by Lemma 5.18, there is
an extension d ≤ c forcing ΦGi

ei
(n) ↓⊆ Fn for some i < 2 and forcing

ΦGi

ei
(n) ↓⊆ Fn =⇒ ΦG

ei
(n,m) ↑, hence d forces ΦGi

ei
(n,m) ↑.

• Case 3: ∀n,m (ψ(n) ↓ ∧ ψ(n;m) ↓). Then, by 2-dimensional hyperimmunity
of H relative to X, there exist n,m such that (ψ(n), ψ(n;m)) ∈ H.
Moreover, by Lemma 5.18, for some i < 2, there is an extension d ≤ c
forcing ΦGi

ei
(n) ↓⊆ ψ(n)∧ΦGi

ei
(n,m) ↓⊆ ψ(n;m), i.e., (ΦGi

ei
(n),ΦGi

ei
(n,m)) ∈

H
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We are now ready to prove Theorem 5.7.

Proof of Theorem 5.7. Let H be a 2-dimensional hyperimmune bi-family, and
f : [N]2 → 2 be a computable coloring. Consider a sufficiently generic filter
F for the associated notion of forcing. For both i < 2, by Lemma 5.10, GF,i

is an infinite set, and, by definition of a condition, GF,i f -avoids pi. Finally,
by Lemma 5.19, H is 2-hyperimmune relative to GF,i for some i < 2. This
completes the proof of Theorem 5.7.

Corollary 5.20. Let p be a pattern containing two irreducible and divergent
sub-patterns p0 and p1 such that for each i < 2, pi is merging for color i. Then
RT

2
2(p) preserves 2-dimensional hyperimmunity.

Proof. Immediate by Theorem 5.7 and Lemma 3.2.

The goal is now to prove the reciprocal of Corollary 5.20. For this, we
need to construct some specific 2-dimensional hyperimmune bi-family H based
on a stable coloring f : [N]2 → 2, such that for every infinite set H avoiding
the desired pattern p, H is not 2-dimensional H-hyperimmune. Recall that a
coloring f : [N]2 → 2 is stable if for every x, limy f(x, y) exists.

Definition 5.21. Fix a stable coloring f : [N]2 → 2. Given two sets E < F ,
we write E →i F for (∀x ∈ E)(∀y ∈ F )f(x, y) = i. For every i < 2, we let
Ai(f) = {x : (∀∞y)f(x, y) = i}. Finally, we let Hi(f) be the bi-family of all
pairs (E,F ) such that E < F , E ⊆ Ai(f), F ⊆ A1−i(f), and E →1−i F .

The following result and its proof are an immediate adaptation of Liu and
Patey [27, Proposition 2.10].

Theorem 5.22. There exists a stable computable coloring f : [N]2 → 2 such
that for each i < 2, Hi(f) is 2-dimensional hyperimmune.

Proof. We build the coloring f : [N]2 → 2 by a finite injury priority argument.
For every e ∈ ω, we want to satisfy the following requirement:

Re,i : If Φe is total, then there is some n,m ∈ N such that Φe(n) ⊆
Ai(f), Φe(n;m) ⊆ A1−i(f) and Φe(n) →1−i Φe(n;m).

The requirements are given the usual priority ordering R0,0 < R0,1 <
R1,0 . . . . Initially, the requirements are neither partially, nor fully satisfied.

• A requirement Re,i requires a first attention at stage s if it is not partially
satisfied and Φe(n)[s] ↓= E for some set E ⊆ {e+ 1, . . . , s− 1} such that
no element in E is restrained by a requirement of higher priority. If it
receives attention, then it puts a restraint on E, commit the elements of
E to be in A1−i(f), and is declared partially satisfied.
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• A requirement Re,i requires a second attention at stage s if it is not fully
satisfied, Φe(n)[s] ↓= E and Φe[s](n;m) ↓= F for some sets E < F ⊆
{e + 1, . . . , s − 1} such that E →1−i F and which are not restrained
by a requirement of higher priority. If it receives attention, then it puts a
restraint on E∪F , commits the elements of E to be in Ai(f), the elements
of F to be in A1−i(f), and is declared fully satisfied.

