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ABSTRACT. We use the framework of reverse mathematics to address the question of, given a math-

ematical problem, whether or not it is easier to find an infinite partial solution than it is to find a

complete solution. Following Flood [9], we say that a Ramsey-type variant of a problem is the problem

with the same instances but whose solutions are the infinite partial solutions to the original problem.

We study Ramsey-type variants of problems related to König’s lemma, such as restrictions of König’s

lemma, Boolean satisfiability problems, and graph coloring problems. We find that sometimes the

Ramsey-type variant of a problem is strictly easier than the original problem (as Flood showed with

weak König’s lemma) and that sometimes the Ramsey-type variant of a problem is equivalent to the

original problem. We show that the Ramsey-type variant of weak König’s lemma is robust in the sense

of Montalbán [28]: it is equivalent to several perturbations of itself. We also clarify the relationship

between Ramsey-type weak König’s lemma and algorithmic randomness by showing that Ramsey-type

weak weak König’s lemma is equivalent to the problem of finding diagonally non-recursive functions

and that these problems are strictly easier than Ramsey-type weak König’s lemma. This answers a

question of Flood.

1. INTRODUCTION

This work presents a detailed study of the question given some mathematical problem, is it easier
to find an infinite partial solution than it is to find a complete solution? that was implicitly raised

by Flood’s work in [9]. By ‘mathematical problem,’ we simply mean any theorem from ordinary

mathematics that can be easily formulated in the language of instances and solutions in the sense

illustrated by the key example of König’s lemma. König’s lemma states that every infinite, finitely

branching tree has an infinite path. The corresponding problem is thus that of finding an infinite

path through a given infinite, finitely branching tree. The problem’s instances are the infinite, finitely

branching trees T , and the solutions to a given instance T are the infinite paths through T .

Formally, we consider Π1
2 statements of the form

∀X (ϕ(X )→∃Yψ(X , Y )).

Every such statement corresponds to a problem whose instances are the sets X such that ϕ(X ) and

whose solutions to a given instance X are the sets Y such that ψ(X , Y ). In the example of König’s

lemma, ϕ(X ) expresses that X is an infinite, finitely branching tree, and ψ(X , Y ) expresses that Y is

an infinite path through X .

The problems we consider come with natural notions of infinite partial solutions. Again, consider

König’s lemma, where we specify that an infinite, finitely branching tree means an infinite, finitely

branching subtree of N<N. For such a tree T , a path through T , which we think of as a complete
solution to the instance T , is a function f : N→ N such that ∀n(〈 f (0), f (1), . . . , f (n− 1)〉 ∈ T ). An
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infinite partial solution to the instance T is then a function g : X → N for an infinite X ⊆ N such

that there is a function f : N → N that extends g and is a path through T . Following Flood [9],
we call the variant of a problem in which we ask not for complete solutions but for infinite partial

solutions the Ramsey-type variant of the problem. Thus, for example, Ramsey-type König’s lemma is

the problem of producing an infinite partial path (in the sense described above) through an infinite,

finitely-branching tree. The label ‘Ramsey-type’ comes from an analogy with the infinite versions of

Ramsey’s theorem. Any infinite subset of an infinite homogenous set for some coloring is also an

infinite homogeneous set for that coloring. The Ramsey-type variant of a problem has this same

flavor: an infinite piece of a partial solution to some instance of the problem is also a partial solution

to that same instance.

Thus given a mathematical problem, we ask whether or not it can be solved using its Ramsey-type

variant. If the answer is positive, then finding partial solutions to the problem is just as hard as

finding complete solutions. If the answer is negative, then it is easier to find partial solutions than it is

to find complete solutions. Reverse mathematics, a foundational program whose aim is to classify the

theorems of ordinary (i.e., non-set-theoretic) mathematics according to their provability strengths,

provides an appropriate framework in which to analyze such questions. In reverse mathematics,

theorems are formalized in the language of second-order arithmetic (which even suffices for theorems

concerning the structure of the real line or analysis on complete separable metric spaces), and the

implications among them are studied over a base theory called RCA0. Roughly speaking, the

theorems provable in RCA0 are those that are computable in the sense illustrated by the example

of the intermediate value theorem. Given a continuous real-valued function which is negative at 0

and positive at 1, one can compute an x ∈ (0,1) such that f (x) = 0 essentially by using the usual

interval-halving procedure. This argument can be formalized to a proof of the intermediate value

theorem in RCA0 (see [35] Theorem II.6.6).

Implication over RCA0 provides a natural classification of logical strength. We think of a theorem

ϕ as being at least as strong as a theorem ψ if ϕ→ψ can be proved in RCA0. Similarly, we think of

ϕ and ψ as having equivalent strength if ϕ↔ψ can be proved in RCA0. Thus we may, for example,

formalize the question of whether or not it is easier to find partial paths through infinite, finitely

branching trees than it is to find complete paths by asking whether or not the statement “for every

infinite, finitely branching tree there exists an infinite partial path implies König’s lemma” can be

proved in RCA0. Flood [9] was the first to consider such questions and he showed (among other

results) that the Ramsey-type variant of weak König’s lemma (which is König’s lemma restricted to

infinite, binary branching trees) is indeed easer than weak König’s lemma. In contrast, we show that

the forgoing example of König’s lemma for arbitrary infinite, finitely branching trees is equivalent to

its Ramsey-type variant (Theorem 3.17 below). Thus for some problems it is easier to find infinite

partial solutions and for other problems it is not.

Much of the present work is dedicated to understanding the relationships among Flood’s Ramsey-

type variant of weak König’s lemma (henceforth ‘RWKL’), Ramsey-type variants of other problems,

and problems that are well-studied in reverse mathematics. For example, Flood proved that RWKL

is strictly weaker than weak König’s lemma and at least as strong as DNR (an important statement

defined in Section 2.4), but he left as an open question whether or not RWKL is strictly stronger

than DNR. We answer Flood’s question by showing that RWKL is indeed strictly stronger than DNR

(Corollary 6.12 below), and we also show that DNR is equivalent to the Ramsey-type variant of

weak weak König’s lemma (which is König’s lemma restricted to binary branching trees of positive
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measure; Theorem 3.4 below).1 Thus RWKL is distinct from every theorem previously studied in

the context of reverse mathematics. This raises the question of whether RWKL is a sort of logical

artifact or whether RWKL characterizes the logical strength of a fundamental mathematical idea.

We propose that RWKL is indeed fundamental, in no small part because the basic question that

inspires RWKL, that is, the question of whether or not it is easier to find an infinite partial solution

to a problem than to find a complete solution, is so natural. In order to provide further support for

RWKL, we prove a number of theorems which, together, suggest that RWKL is robust in the informal

sense proposed by Montalbán [28]. Theorem 3.27 shows that RWKL is equivalent to several small

perturbations of itself. Much more significantly, in Section 4 and Section 5 we show that RWKL is

equivalent to several quite large perturbations of itself. In these sections, we consider statements

that are equivalent to weak König’s lemma (compactness for propositional logic in Section 4 and

graph coloring in Section 5) and show that their corresponding Ramsey-type variants are equivalent

to RWKL. The Ramsey-type weak König’s lemma is also of significant technical interest because it

provides a sufficient amount of compactness for many separation results concerning Ramsey-type

statements. For example, Seetapun’s theorem [34] (separating RT2
2 from ACA0), Wang’s separation

of the free set and thin set theorems from ACA0 [37], and various recent separations of Patey [32, 33]
can be streamlined by using models of RWKL in place of models of WKL. Liu’s theorems [24, 25],
that RT2

2 does not imply WKL or WWKL, can also be simplified by making explicit use of models of

RWKL.

The paper is organized as follows. In the next section, we present the necessary reverse mathematics

background. In Section 3, we study several Ramsey-type variants of full, bounded, weak, and weak

weak König’s lemma. The remainder of the paper focuses on Ramsey-type variants of theorems

equivalent to weak König’s lemma. In Section 4, we study Ramsey-type variants of the compactness

theorem for propositional logic. In Section 5, we study Ramsey-type variants of graph coloring

theorems. In Section 6, we prove several non-implications concerning the Ramsey-type theorems,

including that DNR does not imply RWKL.

1.1. Basic notation

We follow the standard notation from computability theory. (Φe)e∈N is an effective list of all partial

recursive functions. We = dom(Φe) is the eth r.e. set. These relativize to any oracle X , and we denote

the corresponding lists by (ΦX
e )e∈N and (W X

e )e∈N.
Identify each k ∈ N with the set {0, 1, . . . , k− 1}. For k ∈ N∪ {N} and s ∈ N, ks is the set of strings

of length s over k, k<s is the set of strings of length < s over k, k<N is the set of finite strings over k,

and kN is the set of infinite strings over k. The length of a finite string σ is denoted |σ|. For i ∈ N
and σ a finite or infinite string, σ(i) is the (i + 1)th bit of σ. For finite or infinite strings σ and τ,

σ is a prefix of τ (written σ � τ) if dom(σ) ⊆ dom(τ) and (∀i ∈ dom(σ))(σ(i) = τ(i)). For an

n ∈ N and a string (finite or infinite) σ of length ≥ n, σ � n = 〈σ(0),σ(1), . . . ,σ(n− 1)〉 is the initial

segment of σ of length n.

A tree is a set T ⊆ N<N such that ∀σ∀τ(σ ∈ T ∧τ � σ→ τ ∈ T). If T is a tree and s ∈ N, then

T s is the set of strings in T of length s. An f ∈ NN is a path through a tree T if (∀n ∈ N)( f � n ∈ T ).
The set of paths through T is denoted [T].

For k ∈ N∪ {N}, the space kN is topologized by viewing it as
∏

i∈N k, giving each copy of k the

discrete topology, and giving the product the product topology. Basic open sets, also called cylinders,

1These results have been independently proven by Flood and Towsner [12].
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are sets of the form ¹σº= { f ∈ kN : f � σ} for σ ∈ k<N. Open sets are of the form
⋃

σ∈W¹σº for

W ⊆ k<N. If the set W is an r.e. subset of k<N, then
⋃

σ∈W¹σº is said to be r.e. (or effectively) open.

We identify the space 2N of infinite binary sequences with P (N) by equating each subset of N with

its characteristic string as usual. 2N is compact, and its clopen sets are exactly the finite unions of

cylinders. The uniform (or Lebesgue) measure µ on 2N is the Borel probability measure for which

(∀σ ∈ 2<N)(µ(¹σº) = 2−|σ|).
It is a convention, when working in second-order arithmetic, to use the symbol ‘ω’ to refer to

the standard natural numbers and to use the symbol ‘N’ to refer to the first-order part of a possibly

non-standard model of some fragment of arithmetic. We aim to follow this convention. For example,

the definitions above use ‘N’ because they are intended to be interpreted in possibly non-standard

models. We use ‘ω’ when we explicitly build a structure whose first-order part is standard.

2. REVERSE MATHEMATICS BACKGROUND

Reverse mathematics is a foundational program, introduced by Friedman [13] and developed by

Friedman and by Simpson, whose goal is to classify the theorems of ordinary mathematics according

to their provability strengths. Simpson’s book [35] is the standard reference. A truly remarkable

phenomenon is that five equivalence classes, called the Big Five (in order of increasing strength:

RCA0, WKL0, ACA0, ATR0, and Π1
1-CA0), emerge and classify the majority of usual theorems. The

Big Five classes also have satisfying interpretations as the ability to perform well-known computability-

theoretic operations. For example, RCA0 corresponds to the ability to perform Turing reductions and

Turing joins, whereas ACA0 corresponds to the ability to perform Turing reductions, Turing joins,

and Turing jumps.

There is, however, a notable family of theorems which are not classified by the Big Five. These are

what we call the Ramsey-type theorems, perhaps the most famous of which is Ramsey’s theorem for

pairs and two colors. Since the seminal paper of Cholak, Jockusch, and Slaman [4], an abundant

literature has developed surrounding the strength of this and related theorems, such as chain-

antichain, ascending or descending sequence, and the Erdős-Moser theorem (see, for example,

[16] and [23]). These Ramsey-type theorems do not typically have nice computability-theoretic

characterizations of their equivalence classes.

We are primarily concerned with the logical relationships among combinatorial statements (specif-

ically Ramsey-type statements) provable in the system ACA0. Thus we now summarize several of

the subsystems of second-order arithmetic below ACA0 and the relationships among them.

2.1. Recursive comprehension, weak König’s lemma, and arithmetical comprehension

First we summarize the induction, bounding, and comprehension schemes and three of the most

basic subsystems of second-order arithmetic. Everything stated here is explained in full detail in [35].
Full second-order arithmetic consists of the basic axioms:

∀m(m+ 1 6= 0) ∀m∀n(m× (n+ 1) = (m× n) +m)
∀m∀n(m+ 1= n+ 1→ m= n) ∀m∀n(m< n+ 1↔ (m< n∨m= n))
∀m(m+ 0= m) ∀m¬(m< 0)
∀m∀n(m+ (n+ 1) = (m+ n) + 1) ∀m(m× 0= 0)

the induction axiom:

∀X ((0 ∈ X ∧∀n(n ∈ X → n+ 1 ∈ X ))→∀n(n ∈ X ));
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and the comprehension scheme, which consists of the universal closures of all formulas of the form

∃X∀n(n ∈ X ↔ ϕ(n)),

where ϕ is any formula in the language of second-order arithmetic in which X is not free. We obtain

subsystems of second-order arithmetic by limiting induction and comprehension to predicates of a

prescribed complexity.

For each n ∈ω, the Σ0
n (Π0

n) induction scheme, denoted IΣ0
n (IΠ0

n), consists of the universal closures

of all formulas of the form

[ϕ(0)∧∀n(ϕ(n)→ ϕ(n+ 1))]→∀nϕ(n),

where ϕ is Σ0
n (Π0

n). The induction schemes are closely related to the bounding (also called collection)

schemes. For each n ∈ω, the Σ0
n (Π0

n) bounding scheme, denoted BΣ0
n (BΠ0

n), consists of the universal

closures of all formulas of the form

∀a[(∀n< a)(∃m)ϕ(n, m)→∃b(∀n< a)(∃m< b)ϕ(n, m)],

where ϕ is Σ0
n (Π0

n).

The arithmetical comprehension scheme consists of the universal closures of all formulas of the form

∃X∀n(n ∈ X ↔ ϕ(n)),

where ϕ is an arithmetical formula in which X is not free. A further restriction of comprehension is

the ∆0
1 comprehension scheme, which consists of the universal closures of all formulas of the form

∀n(ϕ(n)↔ψ(n))→∃X∀n(n ∈ X ↔ ϕ(n)),

where ϕ is Σ0
1, ψ is Π0

1, and X is not free in ϕ.

RCA0 (for recursive comprehension axiom) encapsulates recursive mathematics and is the usual

base system used when comparing the logical strengths of statements of second-order arithmetic.

The axioms of RCA0 are the basic axioms, IΣ0
1, and the ∆0

1 comprehension scheme.

RCA0 proves sufficient number-theoretic facts to implement the codings of finite sets and sequences

that are typical in computability theory. Thus inside RCA0, we can fix an enumeration (Φe)e∈N of the

partial recursive functions. We can also interpret the existence of the set N<N of all finite strings and

give the usual definition of a tree as subset of N<N that is closed under initial segments.

Weak König’s lemma (WKL) is the statement “every infinite subtree of 2<N has an infinite path,”

and WKL0 is the subsystem RCA0+WKL. WKL0 captures compactness arguments, and it is strictly

stronger than RCA0 (i.e., RCA0 0WKL).

ACA0 (for arithmetical comprehension axiom) is the subsystem axiomatized by the basic axioms,

the induction axiom, and the arithmetical comprehension scheme. It can also be obtained by adding

the arithmetical comprehension scheme to RCA0. ACA0 is strictly stronger than WKL0, and all of

the statements that we consider are provable in ACA0.

2.2. Ramsey’s theorem and its consequences

Let S ⊆ N and n ∈ N. [S]n denotes the set of n-element subsets of S, typically thought of as coded

by the set of strictly increasing n-tuples over S.

Definition 2.1 (Ramsey’s theorem). Fix n, k ∈ N with n, k > 0. A set H is homogeneous for a coloring

f : [N]n → k (or f -homogeneous) if there is a color c < k such that f ([H]n) = {c}. A coloring

f : [N]n→ k is stable if for every σ ∈ [N]n−1 there is a color c such that (∃n)(∀m> n)( f (σ, m) = c).
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RTn
k is the statement “for every coloring f : [N]n→ k, there is an infinite f -homogeneous set.” SRTn

k

is the restriction of RTn
k to stable colorings.

Definition 2.2 (Cohesiveness). Let ~R= (Ri)i∈N be a sequence of subsets of N. A set C ⊆ N is called
~R-cohesive if C is infinite and ∀i(C ⊆∗ Ri ∨ C ⊆∗ Ri), where A⊆∗ B means that Ar B is finite. COH is

the statement “for every sequence of sets ~R, there is an ~R-cohesive set.”

For every fixed n ∈ω with n≥ 3, the statement (∀k ≥ 2)RTn
k is equivalent to ACA0 over RCA0.

Indeed, the statement RT3
2 is already equivalent to ACA0 over RCA0 (see [35] Theorem III.7.6).

Much work was motivated by the desire to characterize the logical strength of RT2
2. Among many

results, Cholak, Jockusch, and Slaman [4] (with a bug-fix in [26]) showed that RT2
2 splits into COH

and SRT2
2 over RCA0: RCA0 ` RT2

2 ↔ COH∧SRT2
2. By work of Chong, Slaman, and Yang [5],

SRT2
2 is strictly weaker than RT2

2 over RCA0. By work of Hirst [18] and Liu [24], RT2
2 and SRT2

2

are independent of WKL over RCA0.

Definition 2.3 (Chain-antichain). A partial order P = (P,≤P) consists of a set P together with a

reflexive, antisymmetric, transitive, binary relation ≤P on P. A chain in P is a set S ⊆ P such

that (∀x , y ∈ S)(x ≤P y ∨ y ≤P x). An antichain in P is a set S ⊆ P such that (∀x , y ∈ S)(x 6=
y → x |P y) (where x |P y means that x �P y ∧ y �P x). A partial order (P,≤P) is stable if either

(∀i ∈ P)(∃s)[(∀ j > s)( j ∈ P → i ≤P j)∨ (∀ j > s)( j ∈ P → i |P j)] or (∀i ∈ P)(∃s)[(∀ j > s)( j ∈ P →
i ≥P j)∨ (∀ j > s)( j ∈ P → i |P j)]. CAC is the statement “every infinite partial order has an infinite

chain or an infinite antichain.” SCAC is the restriction of CAC to stable partial orders.

Hirschfeldt and Shore give a detailed study of CAC and SCAC (and many other principles) in [16].
They show that RCA0 ` CAC↔ COH∧SCAC and that, over RCA0, SCAC is strictly weaker than

CAC and CAC is strictly weaker than RT2
2.

Definition 2.4 (The Erdős-Moser theorem). A tournament T = (D, T) consists of a set D and an

irreflexive binary relation on D such that for all x , y ∈ D with x 6= y, exactly one of T(x , y) and

T (y, x) holds. (Note the convention that a partial order P = (P,≤P) is identified with its underlying

set, whereas a tournament T = (D, T ) identified with its relation.) A tournament T is transitive if the

relation T is transitive in the usual sense. A tournament T is stable if (∀x ∈ D)(∃n)[(∀y > n)(y ∈
D→ T(x , y))∨ (∀y > n)(y ∈ D→ T(y, x))]. A sub-tournament of T is a tournament of the form

(E, E2 ∩ T) for an E ⊆ D. EM is the statement “for every infinite tournament there is an infinite

transitive sub-tournament.” SEM is the restriction of EM to stable tournaments.

It is easy to see that RCA0 ` RT2
2 → EM and that RCA0 ` SRT2

2 → SEM. Furthermore, SEM

is strictly weaker than EM over RCA0. This can be deduced from the fact that RCA0 ` EM →
2-DNR [27] (see Section 2.4 below for the definition of 2-DNR) and the fact that there is a (non-

standard) model of RCA0+SRT2
2 (and hence of RCA0+SEM) that contains only low sets [5]

(see [31] for a complete explanation). By work of Bovykin and Weiermann [3] and of Lerman,

Solomon, and Towsner [23], EM and SEM are strictly weaker than RT2
2 over RCA0 and are inde-

pendent of CAC and SCAC over RCA0.

2.3. Weak weak König’s lemma and Martin-Löf randomness

Let T ⊆ 2<N be a tree and let q ∈Q. The measure of (the set of paths through) T is ≥ q (written

µ(T) ≥ q) if ∀s(2−s · |T s| ≥ q) (recall that T s is the set of strings in T of length s). A tree T ⊆ 2<N

has positive measure, written µ(T) > 0, if (∃q ∈ Q)(q > 0∧µ(T) ≥ q). Weak weak König’s lemma
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(WWKL), introduced by Yu and Simpson [38] as the restriction of WKL to trees of positive measure,

is the statement “every subtree of 2<N with positive measure has an infinite path.” WWKL is strictly

weaker than WKL over RCA0 [38]. It is well-known that, over RCA0, WWKL is equivalent to

1-RAN, which is the statement “for every set X , there is a set Y that is Martin-Löf random relative to

X ” (see [2], for example).

Avigad, Dean, and Rute [2] generalize WWKL to n-WWKL for each n ∈ω with n≥ 1. Informally,

n-WWKL asserts that if X is a set and T ⊆ 2<N is a tree of positive measure that is recursive in

X n−1, then T has an infinite path. Care must be taken to formalize n-WWKL without implying the

existence of X n−1 or of T . For n ∈ω with n≥ 1, let e ∈ X n abbreviate the formula

(Qxn−2) . . . (∃x1)(∀x0)(∃σ � X )[Φσe (〈xn−2, . . . , x0, 0〉)↓].

The quantifier ‘Q’ is ‘∀’ if n is even and is ‘∃’ if n is odd. In the case n = 1, the formula is simply

(∃σ � X )[Φσe (〈0〉)↓]. Let σ � X n abbreviate the formula σ ∈ 2<N ∧ (∀e < |σ|)(σ(e) = 1↔ e ∈ X n).
Let ΦX n

e (x) = y abbreviate the formula (∃σ � X n)(Φσe (x) = y). If ϕ(σ) is a formula defining a

subtree of 2<N and q ∈ Q, then that the measure of this tree is ≥ q can be expressed by a formula

that states that for every n there is a sequence 〈σ0,σ1, . . . ,σk−1〉 of distinct strings in 2n such that

k2−n ≥ q and (∀i < k)ϕ(σi). Similarly, that the measure of the tree defined by ϕ is positive can be

expressed by a formula that says that there is a rational q > 0 such that the measure of the tree is

≥ q.

Definition 2.5. For n ∈ω with n≥ 2, n-WWKL is the statement “for every X and e, if ΦX n−1

e is the

characteristic function of a subtree of 2<N with positive measure, then this tree has an infinite path.”

(That is, there is a function f : N→ 2 such that ∀m[ΦX n−1

e ( f � m) = 1].)

Avigad, Dean, and Rute [2] also generalize 1-RAN to n-RAN, which is a formalization of the

statement “for every X there is a Y that is n-random relative to X ,” for all n ∈ω with n≥ 1. They

prove that the correspondence between 1-WWKL and 1-RAN also generalizes to all n once BΣ0
n

is added to n-RAN: for every n ∈ ω with n ≥ 1, n-WWKL and n-RAN+BΣ0
n are equivalent over

RCA0. Notice that this implies that for every n ∈ω with n≥ 1, RCA0+n-WWKL ` BΣ0
n.

2.4. Diagonally non-recursive functions

A function f : N → N is diagonally non-recursive (DNR) if ∀e( f (e) 6= Φe(e)) and is diagonally
non-recursive relative to a set X (DNR(X )) if ∀e( f (e) 6= ΦX

e (e)). An important characterization is that

a set computes a DNR function if and only if it computes a fixed-point free function, i.e., a function

g : N→ N such that ∀e(Wg(e) 6=We).

Definition 2.6. DNR is the statement “for every X there is a function f such that ∀e( f (e) 6= ΦX
e (e)).”

It is clear that no DNR function is recursive and therefore that RCA0 0DNR. On the other hand,

it is a classical result of Kučera [22] that every Martin-Löf random set computes a DNR function, and

its proof readily relativizes and easily formalizes in RCA0. Therefore RCA0 `WWKL→DNR. By

work of Ambos-Spies, Kjos-Hanssen, Lempp, and Slaman [1], DNR is strictly weaker than WWKL

over RCA0.

As with weak weak König’s lemma and Martin-Löf randomness, we can define a hierarchy of

principles expressing the existence of diagonally non-recursive functions. For every n ∈ω with n≥ 1,

we generalize DNR to n-DNR, which is a formalization of the statement “for every X there exists a

function that is diagonally non-recursive relative to X n−1.”
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Definition 2.7. n-DNR is the statement “for every X there is a function f such that ∀e( f (e) 6=
ΦX (n−1)

e (e))”.

Of course, the ‘ΦX (n−1)

e (e)’ in the above definition should be interpreted as it is in Section 2.3. Again,

RCA0 ` n-WWKL→ n-DNR. We prove this via n-RAN to avoid the use of BΣ0
n.

Theorem 2.8. RCA0 ` n-RAN→ n-DNR.

Proof. Let X be given, and, by n-RAN, let Y be n-random relative to X . Define f : N → N by

∀e( f (e) = the number whose binary expansion is Y � e). We show that f is almost DNR relative to

X (n−1). Consider the sequence (Ui)i∈N defined by

Ui = {Z : (∃e > i)(∃σ ∈ 2e)(the binary expansion of ΦX (n−1)

e (e) is σ and σ � Z)}.

(Ui)i∈N is a uniform sequence of strict (in the sense of [2]) Σ0,X
n sets, and ∀i(µ(Ui)≤ 2−i) because

Ui contains at most one string of length e for each e > i. Thus (Ui)i∈N is a Σ0,X
n -test. Therefore

Y /∈ Ui for some i ∈ N. Suppose for a moment that f (e) = ΦX (n−1)

e (e) for an e > i. This means that

ΦX (n−1)

e (e) is the number whose binary expansion is Y � e and thus that ¹Y � eº ⊆Ui , a contradiction.

Therefore f is DNR relative to X (n−1) at all e > i. For each e ≤ i, we can effectively find an index

me such that ∀σ∀x(Φσme
(x) = Φσe (e)). Thus f (me) 6= ΦX (n−1)

me
(me) = ΦX (n−1)

e (e). So we may obtain a

function that is DNR relative to X (n−1) by changing f (e) to f (me) for all e ≤ i. �

It follows that RCA0 ` n-WWKL→ n-DNR because RCA0 ` n-WWKL→ n-RAN. By work of

Slaman [36], RCA0+2-RAN 0 BΣ0
2, so we may also conclude that RCA0+2-DNR 0 BΣ0

2.

2.5. Ramsey-type weak König’s lemma

In [9], Flood introduced the principle Ramsey-type weak König’s lemma, a simultaneous weakening

of WKL and RT2
2. Informally, RWKL states that if T ⊆ 2<N is an infinite tree, then there is an infinite

set X that is either a subset of a path through T or disjoint from a path through T (when thinking of

the paths through T as characteristic strings of subsets of N). When formalizing RWKL, care must

be taken to avoid implying the existence of a path through T and hence implying WKL.

Definition 2.9. A set H ⊆ N is homogeneous for a σ ∈ 2<N if (∃c < 2)(∀i ∈ H)(i < |σ| →
σ(i) = c), and a set H ⊆ N is homogeneous for an infinite tree T ⊆ 2<N if the tree {σ ∈ T :

H is homogeneous for σ} is infinite. RWKL is the statement “for every infinite subtree of 2<N, there

is an infinite homogeneous set.”

Remark 2.10. Flood actually named his principle RKL, for Ramsey-type König’s lemma. We found

it more convenient to refer to this principle as RWKL. Indeed, we study Ramsey-type variations

of several principles, and the convention we follow is to add an ‘R’ to a principle’s name to denote

its Ramsey-type variation (see, for example, RSAT, RCOLORn, and RWWKL below). The typical

scheme is to view a combinatorial principle as a problem comprised of instances and solutions to

these instances. For example, with WKL, an instance would be an infinite subtree of 2<N, and a

solution to that instance would be a path through the tree. The Ramsey-type variation of a principle

has the same class of instances, but instead of asking for a full solution in the problem’s original

sense, we ask only for an infinite set consistent with being a solution.

Flood [9] proved that RCA0 `WKL→ RWKL and that RCA0 ` SRT2
2→ RWKL. He also noted

that RWKL is strictly weaker than both WKL and SRT2
2 over RCA0 because WKL and SRT2

2 are
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independent over RCA0. The result RCA0 ` SRT2
2→ RWKL can be improved to RCA0 ` SEM→

RWKL, which we show now.

Theorem 2.11. RCA0 ` SEM→ RWKL.2

Proof. Let T ⊆ 2<N be an infinite tree. For each s ∈ N, let σs be the leftmost element of T s. We

define a tournament R from the tree T . For x < s, if σs(x) = 1, then R(x , s) holds and R(s, x) fails;

otherwise, if σs(x) = 0, then R(x , s) fails and R(s, x) holds. This tournament R is essentially the

same as the coloring f (x , s) = σs(x) defined by Flood in his proof that RCA0 ` SRT2
2 → RWKL

([9] Theorem 5), where he showed that f is stable. By the same argument, R is stable.

Apply SEM to R to get an infinite transitive sub-tournament U . Say that a τ ∈ U<N satisfies (?) if

ran(τ) is not homogenous for T with color 1 and (∀k < |τ|)R(τ(k),τ(k+1)). Consider a hypothetical

τ ∈ U<N satisfying (?). There must be a k < |τ| such that R(s,τ(k)) for cofinitely many s. This

is because otherwise there would be infinitely many s such that (∀k < |τ|)R(τ(k), s) and hence

infinitely many s for which ran(τ) is homogeneous for σs with color 1, contradicting that ran(τ)
is not homogeneous for T with color 1. From the facts that R(s,τ(k)) for cofinitely many s, that

(∀k < |τ|)R(τ(k),τ(k+ 1)), and that U is transitive, we conclude that R(s,τ(|τ| − 1)) for cofinitely

many s.
The proof now breaks into two cases. First, suppose that the τ(|τ|−1) for the τ ∈ U<N satisfying (?)

are unbounded. Then, because (?) is aΣ0
1 property of U , there is an infinite set X consisting of numbers

of the form τ(|τ| − 1) for τ ∈ U<N satisfying (?). As argued above, every x ∈ X satisfies R(s, x) for

cofinitely many s. Thus we can thin out X to an infinite set H such that (∀x , y ∈ H)(x < y → R(y, x)).
Thus H is homogeneous for T with color 0 because H is homogeneous for σy with color 0 for every

y ∈ H.

Second, suppose that the τ(|τ| − 1) for the τ ∈ U<N satisfying (?) are bounded, say by m. Then

H = U r {0,1, . . . , m} is homogeneous for T with color 1. To see this, suppose not. Then there is a

finite V ⊆ H that is not homogeneous for T with color 1. Let τ ∈ V<N be the enumeration of V in

the order given by R: (∀k < |τ|)R(τ(k),τ(k+ 1)). Then τ satisfies (?), but τ(|τ| − 1)> m. This is a

contradiction. �

Flood also proved that RCA0 ` RWKL→ DNR, and this result prompted him to ask if RCA0 `
DNR→ RWKL. Corollary 6.12 shows that the answer to this question is negative.