At stage 0, we let f = ∅. Suppose that at stage s, we have defined f(x, y)
for every x < y < s. For every x < s, if it is committed to be in some
Ai(f), set f(x, s) = i. Let Re,i be the requirement of highest priority which
requires attention. If Re,i requires a second attention, then execute the second
procedure, otherwise execute the first one. In any case, reset all the requirements
of lower priorities by setting them unsatisfied, releasing all their restraints, and
go to the next stage. This completes the construction. One easily sees by
induction that each requirement Re,i acts finitely often, and either Φe is partial,
in which case Re,i is vacuously satisfied, or is eventually fully satisfied. This
procedure also yields a stable coloring.

Remark 5.23. Let f : [N]2 → 2 be a stable computable coloring such that for
some i < 2, Hi(f) is 2-dimensional hyperimmune and letAi = {x : limy f(x, y) =
i}. Then A0 and A1 are both hyperimmune. Indeed, any c.e. array (En :
n ∈ N) can be transformed into a bi-array (En, Fn,m : n,m ∈ N) by letting
Fn,m = Em. If Hi(f) is 2-dimensional hyperimmune, then (En, Fn,m) ∈ Hi(f)
for some n,m ∈ N, in which case En ⊆ Ai and Em ⊆ A1−i, so both A0 and A1

are hyperimmune.

Recall that a finite set F = {x0 < · · · < xℓ−2} strongly f -realizes a pattern
p if F f -realizes p− and for every i < ℓ − 1 and all but finitely many y ∈ N,
f(xi, y) = p(i, ℓ − 1). Accordingly, a pattern p strongly f -appears in a set H if
there exists a finite subset F ⊆ H which strongly f -realizes p.

Theorem 5.24. Fix i < 2. Let p be a pattern of size at least 2 such that all
of its sub-patterns are either reducible, convergent, or non-i-merging, and let
f : [N]2 → 2 be a stable computable coloring. For every infinite set H such that
Hi(f) is 2-dimensional H-hyperimmune, the pattern p strongly f -appears in H.

Proof. Let us prove the desired result by induction on the size of p. Let H be
an infinite set such that H0(f) is 2-dimensional H-hyperimmune.

First, suppose that p is convergent. If |p| = 2, then for every k ∈ N, the
singleton pattern p− f -appears in H ∩ (k,∞). If |p| > 2, then by induction
hypothesis, for every k ∈ N, p− strongly f -appears in H ∩ (k,∞), so by
Remark 4.16, p− f -appears in H ∩ (k,∞). Since f is computable, one can
find H-computably an infinite array {Fn}n∈N included in H and such that each
Fn f -realizes p−. By Remark 5.23, A0 and A1 are both H-hyperimmune, so
there is some n such that Fn ⊆ Ap(0,|p|−1). Then R strongly f -realizes p, so p
strongly f -appears in H.

Suppose now that p is divergent and reducible. By the same argument as in
Theorem 4.17, p strongly f -appears in H.
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Finally, suppose p divergent, irreducible, and not i-merging. This yields a
non-trivial partition F ∪G = ℓ− 1 such that F < G and such that :

1. ∀x ∈ F , p(x, ℓ− 1) = i

2. ∀x ∈ G, p(x, ℓ− 1) = 1 − i

3. ∀x0, x1 ∈ F ∀y0, y1 ∈ G, p(x0, y0) = p(x1, y1).

If the color of item 3 is i, then p = p ↾F∪{minG} ⊎ p ↾G∪{ℓ−1}, contradicting
the fact that p is irreducible, so assume ∀x ∈ F∀y ∈ G p(x, y) = 1 − i. By
induction hypothesis, for every k ∈ N, p ↾F and p ↾G strongly f -appear in
H ∩ (k,∞). In particular, by Remark 4.16, for every k ∈ N, p ↾F and p ↾G
f -appear in H ∩ (k,∞).