3. RAMSEY-TYPE KÖNIG’S LEMMA AND ITS VARIANTS

We investigate the strengths of several variations of RWKL. Our variations are obtained in one of

two ways. First, we consider Ramsey-type König’s lemma principles applied to different classes of

trees. We show that when we restrict to trees of positive measure, the resulting principle is equivalent

to DNR (Theorem 3.4); that when we allow subtrees of k<N (for a fixed k ∈ ω with k ≥ 2), the

resulting principle is equivalent to RWKL (Theorem 3.27); that when we allow bounded subtrees of

N<N, the resulting principle is equivalent to WKL (Theorem 3.19); and that when we allow arbitrary

finitely-branching subtrees of N<N, the resulting principle is equivalent to ACA0 (Theorem 3.17).

Second, we impose additional requirements on the homogeneous sets that RWKL asserts exist. If

we require that homogeneous sets be homogeneous for color 0 (and restrict to trees that have no

paths that are eventually 1), then the resulting principle is equivalent to WKL (Theorem 3.12). If

we impose a bound on the sparsity of the homogeneous sets, then the resulting principle is also

2Obtained independently by Flood and Towsner [12].
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equivalent to WKL (Theorem 3.15). If we require that the homogeneous sets be subsets of some

prescribed infinite set, then the resulting principle is equivalent to RWKL (Theorem 3.27). It is

interesting to note that each variation of RWKL that we consider is either equivalent to RWKL

itself or some other well-known statement. We also note that sometimes the Ramsey-type variant

of a principle is equivalent to the original principle, as with König’s lemma for bounded trees and

König’s lemma for arbitrary finitely-branching trees; and that sometimes the Ramsey-type variant of

a principle is strictly weaker than the original principle, as with weak König’s lemma and weak weak

König’s lemma.

Several results in this section indicate robustness in RWKL. For example, we may generalize

RWKL to subtrees of k<N (for fixed k ∈ω with k ≥ 2) without changing the principle’s strength. We

explore the robustness of RWKL more fully in Section 4 and Section 5. This robustness we take as

evidence that RWKL is a natural principle.

3.1. DNR functions and subsets of paths through trees of positive measure

Just as WKL can be weakened to WWKL by restricting to trees of positive measure, so can RWKL

be weakened to RWWKL by restricting to trees of positive measure.

Definition 3.1. RWWKL is the statement “for every subtree of 2<N with positive measure, there is

an infinite homogeneous set.”

Applying RWWKL to a tree in which every path is Martin-Löf random yields an infinite subset of

a Martin-Löf random set, and every infinite subset of every Martin-Löf random set computes a DNR

function. In fact, computing an infinite subset of a Martin-Löf random set is equivalent to computing

a DNR function, as the following theorem states.

Theorem 3.2 (Kjos-Hanssen [21], Greenberg and Miller [14]). For every A∈ 2ω, A computes a DNR

function if and only if A computes an infinite subset of a Martin-Löf random set.

Theorem 3.2 also relativizes: a set A computes a DNR(X ) function if and only if it computes an

infinite subset of a set that is Martin-Löf random relative to X . Thus one reasonably expects that

DNR and RWWKL are equivalent over RCA0. This is indeed the case, as we show. The proof makes

use of the following recursion-theoretic lemma, which reflects a classical fact concerning diagonally

non-recursive functions.

Lemma 3.3. The statement “for every set X there is a function g : N3→ N such that ∀e, k, n(g(e, k, n)>
n∧ (|W X

e |< k→ g(e, k, n) /∈W X
e ))” is provable in RCA0+DNR.

Proof. Fix a sequence of functions (bk)k∈N such that, for each k ∈ N, bk maps N onto Nk in such a

way that b−1
k (~x) is infinite for every ~x ∈ Nk. Let c : N→ N be a function such that, for all e, i, k, x ∈ N,

ΦX
c(e,i,k)(x) = bk(y)(i) for the (i+1)th number y enumerated in W X

e if |W X
e | ≥ i+1; and ΦX

c(e,i,k)(x)↑
otherwise. Let f be diagonally non-recursive relative to X . Define g by letting g(e, k, n) be the least

x > n such that bk(x) = 〈 f (c(e, 0, k)), f (c(e, 1, k)), . . . , f (c(e, k−1, k))〉. Suppose for a contradiction

that |W X
e |< k but that g(e, k, n) ∈W X

e . Then g(e, k, n) is the (i + 1)th number enumerated into W X
e

for some i + 1 < k. Hence ΦX
c(e,i,k)(c(e, i, k)) = bk(g(e, k, n))(i). However, by the definition of g,

bk(g(e, k, n))(i) = f (c(e, i, k)). Thus f (c(e, i, k)) = ΦX
c(e,i,k)(c(e, i, k)), contradicting that f is DNR

relative to X . �

Notice that in the statement of the above lemma, W X
e need not exist as a set. Thus ‘|W X

e | < k’

should be interpreted as ‘∀s(|W X
e,s|< k),’ where (W X

e,s)s∈N is the standard enumeration of W X
e .
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Theorem 3.4. RCA0 `DNR↔ RWWKL.3

Proof. The direction RWWKL → DNR is implicit in Flood’s proof that RCA0 ` RWKL → DNR

([9] Theorem 8). Indeed, Flood’s proof uses the construction of a tree of positive measure due to

Jockusch [20]. (For a similar construction proving a generalization of RWWKL→ DNR, see the

proof of Lemma 3.6 below.) The proof that DNR → RWWKL is similar to the original proof of

Theorem 3.2. However, some adjustments are needed as the original argument uses techniques

from measure theory and algorithmic randomness which can only be formalized within WWKL. We

instead use explicit combinatorial bounds.

Assume DNR, and consider a tree T of measure ≥ 2−c for some c, which we can assume to be

≥ 3 (the reason for this assumption will become clear). For a given set H ⊆ N and a value v ∈ {0, 1},
let Γ v

H = {σ ∈ 2<N : (∀i ∈ H)(σ(i) = v)}, and abbreviate Γ v
{n} by Γ v

n . For a tree T and a constant c,

let Bad(n, T, c) be the Σ0
1 predicate ‘µ(T ∩ Γ 0

n )< 2−2c .’ In the following claim, {n : Bad(n, T, c)} need

not a priori exist as a set, so ‘|{n : Bad(n, T, c)}|< 2c’ should be interpreted in the same manner as

‘|W X
e |< k’ in the statement of Lemma 3.3.

Claim. If c ≥ 3 and µ(T )≥ 2−c , then |{n : Bad(n, T, c)}|< 2c.

Proof. Suppose for a contradiction that |{n : Bad(n, T, c)}| ≥ 2c, and let B be the first 2c elements

enumerated in {n : Bad(n, T, c)}. For each n ∈ B, the tree T ∩ Γ 0
n has measure < 2−2c , which implies

that (∀n ∈ B)(∃i)(|T i ∩ Γ 0
n |< 2i−2c) (recall that T i is the set of strings in T of length i). By BΣ0

1, let

N0 be such that (∀n ∈ B)(∃i < N0)(|T i∩Γ 0
n |< 2i−2c), and observe that (∀n ∈ B)(∀ j > N0)(|T j∩Γ 0

n |<
2 j−2c). Let N = N0 +max(B).

On the one hand,
�

�

�

�

�

T N ∩
⋃

n∈B
Γ 0

n

�

�

�

�

�

= |T N r Γ 1
B | ≥ |T

N | − |Γ 1
B ∩ {0,1}N | ≥ 2N−c − 2N−2c .

On the other hand,
�

�

�

�

�

T N ∩
⋃

n∈B
Γ 0

n

�

�

�

�

�

=

�

�

�

�

�

⋃

n∈B
T N ∩ Γ 0

n

�

�

�

�

�

≤
∑

n∈B

|T N ∩ Γ 0
n | ≤ 2c · 2N−2c .

Putting the two together, we get that 2N−c − 2N−2c ≤ 2c · 2N−2c, which is a contradiction for

c ≥ 3. �

Let g be as in Lemma 3.3 for X = T . Given a (canonical index for a) finite set F and a c, we

can effectively produce an index e(F, c) such that ∀n(n ∈W T
e(F,c)↔ Bad(n, T ∩ Γ 0

F , c)). Recursively

construct an increasing sequence h0 < h1 < h2 < . . . of numbers by letting, for each s ∈ N, Hs = {hi :

i < s} and hs = g(e(Hs, c ·2s), c ·2s+1,max(Hs∪{0})). Using IΠ0
1, we prove that ∀s(µ(T∩Γ 0

Hs
)≥ 2−c·2s

).
For s = 0, this is simply the assumption µ(T )≥ 2−c . Assuming µ(T ∩ Γ 0

Hs
)≥ 2−c·2s

, the claim implies

that |W T
e(Hs ,c·2s)|< c ·2s+1. Thus hs = g(e(Hs, c ·2s), c ·2s+1,max(Hs∪{0})) /∈We(Hs ,c·2s), and therefore

¬Bad(hs, T ∩ Γ 0
Hs

, c ·2s). This means that µ(T ∩ Γ 0
Hs
∩ Γ 0

hs
)≥ 2−c·2s+1

, which is what we wanted because

Γ 0
Hs
∩ Γ 0

hs
= Γ 0

Hs+1
.

Let H = {hs : s ∈ N}, which exists by ∆0
1 comprehension because the sequence h0 < h1 < h2 < . . .

is increasing. We show that H is homogeneous for T . Suppose for a contradiction that H is not

homogeneous for T . This means that there are only finitely many σ ∈ T such that H is homogeneous

for σ. Therefore at some level s, {σ ∈ T s : (∀i ∈ H)(σ(i) = 0)}= ;. As H ∩ {0,1, . . . , s} ⊆ Hs, we in
3Obtained independently by Flood and Towsner [12].
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fact have that {σ ∈ T s : (∀i ∈ Hs)(σ(i) = 0)} = ;. In other words, T ∩ Γ 0
Hs
= ;, which contradicts

µ(T ∩ Γ 0
Hs
)≥ 2−c·2s

. Thus H is homogeneous for T . �

Fix n ∈ω with n≥ 2. Just as with n-WWKL, it is possible to define n-RWWKL to be the gener-

alization of RWWKL to X n−1-computable trees. The equivalence between n-DNR and n-RWWKL

persists in the presence of sufficient induction.

Definition 3.5. For n ∈ ω with n ≥ 2, n-RWWKL is the statement “for every X and e, if ΦX n−1

e

is the characteristic function of a subtree of 2<N with positive measure, then there is an infinite

homogeneous set.” (That is, there is an infinite H ⊆ N that is homogeneous for infinitely many

σ ∈ 2<N such that ΦX n−1

e (σ) = 1.)

Lemma 3.6. For every n ∈ω with n≥ 1, RCA0+BΣ0
n ` n-RWWKL→ n-DNR.

Proof. Fix a sequence of functions (bk)k∈N such that, for each k ∈ N, bk is a bijection between N and

N[k]. Let X be given. Let e be an index such that ΦX n−1

e (σ) = 1 if

(∀i < |σ|)(ΦX (n−1)

i,|σ| (i)↓→ bi+3(Φ
X (n−1)

i,|σ| (i)) is not homogeneous for σ),

and ΦX n−1

e (σ) = 0 otherwise. It is clear that ΦX n−1

e is the characteristic function of a tree. We need

to show that this tree has positive measure. Fix s ∈ N. By bounded ∆0
n comprehension, which is a

consequence of BΣ0
n (see, for example, [15] Lemma 2.19), T s = {σ ∈ 2s : ΦX n−1

e (σ) = 1} exists as a

finite set. For each i < s, the proportion of strings in 2s missing from T s on account of ΦX n−1

i is at

most 2−i−2. Therefore |T s|2−s ≥
∑

i<s 2−i−2 ≥ 1/2, so the tree indeed has positive measure.

By n-RWWKL, there is an infinite homogeneous set H for the tree described by ΦX n−1

e . For

each i ∈ N, let Hi denote the set consisting of the i least elements of H. Define f : N → N by

f (i) = b−1
i+3(Hi+3). We finish the proof by showing that f is DNR relative to X (n−1). Suppose for a

contradiction that there is an i ∈ N such that f (i) = ΦX (n−1)

i (i), and let s be such that ΦX (n−1)

i,s (i)↓. By the

definition of f , we have that b−1
i+3(Hi+3) = f (i) = ΦX (n−1)

i,s (i). By applying the bijection bi+3, we have

that bi+3(ΦX (n−1)

i,s (i)) = Hi+3 is homogeneous for the tree described by ΦX n−1

e . This is a contradiction

because if bi+3(ΦX (n−1)

i,s (i)) is homogeneous for a σ ∈ 2<N with |σ|> s, then ΦX (n−1)

e (σ) = 0. �

Lemma 3.7. For every n ∈ω with n≥ 1, RCA0+ IΣ0
n ` n-DNR→ n-RWWKL.

Proof sketch. Follow the proof that RCA0 `DNR→ RWWKL from Theorem 3.4, but interpret T as

an X (n−1)-computable tree of positive measure in the sense of Section 2.3. The proof of Lemma 3.3

goes through in RCA0 when X is replaced by X (n−1) and DNR is replaced by n-DNR. The predicate

Bad(n, T, c) is now Σ0
n, and the proof of the claim goes through in RCA0+BΣ0

n. The function g
exists by the generalization of Lemma 3.3, and the function e is the same as it was before. The set H
is constructed from g and e as it was before. Use IΠ0

n, a consequence of RCA0+ IΣ0
n, to prove the

analog of ∀s(µ(T ∩ Γ 0
Hs
)≥ 2−c·2s

). The rest of the proof is the same as it was before. �

Theorem 3.8. For every n ∈ω with n≥ 1, RCA0+ IΣ0
n ` n-DNR↔ n-RWWKL.

Proof. The theorem follows from Lemma 3.6 and Lemma 3.7. �

We leave open the question of the exact amount of induction required to prove Lemma 3.6 and

Lemma 3.7. It would be particularly interesting to determine whether or not n-RWWKL implies

BΣ0
2.

Question 3.9. Does RCA0+2-RWWKL ` BΣ0
2?
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In [9], Flood also studies what he calls RKL(1), which is RWKL for Σ0
1-definable infinite subtrees

of 2<N. He notes that RKL(1) is equivalent to RWKL for Π0
2 trees, and thus it follows that RKL(1) is

equivalent to RWKL for∆0
2 trees, a statement which we would call 2-RWKL in the foregoing notation.

Flood presents Yokoyama’s proof that RCA0 ` 2-RWKL→ SRT2
2, and Flood asks ([9] Question 22)

if the reverse implication holds. We show that it does not.

Theorem 3.10. RCA0+SRT2
2 0 2-RWKL.

Proof. Over RCA0+BΣ0
2, 2-RWKL implies 2-RWWKL and, by Lemma 3.6, 2-RWWKL in turn

implies 2-DNR. However, SRT2
2 does not imply 2-DNR over RCA0+BΣ0

2 because there are models

of RCA0+BΣ0
2+SRT2

2 in which every set is low [5]. In particular, every set in such a structure is

computable from 0′, so such a structure is not a model of 2-DNR. �

3.2. Changing homogeneity constraints

Notice that the homogeneous set constructed in the proof of Theorem 3.4 is always homogeneous

for color 0, and we could just as easily constructed a set homogeneous for color 1. Thus no additional

power is gleaned from RWWKL by prescribing the color of the homogeneous set ahead of time.

Corollary 3.11 (to the proof of Theorem 3.4). The following statements are equivalent over RCA0:

(i) DNR

(ii) RWWKL

(iii) For every tree T ⊆ 2<N of positive measure, there is an infinite set that is homogeneous for T with
color 0.