Consider an H-computable bi-array (Rn, Sn,m : n,m > 0) such that Rn ⊆ H
f -realizes p ↾F and Sn,m ⊆ H f -realizes p. Since Hi(f) is 2-dimensional H-
hyperimmune, (Rn, Sn,m : n,m > 0) intersects Hi(f), in other words, there
exists n,m ∈ N such that (Rn, Sn,m) ∈ Hi(f). By definition of Hi(f), Rn ⊆ Ai,
Sn,m ⊆ A1−i and Rn →1−i Sn,m. By item (3), Rn ∪ Sn,m f -realize p−, and by
items (1-2), the set Rn ∪ Sn,m ⊆ H strongly f -realizes p.

Proof of Theorem 5.6. Suppose first p contains two divergent and irreducible
sub-patterns p0 and p1 such that p0 is 0-merging and p1 is 1-merging. Then by
Corollary 5.20, RT2

2(p) preserves one 2-dimensional hyperimmunity.
Conversely, suppose that RT2

2(p) preserves one 2-dimensional hyperimmunity.
Let f be a stable function such that both H0(f) and H1(f) are 2-dimensional
hyperimmune. Fix some i < 2 and let H be an infinite set f -avoiding p such
that Hi(f) is 2-dimensional H-hyperimmune. By Remark 4.16, H strongly
f -avoids p, so by Theorem 5.24, p contains a sub-pattern which is divergent,
irreducible and i-merging.

6 Preservation of ω 2-dim hyperimmunities

Patey [32] proved the existence, for every k, of a problem Pk which preserves
k, but not k + 1 hyperimmunities. Since RT

2
2 preserves one hyperimmunity, so

do every Ramsey-like theorems for pairs and 2 colors. However, the proof of
Main Theorem 1.8 showed that if RT2

2(p) does not preserve ω hyperimmunities,
then it does not preserve 2 hyperimmunities either, so the hierarchy collapses
for this family of statements. This collapsing is actually due to the fact that we
consider only 2-colorings. Indeed, the statement Pk studied by Patey [32] is of
the form RT

2
k+1(p) for some pattern p : [ℓ]2 → k + 1.

In the case of 2-dimensional hyperimmunities, the hierarchy also collapses
at level 2 for 2-colorings. In this section, we characterize the statements RT

2
2(p)

which preserve ω 2-dimensional hyperimmunities in terms of p. As it turns out,
the characterization is very similar to Theorem 5.6, except that one requires
the existence of a single sub-pattern which is simultaneously 0-merging and 1-
merging. The existence of such a sub-pattern enables to define a non-disjunctive
notion of forcing, and as such, to satisfy all the requirements independently.
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Definition 6.1. A pattern p : [ℓ]2 → 2 is merging if it is both 0-merging and
1-merging.

The goal is to prove the following theorem:

Theorem 6.2. Let p be a pattern containing an irreducible, merging and divergent
sub-pattern. Then RT

2
2(p) preserves ω 2-dimensional hyperimmunities.

As usual, the proof of Theorem 6.2 is divided into Theorem 6.3 and Theorem 6.15.
All the proofs are straightforward adaptations of Section 5 to a non-disjunctive
setting, so they will be omitted.

Theorem 6.3. Let p be an irreducible, divergent, and merging pattern. Then
RT

2
2(p) preserves ω 2-dimensional hyperimmunities.

Fix a countable collection 2-dimensional hyperimmune bi-families H0,H1, . . . ,
and a computable coloring f : [N]2 → 2. We shall construct an infinite set G
such that G f -avoids p and for every n, Hn is 2-dimensional G-hyperimmune.

Definition 6.4. A condition is a 2-tuple (σ,X) where

• (σ,X) is a Mathias condition;

• X f -stabilizes [0, |σ| − 1] with some witness g : σ → 2;

• σ (f, g)-avoids p;

• Hn is 2-dimensional X-hyperimmune for every n ∈ N.

The order over conditions is the usual Mathias extension. Every sufficiently
generic filter F induces a set GF =

⋃

(τ,Y )∈F τ . The following standard lemma
states that for every sufficiently generic filter F , the set GF is infinite.

Lemma 6.5. Let c = (σ,X) be a condition and x ∈ X. There exists Y ⊆ X
such that (σ ∪ {x}, Y ) is an extension of c.

We now define two non-disjunctive, Σ0
1-preserving and Σ0

1-compact forcing
questions, which satisfy a non-disjunctive version of the merging lemma (Lemma 6.12).
As mentioned, we only state the definitions and lemmas without proofs.

Definition 6.6. Let ϕ be a Σ0
1-formula, c = (σ,X) be a condition. We define

the forcing question ?⊢′ as follows : c ?⊢′ ϕ(G) if for all pairs of 2-colorings
h0 : N → 2 and h1 : N → 2, there exists a finite h0-homogeneous and h1-
homogeneous set ρ ⊆ X which (f, h0)-avoids p such that ϕ(σ ∪ ρ) holds.

Lemma 6.7. Let c = (σ,X) be a condition and ϕ be a Σ0
1 formula. The sentence

“c ?⊢′ ϕ(G)” is Σ0
1(X).

Lemma 6.8. For every condition c and every ∆0
0-formula ϕ(G, x), if c ?⊢′ ∃xϕ(G, x),

then there exists t ∈ N such that c ?⊢′ ∃x ≤ t ϕ(G, x).
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Definition 6.9. Let ϕ(G) be a Σ0
1-formula and c = (σ,X) be a condition.

We define the forcing question ?⊢ as follows : c ?⊢ϕ(G, x) if for all 2-coloring
h : N → 2, there exists a finite set ρ ⊆ X which (f, h)-avoids p such that ϕ(σ∪ρ)
holds.

Lemma 6.10. Let c = (σ,X) be a condition and ϕ be a Σ0
1 formula. The

sentence “c ?⊢ϕ(G)” is Σ0
1(X).

Lemma 6.11. For every condition c and every ∆0
0-formula ϕ(G, x), if c ?⊢∃xϕ(G, x),

then there exists t ∈ N such that c ?⊢∃x < tϕ(G, x).

The following merging lemma serves the same purpose as in every previous
section and chapter. Simply note that Liu and Patey [27, Corollary 2.7] actually
proved that WKL preserves ω 2-dimensional hyperimmunities, so the computability-
theoretic constraint on the reservoirs of a conditions can be preserved with the
same combinatorics.

Lemma 6.12. Let ϕ and ψ be two Σ0
1 formulas, and let c ∈ P.

• If c ?⊢′ ϕ(G) and c ?0ψ(G), then there exists d ≤ c such that d forces
ϕ(G) ∧ ¬ψ(G) ;

• If c ?0′ ϕ(G), then there exists d ≤ c such that d forces ¬ϕ(G);

• If c ?⊢ψ(G), then there exists d ≤ c such that d forces ψ.

Finally, the existence of two Σ0
1-preserving, Σ0

1-compact forcing questions
satisfying the previous merging lemma enables to prove the following diagonalization
lemma:

Lemma 6.13. Let H be a 2-dimensional hyperimmune bi-family, c = (σ,X) ∈ P

and Φe be a 2-array functional. There exists an extension d of c forcing either
ΦG

e to be partial or H to intersect ΦG
e .

As mentioned, the notion of forcing being non-disjunctive, the requirements
for preserving each 2-dimensional hyperimmunity of each bi-family can be satisfied
independently, without resorting to a pairing argument. We are now ready to
prove Theorem 6.3.