One then wonders if any additional strength is gained by modifying RWKL to require that

homogeneous sets be homogeneous for color 0. Of course an infinite homogeneous set for color 0

need not exist in general, so we restrict to trees that do not have paths that are eventually 1. For the

purposes of the next theorem, “T has no path that is eventually 1” means ∀σ∃n(σá1n /∈ T ).

Theorem 3.12. The following statements are equivalent over RCA0:

(i) WKL

(ii) For every infinite tree T ⊆ 2<N with no path that is eventually 1, there is an infinite set homogeneous
for T with color 0.

Proof. Clearly (i)→ (ii). For (ii)→ (i), let S ⊆ 2<N be an infinite tree. We define a tree T ⊆ 2<N

whose paths have 0’s only at positions corresponding to codes of initial segments of paths through S.

Let (τi)i∈N be the enumeration of 2<N in length-lexicographic order, and note that ∀i(|τi| ≤ i). Let

T = {σ ∈ 2<N : (∃τ ∈ S|σ|)(∀i < |σ|)(σ(i) = 0↔ τi � τ)}.

T is a tree because if σ ∈ T is witnessed by τ ∈ S and n < |σ|, then τ � n ∈ S witnesses that

σ � n ∈ T . Every string of length n in S witnesses the existence of a string of length n in T , so T is

infinite because S is infinite.

We show that T has no path that is eventually 1. Consider a σ ∈ 2<N. Choose m and n such that

∀i(|τi|= m→ |σ|< i < |σ|+ n). Suppose for a contradiction that τ ∈ S witnesses that σá1n ∈ T .

If i is such that τi = τ � m, then |σ|< i < |σ|+ n. So, because τ witnesses that σá1n ∈ T , we have

the contradiction (σá1n)(i) = 0. Thus T has no path that is eventually 1.

By (ii), let H be infinite and homogeneous for T with color 0. If i and j are in H with i ≤ j, then

τi and τ j are in S with τi � τ j . This can be seen by considering a σ ∈ T of length j + 1 for which H



14 LAURENT BIENVENU, LUDOVIC PATEY, AND PAUL SHAFER

is homogeneous with color 0 and a τ ∈ S witnessing that σ ∈ T . Thus we can define an f ∈ 2N by

f =
⋃

i∈H τi , and this f is a path through S because τi ∈ S for every i ∈ H. �

In [10], Flood studies the computability-theoretic content of Erdős and Galvin’s [8] packed variants

of Ramsey’s theorem. These theorems weaken homogeneity to a property called semi-homogeneity,

but they require that these semi-homogeneous sets satisfy a certain density requirement. Flood shows

that the packed variants of Ramsey’s theorem behave similarly to Ramsey’s theorem. We formulate a

packed variant of RWKL and prove that it is equivalent to WKL. For this formulation, we consider

an alternate definition of homogeneity.

Definition 3.13. A partial function h: ⊆ N→ N is homogeneous for σ ∈ N<N if (∀n ∈ dom(h))(n<
|σ| → σ(n) = h(n)). If T is an infinite, finitely branching tree, a partial function h: ⊆ N → N is

homogeneous for T if the tree {σ ∈ T : h is homogeneous for σ} is infinite.

In Definition 3.13, we always assume that dom(h) exists as a set. This is no real restriction because

in RCA0 one can prove that every infinite Σ0
1-definable set has an infinite subset that actually exists

as a set. Thus if h is infinite, we may always restrict h to an infinite subset of dom(h) that exists as a

set. If h infinite and homogenous for an infinite tree T ⊆ 2<N, then both of the sets h−1(0) and h−1(1)
are homogeneous for T , and one of them must be infinite. Conversely, if H is homogeneous for an

infinite tree T ⊆ 2<N with color c, then the function h: H → 2 with constant value c is homogeneous

for T . Thus, over RCA0, it is equivalent to define RWKL in terms of set-homogeneity or in terms

of function-homogeneity. However, function-homogeneity lets us impose the density constraints

we need for a packed variant of RWKL. Function-homogeneity also lets us formulate Ramsey-type

variants of full König’s lemma and of bounded König’s lemma.

Recall that an order function is a non-decreasing unbounded function g : N→ N.

Definition 3.14. Let g be an order function. A partial function h: ⊆ N → N is packed for g if

∀n(|dom(h) � n| ≥ g(n)).

Our packed variant of RWKL is equivalent to WKL by an argument that replaces a tree with a

version of that tree having sufficient redundancy.

Theorem 3.15. The following statements are equivalent over RCA0:

(i) WKL

(ii) For every order function g satisfying ∀n(g(n)≤ n) and for every infinite tree T ⊆ 2<N, there is
an infinite h that is homogeneous for T and packed for g.

Proof. The direction (i)→ (ii) is trivial. If f is a path through T , then f is also homogeneous for T
and packed for g.

Consider the direction (ii)→ (i). Let T be an infinite subtree of 2<N, and let g be an order function

bounded by the identity. Define a sequence (un)n∈N by u0 = 0 and un+1 = µi(g(i)≥ un + 1). Let

S = {σ ∈ 2<N : (∃τ ∈ T )[|τ|= µi(|σ|< ui)∧ (∀i < |σ|)(∀ j < |τ|)(i ∈ [u j , u j+1)→ σ(i) = τ( j))]}.

The idea behind S is to ensure enough redundancy in it so that the domain of every infinite

function that is homogeneous for S and packed for g intersects each interval [ui , ui+1). For example,

if g(n) = b n
2 c, then u1 = 2, u2 = 6, u3 = 14, u4 = 30, and the string 10101 in T corresponds in S to

u1−u0
︷︸︸︷

11

u2−u1
︷︸︸︷

0000

u3−u2
︷ ︸︸ ︷

11111111

u4−u3
︷ ︸︸ ︷

0000000000000000

u4−u3
︷ ︸︸ ︷

11111111111111111111111111111111 .
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It is easy to see that if T is infinite, then so is S. To see that S is a tree, consider a σ ∈ S, and let τ ∈ T
witness σ’s membership in S. Given an n≤ |σ|, let i = µi(n< ui) and verify that τ � i witnesses that

σ � n is in S. Let h be an infinite function that is homogeneous for S and packed for g.

First we show that (∀ j)(dom(h) ∩ [u j , u j+1) 6= ;). To see this, observe that |dom(h) � u j+1| ≥
g(u j+1) because h is packed for g. By definition, g(u j+1) ≥ u j + 1. Thus, by the finite pigeonhole

principle, there must be an i in dom(h) � u j+1 with i ≥ u j .

Now, for each j, let i j be the least element of dom(h)∩[u j , u j+1). Define a function f by f ( j) = h(i j).
This f is a path through T . To see this, fix n and let σ ∈ Sun be such that h is homogeneous for σ.

Let τ ∈ T witness that σ ∈ S, and note that |τ| = n+ 1. For each j < n, we have that σ(i j) = τ( j) by

the choice of i j and the definition of S, and we also have that σ(i j) = f ( j) by the choice of σ and

the definition of f . Thus f � n= τ � n, so f � n ∈ T as desired. �

3.3. Ramsey-type König’s lemma for arbitrary finitely branching trees

Using the functional notion of homogeneity, we easily generalize RWKL to infinite, bounded trees

and to infinite, finitely branching trees. It is well known that König’s lemma (KL) is equivalent to

ACA0 (see [35] Theorem III.7.2) and that bounded König’s lemma (i.e., König’s lemma for infinite

bounded subtrees of N<N) is equivalent to WKL (see [35] Lemma IV.1.4). Interestingly, we find that

the Ramsey-type variant of König’s lemma is equivalent to ACA0 and that the Ramsey-type variant

of bounded König’s lemma is equivalent to WKL, not RWKL.

Definition 3.16. RKL is the statement “for every infinite, finitely branching subtree of N<N , there

is an infinite homogeneous partial function.”4

Theorem 3.17. RCA0 ` ACA0↔ RKL.

Proof. We take advantage of the fact that ACA0 is equivalent to KL over RCA0. Clearly RCA0 `
KL→ RKL, so it suffices to show that RCA0 ` RKL→ KL. Thus let T ⊆ N<N be an infinite, finitely

branching tree. Let (τi)i∈N be a one-to-one enumeration of N<N. Define the tree S by

S = {σ ∈ N<N : (∀i, j < |σ|)[τσ(i) ∈ T ∧ |τσ(i)|= i ∧ (i ≤ j→ τσ(i) � τσ( j))]}.

Clearly S is a tree. S is infinite because T is infinite and, given a τ in T , it is easy to produce a σ in S
of the same length. To see that S is finitely branching, consider a σ ∈ S. For σán to be in S, it must

be that τn is an immediate successor of σ(|σ| −1) on T (or that τn = ; in the case that σ = ;). As T
is finitely branching and the enumeration (τn)n∈N is one-to-one, there are only finitely many such n.

Let h be infinite and homogeneous for S. If i and j are in dom(h) with i ≤ j, then τh(i) and τh( j)

are in T with τh(i) � τh( j), which may be seen by considering a σ ∈ S of length j + 1 such that

σ(i) = h(i) and σ( j) = h( j). Hence
⋃

i∈dom(h)τh(i) is a path through T , as desired. �

In fact, ACA0 is equivalent to KL restricted to trees in which each node has at most two immediate

successors (see [35] Theorem III.7.2). Notice that if each node in T has at most two immediate

successors, then so does the tree S constructed in the proof of Theorem 3.17. Thus the restriction of

RKL to trees in which each node has at most two immediate successors remains equivalent to ACA0

over RCA0.

Recall that a tree T ⊆ N<N is bounded if there is a function g : N→ N such that (∀σ ∈ T)(∀n <
|σ|)(σ(n)< g(n)).

4‘RKL’ was Flood’s original name for RWKL. We prefer to use ‘RKL’ for the Ramsey-type variant of König’s lemma and
‘RWKL’ for the Ramsey-type variant of weak König’s lemma. See Remark 2.10.
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Definition 3.18. RbWKL is the statement “for every infinite, bounded subtree of N<N, there is an

infinite homogeneous partial function.”

Theorem 3.19. RCA0 `WKL↔ RbWKL.5

Proof. Over RCA0, WKL implies RbWKL because WKL implies bounded König’s lemma, which

clearly implies RbWKL. Thus it suffices to show that RbWKL implies WKL over RCA0. This can

be done by following the proof of Theorem 3.17. Let T ⊆ 2<N be an infinite tree. Let (τi)i∈N be

the enumeration of 2<N in length-lexicographic order, and let g : N → N be a function such that

∀n, i(|τi| = n→ i < g(n)). Define S from T as in Theorem 3.17. Then (∀σ ∈ S)(∀i < |σ|)(σ(i) <
g(i)). Thus S is bounded by g. The rest of the proof is identical to that of Theorem 3.17. �

We remark that it is not difficult to strengthen Theorem 3.19 by fixing the function bounding

the tree in the Ramsey-type bounded König’s lemma instance to be an arbitrarily slow growing

order function. Indeed, RCA0 proves the statement “for every order function g, WKL if and only if

Ramsey-type König’s lemma holds for infinite subtrees of N<N bounded by g.” However, as we will

see next, it is not possible to replace an order function by a constant function.

3.4. Locality and k-branching trees

We analyze a notion of locality together with Ramsey-type weak König’s lemma for k-branching

trees. These notions aid our analysis of Ramsey-type analogs of other combinatorial principles.

Consider a function f : [N]n→ k. RTn
k asserts the existence of an infinite homogeneous set H ⊆ N.

However, for the purpose of some application, we may want the infinite homogeneous set H to be a

subset of some pre-specified infinite set X ⊆ N. This is the idea behind locality, and in such a situation

we say that the RTn
k-instance f has been localized to X . It is easy to see that RTn

k proves that every

RTn
k-instance can be localized to every infinite X ⊆ N. The following proposition is well-known and

is often used implicitly, such as when proving RT2
3 from RT2

2.

Proposition 3.20. The following statements are equivalent over RCA0:

(i) RTn
k

(ii) For every f : [N]n→ k and every infinite X ⊆ N, there is an infinite H ⊆ X that is homogeneous
for f .

Proof. Clearly (ii)→ (i), so it suffices to show that (i)→ (ii). Let f and X be as in (ii). Let (x i)i∈N
enumerate X in increasing order. Define g : [N]n→ k by g(i0, i1, . . . , in−1) = f (x i0 , x i1 , . . . , x in−1

) for

increasing n-tuples (i0, i1, . . . , in−1). Apply RTn
k to g to get an infinite H0 ⊆ N that is homogeneous

for g with some color c < k. Let H = {x i : i ∈ H0}. Then H ⊆ X is infinite, and H is homogeneous for

f with color c because if x i0 < x i1 < · · · < x in−1
are in H, then i0 < i1 < · · · < in−1 are in H0, hence

f (x i0 , x i1 , . . . , x in−1
) = g(i0, i1, . . . , in−1) = c. �

By analogy with Proposition 3.20, we formulate LRWKL, a localized variant of Ramsey-type weak

König’s lemma.

Definition 3.21. LRWKL is the statement “for every infinite tree T ⊆ 2<N and every infinite X ⊆ N,

there is an infinite H ⊆ X that is homogeneous for T .”

Lemma 3.22. RCA0 ` RWKL↔ LRWKL.

5This theorem was obtained independently by Flood [11].
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Proof. Clearly RCA0 ` LRWKL→ RWKL, so it suffices to prove that RCA0 ` RWKL→ LRWKL.

Let T ⊆ 2<N be an infinite tree and X ⊆ N be an infinite set. Let (x i)i∈N enumerate X in increasing

order. Let S ⊆ 2<N be the set

S = {σ ∈ 2<N : (∃τ ∈ T )(|τ|= x|σ| ∧ (∀i < |σ|)(σ(i) = τ(x i)))}.

S exists by ∆0
1 comprehension, and S is clearly closed under initial segments. To see that S is

infinite, let n ∈ N and, as T is infinite, let τ ∈ T have length xn. Then the σ ∈ 2n such that

(∀i < n)(σ(i) = τ(x i)) is a string in S of length n. Now apply RWKL to S to get an infinite H0 ⊆ N
that is homogeneous for S with some color c < 2. Let H = {x i : i ∈ H0}. H is an infinite subset of X ;

we show that H is homogeneous for T with color c. Given n ∈ N, let m ∈ H0 be such that xm > n. By

the homogeneity of H0 for S, let σ ∈ S be of length m and such that (∀i ∈ H0)(i < |σ| → σ(i) = c).
By the definition of S, there is a τ ∈ T of length xm such that (∀i < |σ|)(σ(i) = τ(x i)). So if x i ∈ H
is less than |τ| = xm, then i is in H0 and is less than |σ| = m, in which case τ(x i) = σ(i) = c. Thus H
is homogeneous for τ with color c, and, as |τ|= xm > n, τ � n is a string in T of length n for which

H is homogeneous with color c. �

Similarly, we can define a localized variant of Ramsey-type weak weak König’s lemma.

Definition 3.23. LRWWKL is the statement “for every tree T ⊆ 2<N of positive measure and every

infinite X ⊆ N, there is an infinite H ⊆ X that is homogeneous for T .”

Theorem 3.24. The following statements are equivalent over RCA0:

(i) DNR

(ii) RWWKL

(iii) LRWWKL.

Proof. Theorem 3.4 states that (i)↔ (ii), and (iii)→ (ii) is clear. To see that (ii)→ (iii), we need

only check that the tree S constructed in Lemma 3.22 has positive measure when the tree T has

positive measure. To this end, notice that for every k ∈ N,

|{σ ∈ S : |σ|= k}| ≥
|{τ ∈ T : |τ|= xk}|

2xk−k
.