Proof of Theorem 6.3. Fix a countable collection of 2-dimensional hyperimmune
bi-families H0,H1, . . . and a computable coloring f : [N]2 → 2. Consider a
sufficiently generic filter F for the associated notion of forcing. By Lemma 6.5,
GF is an infinite set, and, by definition of a condition GF f -avoids p. Finally,
by Lemma 6.13, Hn is 2-dimensional G-hyperimmune for every n ∈ N. This
completes the proof of Theorem 6.3.

Corollary 6.14. Let p be a pattern containing an irreducible, merging and
divergent sub-pattern. Then RT

2
2(p) preserves ω 2-dimensional hyperimmunities.
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The following theorem proves the reciprocal in a strong sense: if RT2
2(p) does

not preserve ω 2-dimensional hyperimmunities, then it does not even preserve
2 of them.

Theorem 6.15. Let p be a pattern of size at least 2 such that all of its sub-
patterns are either reducible, convergent, or non-merging, and let f : [N]2 → 2
be a stable computable coloring. For every infinite set H such that H0(f) and
H1(f) are both 2-dimensional H-hyperimmune, the pattern p strongly f -appears
in H.

Proof. The proof is exactly the same as the one of Theorem 5.24, except that
in the case analysis, if p is not merging, then it is not i-merging or some i < 2,
and one exploits 2-dimensional H-hyperimmunity of Hi(f). Because the choice
of i depends on the considered sub-pattern, both H0(f) and H1(f) must be
2-dimensional H-hyperimmune.

Corollary 6.16. Let p be a pattern of size at least 2 such that all of its sub-
patterns are either reducible, convergent, or non-merging. Then RT

2
2(p) does not

preserve two 2-dimensional hyperimmunities, as witnessed by a stable coloring.

Proof. Suppose for the contradiction that RT
2
2(p) preserves two 2-dimensional

hyperimmunities. Let f be a stable computable function such that both H0(f)
and H1(f) are 2-dimensional hyperimmune. Such a coloring exists by Theorem 5.22.
LetH be an infinite set f -avoiding p such that H0(f) and H1(f) are 2-dimensional
H-hyperimmune. By Remark 4.16, H strongly f -avoids p, so by Theorem 6.15,
p contains a sub-pattern which is divergent, irreducible and merging.

Proof of Theorem 6.2. Suppose first p contains a divergent, merging and irredu-
cible sub-patterns q. Then by Corollary 6.14, RT2

2(p) preserves ω 2-dimensional
hyperimmunities. Suppose now p does not contain such a sub-pattern. Then by
Corollary 6.16, it does not preserve 2 (and a fortiori ω) 2-dimensional hyperim-
munities.

7 The Half Erdős-Moser theorem

There exist multiple known decompositions of RT2
2 in combinatorially simpler

statements. Cholak, Jockusch and Slaman [4] decomposed RT
2
2 into its stable

version (SRT2
2) and the cohesiveness principle (COH). Then, Bovykin and

Weiermann [2] split RT
2
2 into the Erdős-Moser theorem (EM) and the Chain

AntiChain principle (CAC), and Montálban noticed that ADS, which is strictly
weaker than CAC, was actually sufficient. The Chain AntiChain principle states,
for every partial order on N, the existence of an infinite chain or antichain. Both
ADS and CAC can be formulated in terms of transitivity.

Proposition 7.1 (Hirschfeldt and Shore [13, Section 5]). Over RCA0,

• ADS is equivalent to the statement “Every coloring f : [N]2 → 2 which is
transitive for both colors admits an infinite homogeneous set”
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• CAC is equivalent to the statement “Every coloring f : [N]2 → 2 which is
transitive for one color admits an infinite homogeneous set”

Thus, given a coloring f : [N]2 → 2, EM states the existence of an infinite set
H ⊆ N on which f is transitive for both colors, and ADS applied to f ↾ [H]2 → 2
yields an infinite f -homogeneous set. There exists a natural counterpart to this
decomposition, involving CAC and an asymmetric version of the Erdős-Moser
theorem.