Thus

|{σ ∈ S : |σ|= k}|
2k

≥
|{τ ∈ T : |τ|= xk}|

2xk
,

which implies that S has positive measure if T has positive measure. �

Using LRWKL, we prove variants of RWKL and LRWKL for k-branching trees. Define a set

H ⊆ N to be homogeneous for a string σ ∈ k<N with color c < k and a set H ⊆ N to be homogeneous
for an infinite tree T ⊆ k<N as in Definition 2.9 but with k in place of 2.

Definition 3.25.

− RWKLk is the statement “for every infinite tree T ⊆ k<N, there is an infinite H ⊆ N that is

homogeneous for T .”

− LRWKLk is the statement “for every infinite tree T ⊆ k<N and every infinite X ⊆ N, there is an

infinite H ⊆ X that is homogeneous for T .”

Lemma 3.26. For every k ∈ω, RCA0 ` LRWKL→ RWKLk.
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Proof. If j < k then RCA0 ` RWKLk→ RWKL j by identifying j<N with the obvious subtree of k<N.
It therefore suffices to show that, for every k ∈ω, RCA0 ` RWKL→ RWKL2k .

Let T ⊆ (2k)<N be an infinite tree. The idea of the proof is to code T as a subtree of 2<N by coding

each number less than 2k by its binary expansion. We then obtain a homogeneous set for T by using

k applications of LRWKL.

For each a < 2k and each i < k, let a(i) < 2 denote the (i + 1)th digit in the binary expansion

of a. Then to each σ ∈ (2k)<N associate a string τσ ∈ 2<N of length k|σ| by τσ(ki + j) = σ(i)( j)
(i.e., the jth digit in the binary expansion of σ(i)) for all i < |σ| and all j < k. We define infinite

trees 2<N ⊇ S0 ⊇ S1 ⊇ · · · ⊇ Sk−1, and, for each i < k, we find an infinite set Hi homogeneous for Si .

Moreover, the sets Hi will be such that (∀i < k)(∀n ∈ Hi)(n≡ i mod k) and (∀i < k− 1)(∀n)(n ∈
Hi+1→ n− 1 ∈ Hi). Let S0 = {τ ∈ 2<N : (∃σ ∈ T)(|σ| = d|τ|/ke ∧ τ ⊆ τσ)}. That is, S0 consists of

the substrings of the binary expansions of the strings in T . S0 exists by ∆0
1 comprehension, S0 is

clearly a tree, and S0 is infinite because if n ∈ N and σ ∈ T has length n, then τσ � n is a member of

S0 of length n. Let X0 = {n ∈ N : n ≡ 0 mod k}. Apply LRWKL to S0 and X0 to get an infinite set

H0 ⊆ X0 and a color c0 < 2 such that H0 is homogeneous for S0 with color c0. Now suppose that S`,
H`, and c` are defined for some ` < k− 1. Let S`+1 = {τ ∈ S` : (∀ j < |τ|)( j ∈ H`→ τ( j) = c`)}. S`+1

exists by ∆0
1 comprehension, it is easy to check that S`+1 is a tree, and S`+1 is infinite because H` is

homogeneous for S` with color c`. Let X`+1 = {n+ 1 : n ∈ H`}, and note that (∀n ∈ X`+1)(n≡ `+ 1

mod k) because (∀n ∈ H`)(n ≡ ` mod k). Apply LRWKL to S`+1 and X`+1 to get an infinite set

H`+1 ⊆ X`+1 and a color c`+1 < 2 such that H`+1 is homogeneous for S`+1 with color c`+1. By choice

of X`+1, we also have that (∀n ∈ H`+1)(n≡ `+ 1 mod k) and that ∀n(n ∈ H`+1→ n− 1 ∈ H`).
Once Si , Hi , and ci are defined for all i < k, let H = {n : kn+(k−1) ∈ Hk−1} and let a < 2k be the

number whose binary expansion is c0c1 · · · ck−1. We show that H is homogeneous for T with color a.

Given n ∈ N, let τ ∈ Sk−1 be of length kn and such that Hk−1 is homogeneous for τ. Let σ ∈ (2k)<N

be such that τ = τσ. As τ ∈ Sk−1 ⊆ S0, it must be that σ ∈ T by the definition of S0. It remains

to show that (∀i ∈ H)(i < |σ| → σ(i) = a). Consider i ∈ H with i < |σ|. The binary expansion

of σ(i) is τ(ki)τ(ki + 1) · · ·τ(ki + (k − 1)), and ki + (k − 1) ∈ Hk−1 by the definition of H. Thus,

τ(ki + (k − 1)) = ck−1 because Hk−1 is homogeneous for τ. Now let ` be such that 0 ≤ ` < k − 1.

Then ki + ` ∈ H` because ki + (k− 1) ∈ Hk−1 and (∀i < k− 1)(∀m)(m ∈ Hi+1→ m− 1 ∈ Hi). Thus

τ(ki + j) = c` because τ ∈ Sk−1 ⊆ S`+1, and S`+1 was chosen so that if η ∈ S`+1 and m< |η| is in H`,
then η(m) = c`. Thus the binary expansion of σ(i) is c0c1 · · · ck−1, so σ(i) = a as desired. �

Thus we have the following equivalences.

Theorem 3.27. For every k ∈ω with k ≥ 2, the following statements are equivalent over RCA0:
(i) RWKL

(ii) LRWKL

(iii) RWKLk

(iv) LRWKLk.

Proof. Lemma 3.22 states that (i)↔ (ii). Lemma 3.26 states that (ii)→ (iii). A proof analogous to

that of Lemma 3.22 shows that (iii)↔ (iv). Clearly (iv)→ (i) when k ≥ 2. �

The statement ∀k RWKLk easily implies RT1 over RCA0, and RT1 is equivalent to BΣ0
2 over RCA0

(this equivalence is due to Hirst [18]). To see that RCA0 ` ∀k RWKLk → RT1, given a function

f : N→ k, define the tree T ⊆ k<N by T = { f � n : n ∈ N}. Then H is homogeneous for T if and only

if H is homogeneous for f . Thus WKL0 does not prove ∀k RWKLk because WKL0 does not prove

BΣ0
2. (It is well-known that WKL0 is Π1

1-conservative over RCA0 and that RCA0 does not prove BΣ0
2.

See [35] Corollary IX.2.6 and [15] Section IV.1.) However, it is easy to see that WKL0+BΣ0
2 proves
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∀k RWKLk. Moreover, RCA0+∀k SRT2
k proves ∀k RWKLk by essentially same argument used for

k = 2 in [9] Theorem 5.

Question 3.28. Does RCA0 ` SRT2
2→∀k RWKLk?

The strength of having various kinds homogeneous sets for various kinds of infinite trees is

summarized in Table 1. The columns correspond to the kinds of trees allowed, whereas the rows

correspond to the kinds of homogeneous sets asserted to exist. The first column considers infinite,

finitely branching trees. The second column restricts to trees whose nodes have at most two immediate

successors. The third column restricts to trees whose branching is bounded by some function. The

fourth column restricts to trees whose branching is bounded by a constant function. The last column

restricts to binary trees of positive measure. The first row corresponds to König-like statements, that

is, statements asserting the existence of paths through the tree. The second row asserts the existence

of packed homogeneous sets. The third row asserts the existence of sets that are homogeneous for

a fixed color. The fourth row asserts the existence of homogeneous sets that are contained in a

prescribed infinite set. The last row asserts the existence of homogeneous sets.

Tree fin. branch. 2-ary bounded k-bounded pos. meas.

Path

ACA0 ACA0 [3.17] WKL [3.19]

WKL [3.12, 3.15]

WWKL

Packed Hom. set ?

Hom. set fixed color

DNR [3.4, 3.24]Local. Hom. set
RWKL [3.27]

Hom. set

TABLE 1. Paths and homogeneous sets existence for classes of trees

4. THE STRENGTH OF RAMSEY-TYPE SATISFIABILITY PRINCIPLES

One can conceivably consider a Ramsey-type variant of any Π1
2 statement ∀X∃Yϕ(X , Y ) so long

as one can provide a reasonable formulation of what it means for a set Z to be consistent with a

Y such that ϕ(X , Y ). For example, in the case of RWKL, we think of a set H as being consistent

with a path through an infinite tree T ⊆ 2<N if H is homogeneous for T . We are interested in

analyzing the strengths of Ramsey-type variants of statements that are equivalent to WKL over

RCA0. Several such statements have trivial Ramsey-type variants. For example, RCA0 proves that

for every pair of injections f , g : N → N with disjoint ranges, there is an infinite set X consistent

with being a separating set for the ranges of f and g because RCA0 proves that there is an infinite

subset of the range of f . The obvious Ramsey-type variant of Lindenbaum’s lemma (every consistent

set of sentences has a consistent completion) is also easily seen to be provable in RCA0. For the

remainder of this paper, we consider non-trivial Ramsey-type variants of the compactness theorem

for propositional logic and of graph coloring theorems. Many of these variants are equivalent to

RWKL, which we take as evidence that RWKL is robust.

Definition 4.1. A set C of propositional formulas is finitely satisfiable if every finite C0 ⊆ C is

satisfiable (i.e., has a satisfying truth assignment). We denote by SAT the compactness theorem for

propositional logic, which is the statement “every finitely satisfiable set of propositional formulas is

satisfiable.”
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It is well-known that SAT is equivalent to WKL over RCA0 (see [35] Theorem IV.3.3).

If C is a set of propositional formulas, then let atoms(C) denote the set of propositional atoms

appearing in the formulas in C . Strictly speaking, RCA0 does not in prove that atoms(C) exists for

every set of propositional formulas C . However, in RCA0 we can rename the atoms appearing in

a set of propositional formulas C in such a way as to produce an equivalent set of propositional

formulas C ′ for which atoms(C ′) does exist. Indeed, we may assume that atoms(C) = N whenever

atoms(C) is infinite. Thus for ease of mind we always assume that atoms(C) exists as a set.

Definition 4.2. Let C be a set of propositional formulas. A set H ⊆ atoms(C) is homogeneous for C
if there is a c ∈ {T,F} such that every finite C0 ⊆ C is satisfiable by a truth assignment ν such that

(∀a ∈ H)(ν(a) = c).

As is typical, we identify T with 1 and F with 0.

Definition 4.3.

− RSAT is the statement “for every finitely satisfiable set C of propositional formulas with

atoms(C) infinite, there is an infinite H ⊆ atoms(C) that is homogeneous for C .”

− LRSAT is the statement “for every finitely satisfiable set C of propositional formulas with

atoms(C) infinite and every infinite X ⊆ atoms(C), there is an infinite H ⊆ X that is homoge-

neous for C .”

We also consider r.e. variants of RSAT and LRSAT, denoted r.e.- RSAT and r.e.- LRSAT, obtained

by replacing the finitely satisfiable set of propositional formulas C by a list of propositional formulas

(ϕi)i∈N such that {ϕi : i < n} is satisfiable for every n ∈ N. This amounts to considering r.e. sets of

propositional formulas instead of recursive sets of propositional formulas. In this situation, we may

still assume that atoms((ϕi)i∈N) (the set of propositional atoms appearing in the ϕi ’s) exists as a set.

We first show that RCA0 ` RSAT → RWKL. In fact, we show that the restriction of RSAT to

what we call 2-branching clauses implies RWKL over RCA0. This technical restriction is useful for

the proof of Theorem 5.13 in our analysis of Ramsey-type graph coloring principles.

Recall that a propositional formula ` is called a literal if either ` = a or ` = ¬a for some propositional

atom a and that a clause is a disjunction of literals.

Definition 4.4. Let {ai : i ∈ N} be an infinite set of propositional atoms. A set C of clauses is called

2-branching if, for every clause `0 ∨ `1 ∨ · · · ∨ `n−1 ∈ C and every i < n, the literal `i is either ai or

¬ai . RSAT2-branching is RSAT restricted to 2-branching clauses.

Proposition 4.5. RCA0 ` RSAT2-branching→ RWKL.

Proof. Let A = {ai : i ∈ N} be a set of propositional atoms, and to each string σ ∈ 2<N associate

the clause θσ =
∨

i<|σ| `i, where `i = ai if σ(i) = 0 and `i = ¬ai if σ(i) = 1. Let T ⊆ 2<N be an

infinite tree. Let C = {θσ : σ /∈ T}, and observe that C is 2-branching. We show that C is finitely

satisfiable. Given C0 ⊆ C finite, choose n large enough so that the atoms appearing in the clauses in

C0 are among {ai : i < n}. As T is infinite, choose a τ ∈ T of length n. Define a truth assignment

t : {ai : i < n} → {T,F} by t(ai) = τ(i). Now, if θ is a clause in C0, then θ = θσ =
∨

i<|σ| `i for some

σ /∈ T with |σ|< n. Thus there is an i < n such that σ(i) 6= τ(i) (because τ ∈ T and σ /∈ T), from

which we see that t(`i) = T and hence that t(θσ) = T. Thus t satisfies C0.

By RSAT2-branching, let H0 ⊆ A and c ∈ {T,F} be such that H0 is homogeneous for C with truth

value c. Let H = {i ∈ N : ai ∈ H0}. We show that H is homogeneous for a path through T with color
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c. Given n ∈ N, we want to find a τ ∈ T such that |τ| = n and (∀i < |τ|)(i ∈ H → τ(i) = c). Thus

let t : {ai : i < n} → {T,F} be a truth assignment satisfying C0 = {θσ : σ /∈ T ∧ |σ| = n} such that

(∀a ∈ {ai : i < n} ∩ H0)(t(a) = c). Let τ ∈ 2n be defined by τ(i) = t(ai) for all i < n. Notice that

(∀i < |τ|)(i ∈ H → τ(i) = c) and that t(θτ) = F. If τ /∈ T , then θτ ∈ C0, contradicting that t satisfies

C0. Thus τ ∈ T as desired. �

Proposition 4.6. RCA0 ` LRWKL→ r.e.- LRSAT.

Proof. Let (ϕi)i∈N be a list of propositional formulas over an infinite set of atoms A such that {ϕi : i <
n} is satisfiable for every n ∈ N, and let X ⊆ A be infinite. Let (ai)i∈N enumerate A. For each σ ∈ 2<N,

identifyσ with the truth assignment νσ on {ai : i < |σ|} given by (∀i < |σ|)(νσ(ai) = T↔ σ(i) = 1).
Let T ⊆ 2<N be the tree

T = {σ ∈ 2<N : ¬(∃i < |σ|)(νσ(ϕi) = F)},

where νσ(ϕi) is the truth value assigned to ϕi by νσ (we consider νσ(ϕi) undefined—hence not

F—if ϕi contains an atom am for an m ≥ |σ|). T exists by ∆0
1 comprehension and is downward

closed. T is infinite because for any n ∈ N, any satisfying truth assignment of {ϕi : i < n} restricted

to {ai : i < n} yields a string in T of length n. Let X0 = {i ∈ N : ai ∈ X }, and, by LRWKL, let H0 ⊆ X0

and c < 2 be such that H0 is infinite and homogeneous for T with color c. Let H = {ai : i ∈ H0} and

note that it is an infinite subset of X . We show that, for every n ∈ N, {ϕi : i < n} can be satisfied by

a truth assignment ν such that (∀a ∈ H)(ν(a) = c). Let n ∈ N, and let m be large enough so that

atoms({ϕi : i < n}) ⊆ {ai : i < m}. Let σ ∈ T be such that |σ| = m and H0 is homogeneous for σ

with color c. Then (∀i < n)(νσ(ϕi) = T) because νσ(ϕi) is defined for all i < n and νσ(ϕi) 6= F
for all i < n. Thus νσ satisfies {ϕi : i < n}, and, because H0 is homogeneous for σ with color c,

(∀a ∈ H)(νσ(a) = c). �

Theorem 4.7. The following statements are equivalent over RCA0:
(i) RWKL

(ii) RSAT

(iii) LRSAT

(iv) r.e.- RSAT

(v) r.e.- LRSAT.

Proof. Clearly (v)→ (iii)→ (ii) and (v)→ (iv)→ (ii), so it suffices to show the equivalence of (i),
(ii), and (v). We have that (i)→ (v) by Proposition 4.6 and Lemma 3.22, that (v)→ (ii) is clear,

and that (ii)→ (i) by Proposition 4.5. �

5. RAMSEY-TYPE GRAPH COLORING PRINCIPLES

Let k ∈ N, and let G = (V, E) be a graph. A function f : V → k is a k-coloring of G if (∀x , y ∈
V )((x , y) ∈ E → f (x) 6= f (y)). A graph is k-colorable if it has a k-coloring, and a graph is locally
k-colorable if every finite subgraph is k-colorable. A simple compactness argument proves that every

locally k-colorable graph is k-colorable. In the context of reverse mathematics, we have the following

well-known equivalence.

Theorem 5.1 (see [19]). For every k ∈ ω with k ≥ 2, the following statements are equivalent over
RCA0:

(i) WKL

(ii) Every locally k-colorable graph is k-colorable.

In light of Theorem 5.1, we define Ramsey-type analogs of graph coloring principles and compare

them to Ramsey-type weak König’s lemma.
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Definition 5.2.

− Let G = (V, E) be a graph. A set H ⊆ V is k-homogeneous for G if every finite V0 ⊆ V induces a

subgraph that is k-colorable by a coloring that colors every vertex in V0 ∩H color 0. We often

write homogeneous for k-homogeneous when the k is clear from context.

− RCOLORk is the statement “for every infinite, locally k-colorable graph G = (V, E), there is an

infinite H ⊆ V that is k-homogeneous for G.”

− LRCOLORk is the statement “for every infinite, locally k-colorable graph G = (V, E) and every

infinite X ⊆ V , there is an infinite H ⊆ X that is k-homogeneous for G.”

The goal of this section is to obtain the analog of Theorem 5.1 with RWKL in place of WKL

and with RCOLORk in place of the statement “every locally k-colorable graph is k-colorable.” We

are able to obtain this analog for all standard k ≥ 3 instead of all standard k ≥ 2. The case k = 2

remains open. Showing the forward direction, that RCA0 ` RWKL → RCOLORk (indeed, that

RCA0 ` RWKL→ LRCOLORk), is straightforward.

Lemma 5.3. For every k ∈ω, RCA0 ` RWKL→ LRCOLORk.

Proof. Let G = (V, E) be an infinite graph such that every finite V0 ⊆ V induces a k-colorable subgraph,

and let X ⊆ V be infinite. Enumerate V as (vi)i∈N, and let T ⊆ k<N be the tree

T = {σ ∈ k<N : (∀i, j < |σ|)((vi , v j) ∈ E→ σ(i) 6= σ( j))}.

T exists by ∆0
1 comprehension and is downward closed. T is infinite because for any n ∈ N, any

k-coloring of the subgraph induced by {vi : i < n} corresponds to a string in the tree of length n. Let

X0 = {i ∈ N : vi ∈ X }, and apply LRWKLk (which follows from RCA0+RWKL by Theorem 3.27)

to T and X0 to get an infinite set H0 ⊆ X0 and a color c < k such that H0 is homogeneous for a

path through T with color c. Let H = {vi : i ∈ H0}. We show that every finite V0 ⊆ V induces a

subgraph that is k-colorable by a coloring that colors every v ∈ V0 ∩H color 0. Let V0 ⊆ V be finite,

let n = max{i + 1 : vi ∈ V0}, and let σ ∈ T be such that |σ| = n and such that H0 is homogeneous

for σ with color c. Then the coloring of V0 given by vi 7→ σ(i) is a k-coloring of V0 that colors the

elements of V0 ∩ H color c. Swapping colors 0 and c thus gives a k-coloring of V0 that colors the

elements of V0 ∩H color 0. �

We now prove that RCA0 ` RCOLOR3 → RWKL (Theorem 5.13 below). Our proof factors

through the Ramsey-type satisfiability principles and is a rather elaborate exercise in circuit design.

The plan is to prove that RCA0 ` RCOLOR3 → RSAT2-branching, then appeal to Proposition 4.5.

Given a 2-branching set of clauses C , we compute a locally 3-colorable graph G such that every set

homogeneous for G computes a set that is homogeneous for C . G is built by connecting widgets,
which are finite graphs whose colorings have desirous properties. A widget W (~v) has distinguished

vertices ~v through which we connect the widget to the larger graph. These distinguished vertices can

also be regarded, in a sense, as the inputs and outputs of the widget.

In an RCOLOR3 instance built out of widgets according to an RSAT2-branching instance, some of

the vertices code literals so that the colorings of these coding vertices code truth assignments of the

corresponding literals in such a way that a homogeneous set for the RSAT2-branching instance can be

decoded from a homogeneous set for the graph that contains only coding vertices. However, we have

no control over what vertices appear in an arbitrary homogeneous set. Therefore, we must build our

graph so that the color of every vertex gives information about the color of some coding vertex.
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When we introduce a widget, we prove a lemma concerning the three key aspects of the widget’s

operation: soundness, completeness, and reversibility. By soundness, we mean conditions on the

3-colorings of the widget, which we think of as input-output requirements for the widget. By

completeness, we mean that the widget is indeed 3-colorable and, moreover, that 3-colorings of

certain sub-widgets extend to 3-colorings of the whole widget. By reversibility, we mean that the

colors of some vertices may be deduced from the colors of other vertices.

To aid the analysis of our widgets, we introduce a notation for the property that a coloring colors

two vertices the same color.

Notation 5.4. Let G = (V, E) be a graph, let a, b ∈ V , and let ν: V → k be a k-coloring of G. We

write a =ν b if ν(a) = ν(b).

The graph G that we build from widgets has three distinguished vertices 0, 1, and 2, connected as

a triangle. The intention of these vertices is to code truth values. If v is a vertex coding a literal `,

then (v, 2) is an edge in G, and, for a 3-coloring ν, we interpret v =ν 0 as ` is false and v =ν 1 as ` is

true. Our widgets often include vertices 0, 1, and 2.

Widget 5.5. Rx 7→y
y 7→z
(a, u) is the following widget.

x

y

z

v

a

u

Lemma 5.6.

(i) Let ν be a 3-coloring of Rx 7→y
y 7→z
(a, u). If a =ν x then u=ν y, and if a =ν y then u=ν z.

(ii) Every 3-coloring of the subgraph of Rx 7→y
y 7→z
(a, u) induced by {x , y, z, a} can be extended to a

3-coloring of Rx 7→y
y 7→z
(a, u).

(iii) In every 3-coloring of Rx 7→y
y 7→z
(a, u), the color of each vertex in {u, v} determines the color of a.

Proof. The lemma follows from examining the two possible (up to permutations of the colors)

3-colorings of Rx 7→y
y 7→z
(a, u):

a =ν x v =ν z u=ν y (1)

a =ν y v =ν x u=ν z. (2)

We see (i) immediately. For (ii), if a =ν x , then color the widget according to the first coloring; and

if a =ν y , then color the widget according to the second coloring. For (iii), if u =ν y or v =ν z, then

a =ν x; and if u=ν z or v =ν x , then a =ν y . �

The intention is that, in Rx 7→y
y 7→z
(a, u), the vertices x , y , and z are some permutation of the vertices

0, 1, and 2. For example, R0 7→1
1 7→2
(a, u) is the instance of this widget where x = 0, y = 1, and z = 2.

The notation ‘R07→1
17→2
(a, u)’ is evocative of Lemma 5.6 (i). Thinking of a as the widget’s input and of u

as the widget’s output, Lemma 5.6 (i) says that the widget maps 0 to 1 and maps 1 to 2.

Widget 5.7. Ux ,y,z(`, b, u) is the following widget.
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x y

z

`¯̀ b

Rx 7→y
y 7→z
(`, r)

r

d

u

In the diagram above, the box labeled ‘Rx 7→y
y 7→z
(`, r)’ represents an Rx 7→y

y 7→z
(`, r) sub-widget. The

vertices ` and r are the same as those appearing inside Rx 7→y
y 7→z
(`, r). They have been displayed to

show how they connect to the rest of the Ux ,y,z(`, b, u) widget. The vertices x , y , and z are also the

same as the corresponding vertices appearing inside Rx 7→y
y 7→z
(`, r), and some of the edges incident to

them (for example, the edge (x , r)) have been omitted to improve legibility.

The properties of Ux ,y,z(`, b, u) highlighted by the next lemmas may seem ill-motivated at first.

We explain their significance after the proofs.

Lemma 5.8.

(i) Every 3-coloring ν of the subgraph of Ux ,y,z(`, b, u) induced by {x , y, z,`, b} can be extended to a
3-coloring of Ux ,y,z(`, b, u).

(ii) If ν is a 3-coloring of Ux ,y,z(`, b, u) in which `=ν x and b =ν y, then u=ν x.
(iii) Every 3-coloring ν of the subgraph of Ux ,y,z(`, b, u) induced by {x , y, z,`, b} in which ` =ν x and

b 6=ν y can be extended to a 3-coloring of Ux ,y,z(`, b, u) in which u=ν z.
(iv) Every 3-coloring ν of the subgraph of Ux ,y,z(`, b, u) induced by {x , y, z,`, b} in which ` =ν y can

be extended to a 3-coloring of Ux ,y,z(`, b, u) in which u=ν y.

Proof. For (i), let ν be a 3-coloring of the subgraph of Ux ,y,z(`, b, u) induced by {x , y, z,`, b}.

− If `=ν x and b =ν x , then color the widget so that ¯̀=ν y , r =ν y , d =ν y , and u=ν z.

− If `=ν x and b =ν y , then color the widget so that ¯̀=ν y , r =ν y , d =ν z, and u=ν x .

− If `=ν x and b =ν z, then color the widget so that ¯̀=ν y , r =ν y , d =ν y , and u=ν z.

− If `=ν y and b =ν x , then color the widget so that ¯̀=ν x , r =ν z, d =ν z, and u=ν y .

− If `=ν y and b =ν y , then color the widget so that ¯̀=ν x , r =ν z, d =ν x , and u=ν y .

− If `=ν y and b =ν z, then color the widget so that ¯̀=ν x , r =ν z, d =ν x , and u=ν y .

In each of the above cases, the sub-widget Rx 7→y
y 7→z
(`, r) is colored according to Lemma 5.6.

For (ii), let ν be a 3-coloring of Ux ,y,z(`, b, u) in which `=ν x and b =ν y. Then it must be that
¯̀=ν y and d =ν z, and therefore it must be that u=ν x .

Item (iii) can be seen by inspecting the first and third colorings in the proof of (i).
Item (iv) can be seen by inspecting the last three colorings in the proof of (i). �

Lemma 5.9. Let ν be a 3-coloring of Ux ,y,z(`, b, u). If w is ¯̀, u, or any vertex appearing in the Rx 7→y
y 7→z
(`, r)

sub-widget that is not x, y, or z, then the color of w determines the color of `. Moreover,

− if d =ν x, then `=ν y;
− if d =ν y, then `=ν x;
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− if d =ν z, then b 6=ν z.

Proof. Let ν be a 3-coloring of Ux ,y,z(`, b, u). It is easy to see that if ¯̀ =ν x , then ` =ν y and that

if ¯̀ =ν y, then ` =ν x . If w is a vertex in Rx 7→y
y 7→z
(`, r) that is not x , y, or z, then the color of w

determines the color of ` by Lemma 5.6 (iii). For u, if u =ν x or u =ν z it cannot be that ` =ν y
because then ¯̀=ν x and, by Lemma 5.6 (i), r =ν z. On the other hand, if u=ν y , it cannot be that

`=ν x because then ¯̀=ν y . Thus if u=ν x or u=ν z, then `=ν x; and if u=ν y , then `=ν y . It is

easy to see that if d =ν x then ` =ν y, that if d =ν y then ` =ν x , and that if d =ν z then b 6=ν z
because ` and b are neighbors of d. �

Consider a clause `0 ∨ `1 ∨ · · · ∨ `n−1. The idea is to code truth assignments that satisfy the clause

as 3-colorings of a graph constructed by chaining together widgets of the form Ux ,y,z(`i , b, u). Let ν

be a 3-coloring of Ux ,y,z(`i , b, u). The color of the vertex `i represents the truth value of the literal

`i: `i =ν x is interpreted as `i is false, and `i =ν y is interpreted as `i is true. The color of the

vertex b represents the truth value of `0 ∨ `1 ∨ · · · ∨ `i−1 as well as the truth value of the literal

`i−1: b =ν x is interpreted as `0 ∨ `1 ∨ · · · ∨ `i−1 is true but `i−1 is false; b =ν y is interpreted as

`0 ∨ `1 ∨ · · · ∨ `i−1 is false (and hence also as `i−1 is false); and b =ν z is interpreted as `i−1 is true

(and hence also as `0 ∨ `1 ∨ · · · ∨ `i−1 is true). Similarly, the color of the vertex u represents the

truth value of `0 ∨ `1 ∨ · · · ∨ `i as well as the truth value of the literal `i . However, the meanings of

the colors are permuted: u =ν x is interpreted as `0 ∨ `1 ∨ · · · ∨ `i is false (and hence also as `i is

false); u=ν y is interpreted as `i is true (and hence also as `0 ∨ `1 ∨ · · · ∨ `i is true); and u=ν z is

interpreted as `0 ∨ `1 ∨ · · · ∨ `i is true but `i is false. Lemma 5.8 tells us that Ux ,y,z(`i , b, u) properly

implements this coding scheme. Lemma 5.8 (ii) says that if a 3-coloring codes that `i is false and

that `0 ∨ `1 ∨ · · · ∨ `i−1 is false, then it must also code that `0 ∨ `1 ∨ · · · ∨ `i is false. Lemma 5.8 (iii)
says that if ν is a 3-coloring of the subgraph of Ux ,y,z(`i , b, u) induced by {x , y, z,`i , b} coding that

`i is false and that `0 ∨ `1 ∨ · · · ∨ `i−1 is true, then ν can be extended to a 3-coloring of Ux ,y,z(`i , b, u)
coding that `0 ∨ `1 ∨ · · · ∨ `i is true. The reader may worry that here it is also possible to extend ν to

incorrectly code that `0 ∨ `1 ∨ · · · ∨ `i is false, so we assure the reader that this is irrelevant. What

is important is that it is possible to extend ν to code the correct information. Lemma 5.8 (iv) says

that if ν is a 3-coloring of the subgraph of Ux ,y,z(`i , b, u) induced by {x , y, z,`i , b} coding that `i is

true, then ν can be extended to a 3-coloring of Ux ,y,z(`i , b, u) coding that `0 ∨ `1 ∨ · · · ∨ `i is true.

Lemma 5.9 helps us deduce the colors of literal-coding vertices from the colors of auxiliary vertices

and hence helps us compute a homogeneous set for a set of clauses from a homogeneous set for a

graph.

The next widget combines Ux ,y,z(`, b, u) widgets into widgets coding clauses.

Widget 5.10. D(`0,`1, . . . ,`n−1) is the following widget.
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0 1

2

`0

U1(`′1,`0, u1)`′1R1(`1,`′1)`1

u1

U2(`′2, u1, u2)`′2R2(`2,`′2)`2

u2

U3(`3, u2, u3)`3

u3

un−2

Un−1(`′n−1, un−2, un−1)`′n−1Rn−1(`n−1,`′n−1)`n−1

un−1

x

The widget also contains the edge (2,`i) for each i < n, which we omitted from the diagram to

keep it legible. For 0 < i < n, the sub-widget U i(`′i , ui−1, ui) is U0,1,2(`i , ui−1, ui) if i ≡ 0 mod 3, is

U2,0,1(`′i , ui−1, ui) if i ≡ 1 mod 3 (with `0 in place of u0 when i = 1), and is U1,2,0(`′i , ui−1, ui) if i ≡ 2

mod 3. For 0 < i < n, the sub-widget Ri(`i ,`
′
i) is R17→0

07→2
(`i ,`

′
i) if i ≡ 1 mod 3 and is R07→1

17→2
(`i ,`

′
i) if

i ≡ 2 mod 3. If i ≡ 0 mod 3, then there is just the vertex `i instead of the subgraph

`i Ri(`i ,`
′
i) `′i

.