Definition 7.2 (Half Erdős-Moser theorem). The statement HEM is the following:
“For every 2-coloring of pairs f : [N]2 → 2, there exists an infinite set transitive
for at least one color.”

This statement is designed to obtain the following decomposition.

Proposition 7.3. RCA0 ⊢ RT
2
2 ↔ (HEM ∧ CAC).

Proof. Let f : [N]2 → 2 be an instance of RT
2
2. By HEM, there is an infinite

set X = {x0 < x1 < . . . } and some color i < 2 such that X is f -transitive for
color i. Let g : [N]2 → 2 be defined by g(a, b) = f(xa, xb). In particular, g is
transitive for color i, so by Hirschfeldt and Shore [13, Theorem 5.2], CAC proves
the existence of an infinite g-homogeneous set Y ⊆ N. The set {xa : a ∈ Y } is
f -homogeneous.

This decomposition is arguably slightly less natural than the one in terms
of EM and ADS, but is interesting from the viewpoint of the first-order part of
RT

2
2.
The first-order part of a second-order theory T is the set of all the first-order

sentences provable by T . Understanding the first-order part of theorems is an
important part of the reverse mathematical process, as it is informative of the
strength of a statement and closely related to the vision of reverse mathematics
as a partial realization of Hilbert’s program [36]. In particular, the quest for
the first-order part of Ramsey’s theorem for pairs is a very active branch of
reverse mathematics. It is known to strictly follow from Σ2-induction (IΣ2) and
to imply the Σ2-collection scheme (BΣ2). See Cholak, Jockusch and Slaman [4]
for the former result, and Hirst [14] for the latter one.

The decomposition of RT2
2 in terms of HEM and CAC is particularly interesting,

as CAC is the strongest known consequence of RT2
2 for which the first-order part

is known to be equivalent to BΣ2 (see Chong, Slaman and Yang [5]). By an
amalgamation theorem of Yokoyama [38], it follows that the first-order part of
RT

2
2 is BΣ2 iff it is the case for HEM. We therefore devote this section to a

better understanding of the reverse mathematical strength of this statement.
First of all, thanks to Lemma 3.5, HEM can be casted in the Ramsey-like

framework and is of the form RT
2
2(p0 ⊎ p1) where p0 and p1 are the non-

transitivity patterns for color 0 and 1 (see Figure 1). This makes HEM benefit
from the general analysis of Ramsey-like theorems above. In particular, since
p0⊎p1 is a pattern of standard size, we obtain from Proposition 2.3 the following
lower bound. Recall that n-DNC is the statement “For every set X, there is an
X(n−1)-DNC function”.
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Proposition 7.4. RCA0 + BΣ0
2 ⊢ HEM → 2-DNC.

It is however unknown whether HEM implies BΣ0
2 over RCA0, as the known

proof of RCA0 ⊢ EM → BΣ0
2 by Kreuzer [24] produces a coloring f : [N]2 → 2

which is transitive for some color, hence which is trivial from the viewpoint
of HEM.

Proposition 7.5. HEM preserves 2-dimensional hyperimmunity.

Proof. Given i < 2, let pi be the non-transitivity pattern for color i. It is
divergent, irreducible, and i-merging. Let p = p0 ⊎ p1. By construction, both
p0 and p1 are sub-patterns of p. As such, by Theorem 5.22, RT2

2(p) preserves
2-dimensional hyperimmunity. Finally, together with Lemma 3.5, this yields
that HEM preserves 2-dimensionnal hyperimmunity.

Corollary 7.6. WKL + HEM + COH does not imply EM over RCA0.

Proof. By Proposition 7.5, and Liu and Patey [27, Corollary 2.7, Corollary 2.9-]
HEM, WKL and COH preserve 2-dimensional hyperimmunity, while by Liu and
Patey [27, Corollary 2.12], EM does not, as witnessed by a stable coloring.

Proposition 7.7. HEM does not preserve two 2-dimensional hyperimmunities,
as witnessed by a stable coloring.

Proof. As mentioned, HEM is equivalent over RCA0 to RT
2
2(p0 ⊎ p1), where p0

and p1 are as in Figure 1. The pattern p0⊎p1 does not contain any sub-pattern
which is simultaneously irreducible, merging and divergent, so by Corollary 6.16,
HEM does not preserve two 2-dimensional hyperimmunities.

Corollary 7.8. WKL + COH does not imply HEM over RCA0.

Proof. By Liu and Patey [27, Corollary 2.7, Corollary 2.9], both WKL and COH

preserve two 2-dimensional hyperimmunities over RCA0, while HEM does not
by Proposition 7.7.

Due to the similarity of HEM with EM, it is natural to guide our reverse
mathematical analysis of HEM with the one of EM. Besides 2-DNC, the other
main lower bound of EM is the Ramsey-type weak König’s lemma (RWKL),
introduced by Flood [10] under the name RKL.

Definition 7.9. A set H ⊆ N is homogeneous for a σ ∈ 2<N if (∃c < 2)(∀i ∈
H)(i < |σ| → σ(i) = c, and a set H ⊆ N is homogeneous for an infinite tree
T ⊆ 2<N if the tree {σ ∈ T : H is homogeneous for σ} is infinite.

Statement 7.10 (Ramsey-type weak König’s lemma). RWKL is the statement
“Every infinite binary tree admits an infinite homogeneous set”.

Bienvenu, Patey and Shafer [1, Theorem 2.11] proved that EM implies RWKL

over RCA0. The proof does not seem to adapt to the principle HEM, but one can
still prove with enough induction a weak version of RWKL, in which a solution
is a sequence of blocs of arbitrary length which are all homogeneous for the tree.
In particular, this weaker principle is still not computably true.
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Statement 7.11 (Weak Ramsey-type weak König’s lemma). WRWKL is the
statement “For every infinite binary tree T ⊆ 2<N, there is an infinite sequence
F0, F1, . . . of finite sets such that |Fn| = n and Fn is homogeneous for T .”

Theorem 7.12. RCA0 + BΣ0
2 ⊢ HEM → WRWKL.

Proof. Let T ⊆ 2N be an infinite tree. We say a set U ⊆ N is T -homogeneous
of color i if ∀s ∈ N, there exists σ ∈ T of length s such that ∀x ∈ U, σ(x) = i.
For each s ∈ N, let σs be the leftmost element of T ∩ 2s. We define a coloring
of pairs from the tree T as in [1] and [10]: for all x < s, f(x, s) = σs(x). Note
that [10, Theorem 5] proved that f is stable.

Apply HEM to f to get an f -transitive set U for some color i < 2. We say
a finite set F satisfies the (∗)property if F is f -homogeneous for color i but
not T -homogeneous of color i. Suppose F satisfies (∗). Let y = maxF and
x ∈ F \ {y}. As F is f -homogeneous for color i, f(x, y) = i. There can only
be finitely many z ∈ U such that f(y, z) = i, otherwise by f -transitivity of U ,
f(x, z) = i also, and so F would be T -homogeneous of color i, contradicting (∗).
Thus, limz f(y, z) = 1 − i. Let S = {max(F ) : F ⊆ U ∧ F satisfies (∗)}. We
have two cases.

Case 1: S is unbounded. Then one can thin out S using BΣ0
2 to compute

an infinite f -homogeneous set of color 1 − i. By [10, Theorem 5], H is T -
homogeneous for color 1 − i.

Case 2: S is bounded by some m. There are two subcases.

• Case 2.1: S contains arbitrarily large finite f -homogeneous sets for color i.
We can then find sets of size bigger than m, and thus not satisfying (∗).
These sets are hence T -homogeneous for color i, and these can be found
S ⊕ f -computably, there is an S ⊕ f -computable solution to WRWKL.