The vertex x is 0 if n−1≡ 0 mod 3, is 2 if n−1≡ 1 mod 3, and is 1 if x ≡ 2 mod 3. Note that the

vertex x is thus drawn twice because it is identical to one of 0, 1, 2. For clarity, we also point out

that in the case of D(`0), the widget is simply

0

1

2

`0
.

Lemma 5.11.

(i) Every 3-coloring ν of the subgraph of D(`0,`1, . . . ,`n−1) induced by {0,1,2,`0,`1, . . . ,`n−1} in
which `i =ν 1 for some i < n can be extended to a 3-coloring of D(`0,`1, . . . ,`n−1).
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(ii) There is no 3-coloring ν of D(`0,`1, . . . ,`n−1) in which `0 =ν `1 =ν · · ·=ν `n−1 =ν 0.

Proof. For (i), let ν be a 3-coloring of the subgraph induced by {0, 1, 2,`0,`1, . . . ,`n−1} in which `i =ν 1

for some i < n. For each i < n, let Di(`0,`1, . . . ,`n−1) denote the subgraph of D(`0,`1, . . . ,`n−1)
induced by 0, 1, 2, and the vertices appearing in R j(` j ,`

′
j) and U j(`′j , u j−1, u j) for all j ≤ i. That is,

if i < n− 1, then Di(`0,`1, . . . ,`n−1) is D(`0,`i , . . . ,`i) without the edge between ui and x; and if

i = n− 1, then Di(`0,`1, . . . ,`n−1) is D(`0,`i , . . . ,`n−1). Item (i) is then the instance i = n− 1 of the

following claim.

Claim. For all i < n, ν can be extended to a 3-coloring of Di(`0,`1, . . . ,`n−1). Moreover, if ` j =ν 1 for
some j ≤ i, then ν can be extended to a 3-coloring of Di(`0,`1, . . . ,`n−1) in which ν(ui) codes this fact.
That is, if i ≡ 0 mod 3, then ui 6=ν 0; if i ≡ 1 mod 3, then ui 6=ν 2; and if i ≡ 2 mod 3, then ui 6=ν 1

(for i = 0, interpret u0 as `0).

Proof. By induction on i < n. For i = 0, D0(`0,`1, . . . ,`n−1) is the subgraph of induced by {0, 1, 2,`0},
which is 3-colored by ν by assumption. Clearly if `0 =ν 1, then `0 6=ν 0. Now suppose that ν has

been extended to a 3-coloring of Di−1(`0,`1, . . . ,`n−1). For the sake of argument, suppose that i ≡ 1

mod 3 (the i ≡ 0 mod 3 and i ≡ 2 mod 3 cases are symmetric), and suppose that if ` j =ν 1 for some

j ≤ i− 1, then ui−1 6=ν 0. First suppose that `i =ν 0. As Ri(`i ,`
′
i) = R17→0

07→2
(`i ,`

′
i), apply Lemma 5.6 (i)

to extend ν to Ri(`i ,`
′
i) so that `′i =ν 2. By Lemma 5.8 (i), it is possible to extend ν to U i(`′i , ui−1, ui).

Furthermore, if ` j =ν 1 for some j ≤ i − 1, then ui−1 6=ν 0. In this situation, by Lemma 5.8 (iii), it is

possible to extend ν to U i(`′i , ui−1, ui) = U2,0,1(`′i , ui−1, ui) so that ui =ν 1 (and hence ui 6=ν 2). Now

suppose that `i =ν 1. As Ri(`i ,`
′
i) = R17→0

07→2
(`i ,`

′
i), apply Lemma 5.6 (i) to extend ν to Ri(`i ,`

′
i) so

that `′i =ν 0. By Lemma 5.8 (iv), it is possible to extend ν to U i(`′i , ui−1, ui) = U2,0,1(`′i , ui−1, ui) so

that ui =ν 0 (and hence ui 6=ν 2). �

For (ii), suppose for a contradiction that ν is a 3-coloring of D(`0,`1, . . . ,`n−1) in which `0 =ν
`1 =ν · · · =ν `n−1 =ν 0. We prove by induction on i < n that ui =ν 0 if i ≡ 0 mod 3, ui = 2 if

i ≡ 1 mod 3, and ui =ν 1 if i ≡ 2 mod 3 (again u0 is interpreted as `0). Item (ii) follows from the

case i = n− 1 because this gives the contradiction un−1 =ν x . For i = 0, `0 =ν 0 by assumption.

Now consider 0< i < n, assume for the sake of argument that i ≡ 1 mod 3 (the i ≡ 0 mod 3 and

i ≡ 2 mod 3 cases are symmetric), and assume that ui−1 =ν 0. By Lemma 5.6 (i) for the widget

Ri(`i ,`
′
i) = R17→0

07→2
(`i ,`

′
i), we have that `′i =ν 2. Thus U i(`′i , ui−1, ui) = U2,0,1(`′i , ui−1, ui), `′i =ν 2, and

ui−1 =ν 0, so it must be that ui =ν 2 by Lemma 5.8 (ii). �

Lemma 5.12. Let ν be a 3-coloring of D(`0,`1, . . . ,`n−1). If 0 < i < n and w is a vertex appearing
in an Ri(`i ,`

′
i) sub-widget or a U i(`′i , ui−1, ui) sub-widget that is not 0, 1, or 2, then the color of w

determines either the color of `i or the color of `i−1.

Proof. Consider a 3-coloring ν of D(`0,`1, . . . ,`n−1), an i with 0 < i < n, and a vertex w in an

Ri(`i ,`
′
i) sub-widget or a U i(`′i , ui−1, ui) sub-widget that is not 0, 1, or 2. If w appears in Ri(`i ,`

′
i),

then the color of w determines the color of `i by Lemma 5.6 (iii). If w appears in U i(`′i , ui−1, ui), then

there are a few cases. If w is not ui−1 or d, then the color of w determines the color `′i by Lemma 5.9,

which we have just seen determines the color of `i (or `′i is `i in the case i ≡ 0 mod 3). Consider

w = ui−1. If i = 1, then ui−1 is really `0, and of course the color of `0 determines the color of `0.

Otherwise, i > 1, ui−1 appears in the sub-widget U i−1(`′i−1, ui−2, ui−1), and hence the color of ui−1

determines the color of `i−1.
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Lastly, consider w = d. U i(`′i , ui−1, ui) is Ux ,y,z(`′i , ui−1, ui), where x , y , and z are some permutation

of 0, 1, and 2. If d =ν x or d =ν y, then this determines the color of `′i by Lemma 5.9, which in

turn determines the color of `i. Otherwise d =ν z, meaning that ui−1 6=ν z by Lemma 5.9. If i = 1,

then z = 1, u0 is really `0, and we conclude that `0 =ν 0. If i > 1, then U i−1(`′i−1, ui−2, ui−1) is

Uy,z,x(`′i−1, ui−2, ui−1) and, by examining the proof of Lemma 5.9, ui−1 6=ν z implies that `′i−1 =ν y,

which in turn determines the color of `i−1. �

To code a conjunction of two clauses `0∨`1∨· · ·∨`n−1 and s0∨s1∨· · ·∨sm−1, we overlap the widgets

D(`0,`1, . . . ,`n−1) and D(s0, s1, . . . , sm−1) by sharing the vertices pertaining to the longest common

prefix of `0,`1, . . . ,`n−1 and s0, s1, . . . , sm−1. For example, consider the clauses `0 ∨ `1 ∨ `2 ∨ `3 ∨ `4

and `0 ∨ `1 ∨ s2 ∨ s3, where `2 6= s2. We overlap D(`0,`1,`2,`3,`4) and D(`0,`1, s2, s3) as follows:

0 1

2

`0

U1(`′1,`0, u1)`′1R1(`1,`′1)`1

u1

U2(`′2, u1, u2)`′2R2(`2,`′2)

`2 u2

U2(s′2, u1, v2) s′2 R2(s2, s′2)

s2v2

U3(`′3, u2, u3)`3

u3

U3(s′3, v2, v3) s3

v3

U4(`′4, u3, u4)`′4R4(`4,`′4)

`4 u4

2

0

Theorem 5.13. RCA0 ` RCOLOR3→ RWKL.

Proof. We prove RCA0 ` RCOLOR3→ RSAT2-branching. The theorem follows by Proposition 4.5.

Let C be a 2-branching and finitely satisfiable set of clauses over an infinite set of atoms A= {ai :

i ∈ N}. We assume that no clause in C is a proper prefix of any other clause in C by removing from C
every clause that has a proper prefix also in C . We build a locally 3-colorable graph G such that every

infinite homogeneous set for G computes an infinite homogeneous set for C . To start, G contains

the vertices 0, 1, and 2, as well as the literal-coding vertices ai and ¬ai for each atom ai ∈ A. These

vertices are connected according to the diagram below.
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0

1

2

a0 ¬a0

a1 ¬a1

Now build G in stages by considering the clauses in C one-at-a-time. For clause `0∨ `1∨ · · ·∨ `n−1,

find the previously appearing clause s0 ∨ s1 ∨ · · · ∨ sm−1 having the longest common prefix with

`0 ∨ `1 ∨ · · · ∨ `n−1. Then add the widget D(`0,`1, . . . ,`n−1) by overlapping it with D(s0, s1, . . . , sm−1)
as described above. In D(`0,`1, . . . ,`n−1), for each i < n, the vertex `i is the vertex ai if the literal `i is

the literal ai , and the vertex `i is the vertex ¬ai if the literal `i is the literal ¬ai . The vertices appearing

in the sub-widgets Ri(`i ,`
′
i) and U i(`′i , ui−1, ui) for i beyond the index at which `0 ∨ `1 ∨ · · · ∨ `n−1

differs from s0 ∨ s1 ∨ · · · ∨ sm−1 are chosen fresh, except for 0, 1, 2, and the literal-coding vertices `i .

This completes the construction of G.

Claim. G is locally 3-colorable.

Proof. Let G0 be a finite subgraph of G. Let s be the latest stage at which a vertex in G0 appears, and

let C0 ⊆ C be the set of clauses considered up to stage s. By extending G0, we may assume that it is

the graph constructed up to stage s.
By the finite satisfiability of C , let t : atoms(C0)→ {T,F} be a truth assignment satisfying C0. The

truth assignment t induces a 3-coloring ν on the literal-coding vertices in G0. First define ν on the

truth value-coding vertices by ν(0) = 0, ν(1) = 1, and ν(2) = 2. If t(`) is defined for the literal `,

then set ν(`) = t(`) (identifying 0 with F and 1 with T). If ` is a literal-coding vertex in G0 on which

t is not defined, then set ν(`) = 1 if ` is a positive literal and set ν(`) = 0 if ` is a negative literal.

For each clause `0 ∨ `1 ∨ · · · ∨ `n−1 in C0, extend ν to a 3-coloring of G0 by coloring each widget

D(`0,`1, . . . ,`n−1) according to the algorithm implicit in the proof of Lemma 5.11 (i). The hypothesis

of Lemma 5.11 (i) is satisfied because t satisfies C0, so for each clause `0 ∨ `1 ∨ · · · ∨ `n−1 in C0,

there is an i < n such that `i =ν 1. Overlapping widgets D(`0,`1, . . . ,`n−1) and D(s0, s1, . . . , sm−1)
are colored consistently because the colors of the shared vertices depend only on the colors of the

literal-coding vertices corresponding to the longest common prefix of the two clauses. �

Apply RCOLOR3 to G to get an infinite homogeneous set H. We may assume that H contains

exactly one of the truth value-coding vertices 0, 1, or 2. Call this vertex c.

Consider a vertex w ∈ H that is not c. The vertex w appears in some widget D(`0,`1, . . . ,`n−1), and,

by Lemma 5.12, from w we can compute an i < n and a ci ∈ {0, 1} such that `i =ν ci whenever ν is a 3-

coloring of D(`0,`1, . . . ,`n−1) in which w =ν c. Moreover, for each literal `, we can compute a bound

on the number of vertices w in the graph whose color determines the color of `. Still by Lemma 5.12,

if w appears in an Ri(`i ,`
′
i) sub-widget or a U i(`′i , ui−1, ui) sub-widget, then the color of w determines

either the color of `i or the color of `i−1. Thus the vertices whose colors determine the color of `i only

appear in Ri(`i ,`
′
i), U i(`′i , ui−1, ui), Ri+1(`i+1,`′i+1), and U i+1(`′i+1, ui , ui+1) sub-widgets. The fact

that C is a 2-branching set of clauses and our protocol for overlapping the D(`0,`1, . . . ,`n−1) widgets

together imply that, for every j > 0, there are at most 2 j sub-widgets of the form R j(` j ,`
′
j) and at
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most 2 j sub-widgets of the form U j(`′j , u j−1, u j). This induces the desired bound on the number of

vertices whose colors determine the color of `i .

Thus from H we can compute an infinite set H ′ of pairs 〈`, c`〉, where each ` is a literal-coding

vertex and each c` is either 0 or 1, such that every finite subgraph of G is 3-colorable by a coloring ν

such that (∀〈`, c`〉 ∈ H ′)(`=ν c`). Modify H ′ to contain only pairs 〈a, ca〉 for positive literal-coding

vertices a by replacing each pair of the form 〈¬a, c¬a〉 with 〈a, 1 − c¬a〉. Now apply the infinite

pigeonhole principle to H ′ to get an infinite set H ′′ of positive literal-coding vertices a and a new

c ∈ {0,1} such that the corresponding ca is always c. We identify a positive literal-coding vertex a
with the corresponding atom and show that H ′′ is homogeneous for C .

Let C0 ⊆ C be finite. Let G0 be the finite subgraph of G containing {0,1,2}, the literal-coding

vertices whose atoms appear in the clauses in C0, and the D(`0,`1, . . . ,`n−1) widgets for the clauses

`0 ∨ `1 ∨ · · · ∨ `n−1 in C0. By the homogeneity of H ′′ for G, there is a 3-coloring ν of G0 such that

a =ν c for every a ∈ H ′′. From ν, define a truth assignment t on atoms(C0) by t(a) = T if a =ν 1

and t(a) = F if a =ν 0. This truth assignment satisfies every clause `0 ∨ `1 ∨ · · · ∨ `n−1 in C0. The

3-coloring ν must color the widget D(`0,`1, . . . ,`n−1), so by Lemma 5.11 (ii), it must be that `i =ν 1

for some i < n. Then t(`i) = T for this same i, so t satisfies `0 ∨ `1 ∨ · · · ∨ `n−1. Moreover, t(a) is the

truth value coded by c for every a ∈ H ′′, so H ′′ is indeed an infinite homogeneous set for C . �

It follows that RWKL, RCOLORk, and LRCOLORk are equivalent for every fixed k ≥ 3.

Corollary 5.14. For every k ∈ω with k ≥ 3, RCA0 ` RWKL↔ RCOLORk↔ LRCOLORk.

Proof. Fix k ∈ ω with k ≥ 3. RCA0 ` RWKL → LRCOLORk by Lemma 5.3, and clearly RCA0 `
LRCOLORk→ RCOLORk. It is easy to see that RCA0 ` RCOLORk→ RCOLOR3. Given a locally 3-

colorable graph G, augment G by a clique C containing k−3 fresh vertices, and put and edge between

every vertex in C and every vertex in G. The resulting graph G′ is locally k-colorable, and every infinite

set that is k-homogeneous for G′ is also 3-homogeneous for G. Finally, RCA0 ` RCOLOR3→ RWKL

by Theorem 5.13. �

The question of the exact strength of RCOLOR2 remains open. We were unable to determine if

RCOLOR2 implies RWKL or even if RCOLOR2 implies DNR.