• Case 2.2: S does not contain arbitrarily large finite f -homogeneous sets
for color i. Then, since S is f -transitive for color i, by Le Houérou
and Patey [15]), BΣ0

2 proves the existence of an infinite f -homogeneous
subset H for color 1 − i. By [10, Theorem 5], H is T -homogeneous for
color 1 − i.
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[10] Stephen Flood. Reverse mathematics and a Ramsey-type König’s lemma.
J. Symbolic Logic, 77(4):1272–1280, 2012.

[11] Noam Greenberg and Joseph S. Miller. Lowness for Kurtz randomness. J.
Symbolic Logic, 74(2):665–678, 2009.

[12] Denis R. Hirschfeldt, Carl G. Jockusch, Jr., Bjø rn Kjos-Hanssen, Steffen
Lempp, and Theodore A. Slaman. The strength of some combinatorial
principles related to Ramsey’s theorem for pairs. In Computational
prospects of infinity. Part II. Presented talks, volume 15 of Lect. Notes
Ser. Inst. Math. Sci. Natl. Univ. Singap., pages 143–161. World Sci. Publ.,
Hackensack, NJ, 2008.

[13] Denis R. Hirschfeldt and Richard A. Shore. Combinatorial principles
weaker than ramsey’s theorem for pairs. Journal of Symbolic Logic, 72:171
– 206, 2007.

[14] Jeffry Lynn Hirst. COMBINATORICS IN SUBSYSTEMS OF SECOND
ORDER ARITHMETIC. ProQuest LLC, Ann Arbor, MI, 1987. Thesis
(Ph.D.)–The Pennsylvania State University.

[15] Quentin Le Houérou and Ludovic Patey. The reverse mathematics of
unbalanced colorings of pairs. In preparation, 2025.

37



[16] Quentin Le Houérou and Ludovic Patey. Ramsey-like theorems for
separable permutations, 2025.

[17] C. G. Jockusch, Jr., M. Lerman, R. I. Soare, and R. M. Solovay. Recursively
enumerable sets modulo iterated jumps and extensions of Arslanov’s
completeness criterion. J. Symbolic Logic, 54(4):1288–1323, 1989.

[18] Carl G. Jockusch, Jr. Ramsey’s theorem and recursion theory. J. Symbolic
Logic, 37:268–280, 1972.

[19] Carl G. Jockusch, Jr. and Robert I. Soare. Π0
1 classes and degrees of

theories. Trans. Amer. Math. Soc., 173:33–56, 1972.

[20] Mushfeq Khan and Joseph S. Miller. Forcing with Bushy Trees.
arXiv:1503.08870 [math], March 2017. arXiv: 1503.08870.

[21] Bjø rn Kjos-Hanssen. Infinite subsets of random sets of integers. Math.
Res. Lett., 16(1):103–110, 2009.

[22] Bjø rn Kjos-Hanssen, Wolfgang Merkle, and Frank Stephan. Kolmogorov
complexity and the recursion theorem. Trans. Amer. Math. Soc.,
363(10):5465–5480, 2011.

[23] Leszek Aleksander Ko lodziejczyk and Keita Yokoyama. In search of
the first-order part of Ramsey’s theorem for pairs. In Connecting with
computability, volume 12813 of Lecture Notes in Comput. Sci., pages 297–
307. Springer, Cham, [2021] ©2021.

[24] Alexander P. Kreuzer. Primitive recursion and the chain antichain
principle. Notre Dame J. Form. Log., 53(2):245–265, 2012.

[25] Manuel Lerman, Reed Solomon, and Henry Towsner. Separating principles
below Ramsey’s theorem for pairs. J. Math. Log., 13(2):1350007, 44, 2013.

[26] Jiayi Liu. Rt22 does not imply wkl0. The Journal of Symbolic Logic,
77(2):609–620, 2012.

[27] Lu Liu and Ludovic Patey. The reverse mathematics of the thin set and
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