Question 5.15. Does RCA0 ` RCOLOR2→ RWKL?

Question 5.16. Does RCA0 ` RCOLOR2→DNR?

However, we are able to show that RCOLOR2 and LRCOLOR2 are equivalent.

Theorem 5.17. RCA0 ` RCOLOR2↔ LRCOLOR2.

Proof. RCA0 ` LRCOLOR2→ RCOLOR2 is clear. We show that RCA0 ` RCOLOR2→ LRCOLOR2.

RCA0 suffices to prove that a finite graph is 2-colorable if and only if it does not contain an odd-

length cycle. Thus the condition that every finite subset of vertices of a graph induces a 2-colorable

subgraph is equivalent to the condition that the graph does not contain an odd-length cycle. Moreover,

if G = (V, E) is a graph such that every finite subset of V induces a 2-colorable subgraph, then, for

any H ⊆ V , every finite V0 ⊆ V induces a subgraph that is 2-colorable by a coloring that colors every

v ∈ V0 ∩H color 0 if and only if no two elements of H are connected by an odd-length path. Thus,

over RCA0, we immediately have the following two equivalences:
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− RCOLOR2 is equivalent to the statement “for every infinite graph G = (V, E), if G does not

contain an odd-length cycle, then there is an infinite H ⊆ V such that no two vertices of H are

connected by an odd-length path.”

− LRCOLOR2 is equivalent to the statement “for every infinite graph G = (V, E) and every

infinite X ⊆ V , if G does not contain an odd-length cycle, then there is an infinite H ⊆ X such

that no two vertices of H are connected by an odd-length path.”

Let G = (V, E) be an infinite graph that does not contain an odd-length cycle, and let X ⊆ V be

infinite. If there is a bound m such that

(∀x , y ∈ X )(x and y are connected by an odd-length path→ x , y < m),

then we may take H = {x ∈ X : x > m}. So suppose instead that there are infinitely many distinct

pairs (x , y) of vertices in X that are connected by odd-length paths, let ((xn, yn))n∈N enumerate

this collection of pairs, and let (pn)n∈N enumerate a collection of odd-length paths such that the

endpoints of pn are xn and yn.

Define a graph G′ = (V ′, E′) by

V ′ = X ∪ {an : n ∈ N} ∪ {bn : n ∈ N}

E′ = {(x , an), (an, bn), (bn, y) : x , y ∈ X ∧ x < y ∧ x and y are the endpoints of pn}.

G′ does not contain an odd-length cycle. To see this, suppose for a contradiction that G′ does

contain an odd-length cycle. This cycle must be of the form

x0, cm0
, dm0

, x1, cm0
, dm0

, x2, . . . , xn−1, cmn−1
, dmn−1

, x0,

where n is odd and, for each i < n, x i ∈ X and {cmi
, dmi
} = {ami

, bmi
}. Thus, for each i < n−1, pmi

is

an odd-length path with endpoints x i and x i+1, and also pmn−1
is an odd-length path with endpoints

xn−1 and x0. Therefore the path in G obtained by starting at x0, following pm0
to x1, following

pm1
to x2, and so on, finally following pmn−1

from xn−1 back to x0, is an odd-length cycle in G, a

contradiction.

Hence by RCOLOR2, there is an infinite H0 ⊆ V ′ such that no two vertices of H0 are connected by

an odd-length path. In G′, infinitely many vertices of X are connected to H0. Clearly this holds if

X ∩ H0 is infinite. Otherwise, H0 contains infinitely many vertices of the form an or bn, and these

must be connected to infinitely many vertices in X because

(∀m)(∃n0)(∀n> n0)(some endpoint of pn is > m),

and therefore

(∀m)(∃n0)(∀n> n0)(an and bn are connected to an x ∈ X with x > m).

Thus there is an infinite set H ⊆ X such that, in G′, either every x ∈ H is connected to a vertex in

H0 by an even-length path, or every x ∈ H is connected to a vertex in H0 by an odd-length path.

To finish the proof, we show that, in G, no two vertices in H are connected by an odd-length path.

Suppose for a contradiction that x , y ∈ H are connected by an odd-length path. Then there is an n
such that x and y are the endpoints of pn, and therefore x and y are connected by an odd-length

path in G′ via the vertices an and bn. Now, in G′, x is connected to some u ∈ H0, y is connected to

some v ∈ H0, and the witnessing paths from x to u and from y to v either both have even length or

both have odd length. In either case, the path in G′ from u to x to y to v has odd length. Thus u and

v are two vertices in H0 connected by an odd-length path in G′, which is a contradiction. �
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6. THE STRENGTH OF RAMSEY-TYPE GRAPH 2-COLORING

In this section, we prove various non-implications concerning RWKL and RCOLOR2. The main

result is that RCA0+WWKL 0 RCOLOR2 (Theorem 6.11). From this it follows that RCA0+DNR 0
RWKL, which answers Flood’s question of whether or not RCA0 `DNR→ RWKL from [9]. We also

show that RCA0+CAC 0 RCOLOR2 (Theorem 6.9). Note that it is immediate that RCA0+CAC 0
RWKL because RCA0+RWKL `DNR (by [9]) but RCA0+CAC 0DNR (by [16]). We do not know

if RCA0 ` RCOLOR2→DNR, so we must give a direct proof that RCA0+CAC 0 RCOLOR2.

In summary, the situation is thus. WKL and RT2
2 each imply RWKL and therefore each imply

RCOLOR2. However, if WKL is weakened to WWKL, then it no longer implies RCOLOR2. Similarly,

if RT2
2 is weakened to CAC, then it no longer implies RCOLOR2.

We begin our analysis of RCOLOR2 by constructing an infinite, recursive, bipartite graph with no

infinite, recursive, homogeneous set. It follows that RCA0 0 RCOLOR2. The graph we construct

avoids potential infinite, r.e., homogeneous sets in a strong way that aids our proof that RCA0+CAC 0
RCOLOR2.

Definition 6.1. Let G = (V, E) be an infinite graph. A set W ⊆ V 2 is column-wise homogeneous for G
if W [x] is infinite for infinitely many x (where W [x] = {y : 〈x , y〉 ∈W} is the x th column of W ), and

∀x∀y(y ∈W [x]→ {x , y} is homogeneous for G).

Lemma 6.2. There is an infinite, recursive, bipartite graph G = (ω, E) such that no r.e. set is column-wise
homogeneous for G.

Proof. The construction proceeds in stages, starting at stage 0 with E = ;. We say that We requires
attention at stage s if e < s and there is a least pair 〈x , y〉 such that

− e < x < y < s,
− y ∈W [x]

e,s ,

− x and y are not connected to each other, and

− neither x nor y is connected to a vertex ≤ e.

At stage s, let e be least such that We requires attention at stage s and has not previously received

attention. We then receives attention by letting 〈x , y〉 witness that We requires attention at stage s,
letting u and v be the least isolated vertices > s, and adding edges (x , u), (u, v), and (v, y) to E. This

completes the construction.

We verify the construction. We first show that G is acyclic by showing that it is acyclic at every

stage. It follows that G is bipartite because a graph is bipartite if and only if it has no odd cycles.

All vertices are isolated at the beginning of stage 0, hence G is acyclic at the beginning of stage 0.

By induction, suppose G is acyclic at the beginning of stage s. If no We requires attention at stage s,
then no edges are added at stage s, hence G is acyclic at the beginning of stage s + 1. If some

least We requires attention at stage s, then during stage s we add a length-3 path connecting the

connected components of the x and y such that 〈x , y〉 witnesses that We requires attention at stage s.
This action does not add a cycle because by the definition of requiring attention, x and y are not

connected at the beginning of stage s. Hence G is acyclic at the beginning of stage s+ 1.

We now show that, for every e, if there are infinitely many x such that W [x]
e is infinite, then

there are an x and a y with y ∈W [x]
e and {x , y} not homogeneous for G. If We receives attention,

then there is a length-3 path between an x and a y with y ∈ W [x]
e , in which case {x , y} is not

homogeneous for G. Thus it suffices to show that if W [x]
e is infinite for infinitely many x , then We

requires attention at some stage.
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Suppose that W [x]
e is infinite for infinitely many x , and suppose for a contradiction that W [x]

e

never requires attention. Let s0 be a stage by which every Wi for i < e that ever requires attention

has received attention. The graph contains only finitely many edges at each stage, so let x0 be an

upper bound for the vertices that are connected to the vertices ≤ e at stage s0. Notice that when

some Wi receives attention, the vertices connected at that stage are not connected to vertices ≤ i.
Therefore once all the Wi for i < e that ever require attention have received attention, no vertex that

is not connected to a vertex ≤ e is ever connected to a vertex ≤ e. In particular, no vertex ≥ x0 is

ever connected to a vertex ≤ e. Now let x > x0 be such that W [x]
e is infinite, and let s1 > s0 be a

stage by which every Wi for i < x that ever requires attention has received attention. Let y0 be an

upper bound for the vertices that are connected to x and the vertices ≤ e at stage s1, and again note

that no vertex ≥ y0 is ever connected to x or a vertex ≤ e. As W [x]
e is infinite, let s > s1 be a stage at

which there is a y > y0 with x < y < s and y ∈W [x]
e,s . This y is not connected to x , and neither x

nor y is connected to a vertex ≤ e, so We requires attention at stage s, a contradiction. �

Proposition 6.3. RCA0 0 RCOLOR2.

Proof. Consider the ω-model of RCA0 whose second-order part consists of exactly the recursive

sets. The graph G from Lemma 6.2 is in the model because G is recursive. However, the model

contains no homogeneous set for G because if H were an infinite, recursive, homogeneous set,

then {〈x , y〉 : x , y ∈ H} would be a recursive, column-wise homogeneous set, thus contradicting

Lemma 6.2. �

The notion of restricted Π1
2 conservativity helps separate Ramsey-type weak König’s lemma and the

Ramsey-type coloring principles from a variety of weak principles.

Definition 6.4 (see [16, 17]).

− A sentence is restricted Π1
2 if it is of the form ∀A(Θ(A)→∃B(Φ(A, B))), where Θ is arithmetic

and Φ is Σ0
3.

− A theory T is restricted Π1
2 conservative over a theory S if S ` ϕ whenever T ` ϕ and ϕ is

restricted Π1
2.

Theorem 6.5.

− ([16]) RCA0+COH is restricted Π1
2 conservative over RCA0.

− ([17]) RCA0+Π0
1G is restricted Π1

2 conservative over RCA0.

RCOLOR2 is a restricted Π1
2 sentence, so we immediately have that neither COH nor Π0

1G implies

RCOLOR2 over RCA0. Consequently, over RCA0, the following principles are all incomparable with

RWKL and with RCOLOR2: COH, CRT2
2, CADS, Π0

1G, FIP, AMT, D̄2IP and OPT.

Theorem 6.6. RWKL is incomparable with each of COH, CRT2
2, CADS, Π0

1G, FIP, AMT, D̄2IP and
OPT over RCA0. RCOLOR2 is incomparable with these principles over RCA0 as well.

Proof. Over RCA0, we have the implications COH → CRT2
2 → CADS [4, 16], Π0

1G → AMT →
OPT [17], and Π0

1G→ FIP→ D̄2IP→OPT [7]. Thus we need only show that neither RCA0+COH

nor RCA0+Π0
1G prove RCOLOR2 and that RCA0+RWKL proves neither CADS nor OPT. Observe

that RCOLOR2 is restricted Π1
2 sentence, so we have that neither RCA0+COH nor RCA0+Π0

1G

proves RCOLOR2 by Proposition 6.3 and Theorem 6.5. RCA0+RWKL proves neither CADS nor

OPT because RCA0+WKL proves RCA0+RWKL and RCA0+WKL proves neither CADS [16] nor

OPT [17]. �
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We now adapt the proof that RCA0+CAC 0DNR in [16] to prove that RCA0+CAC 0 RCOLOR2.

We build an ω-model of RCA0+SCAC+COH that is not a model of RCOLOR2 by alternating

between adding chains or antichains to stable partial orders and adding cohesive sets without ever

adding an infinite set homogeneous for the graph from Lemma 6.2.

Lemma 6.7. Let X be a set, let G = (V, E) be a graph recursive in X such that no column-wise
homogeneous set for G is r.e. in X , and let P = (P,≤P) be an infinite, stable partial order recursive in
X . Then there is an infinite C ⊆ P that is either a chain or an antichain such that no column-wise
homogeneous set for G is r.e. in X ⊕ C.

Proof. For simplicity, assume that X is recursive. The proof relativizes to non-recursive X . As P is

stable, assume for the sake of argument that P satisfies (∀i ∈ P)(∃s)[(∀ j > s)( j ∈ P → i ≤P j)∨(∀ j >
s)( j ∈ P → i |P j)]. The case with ≥P in place of ≤P is symmetric. Also assume that there is no

recursive, infinite antichain C ⊆ P, for otherwise we are done.

Let U = {i ∈ P : (∃s)(∀ j > s)( j ∈ P → i ≤P j)}. The fact that there is no recursive, infinite antichain

in P implies that U is infinite. Let F = (F,v) be the partial order consisting of all σ ∈ U<ω that are

increasing in both < and ≤P , where τv σ if τ� σ. Let H be sufficiently generic for F , and notice

that H (or rather, the range of H, which is computable from H as H is increasing in <) is an infinite

chain in P. Suppose for a contradiction that W H
e is column-wise homogeneous for G. Fix a σ � H

such that

σ � ∀x∀y(y ∈ (W H
e )
[x]→ {x , y} is homogeneous for G).

Define a partial computable function τ: ω2→ P<ω by letting τ(x , i) ∈ P<ω be the string with the

least code such that τ(x , i) ⊇ σ, that τ(x , i) is increasing in both< and≤P , and that |(Wτ(x ,i)
e )[x]|> i.

From here there are two cases:

Case 1: There are infinitely many pairs 〈x , i〉 such that both τ(x , i) is defined and there is a

y ∈ (Wτ(x ,i)
e )[x] with {x , y} not homogeneous for G. The last element of such a τ(x , i) is in P r U

because otherwise τ(x , i) ∈ F and τ(x , i) � σ, contradicting that σ � ∀x∀y(y ∈ (W H
e )
[x] →

{x , y} is homogeneous for G). Thus the set C consisting of the last elements of such strings τ(x , i) is

an infinite r.e. subset of PrU . As elements i of PrU have the property (∃s)(∀ j > s)( j ∈ P → i |P j),
we can thin C to an infinite r.e. antichain in P and hence to an infinite recursive antichain in P, a

contradiction.

Case 2: There are finitely many pairs 〈x , i〉 such that τ(x , i) is defined and there is a y ∈ (Wτ(x ,i)
e )[x]

with {x , y} not homogeneous for G. In this case, let x0 be such that if x > x0 and τ(x , i) is defined,

then (∀y ∈ (Wτ(x ,i)
e )[x])({x , y} is homogeneous for G). Notice that if |(W H

e )
[x]|> i, then there is a

τ with σ � τ� H such that |(Wτ
e )
[x]|> i. Hence if (W H

e )
[x] is infinite, then τ(x , i) is defined for all

i. Thus let

W =
�


x , max(Wτ(x ,i)
e )[x]

�

: x > x0 ∧ i ∈ω∧τ(x , i) is defined
	

.

Then W is an r.e. set that is column-wise homogeneous for G, a contradiction.

Thus there is no column-wise homogeneous set for G that is r.e. in H. Therefore (the range of) H
is our desired chain C . �

Lemma 6.8. Let X be a set, let G = (V, E) be a graph recursive in X such that no column-wise
homogeneous set for G is r.e. in X , and let ~R= (Ri)i∈ω be a sequence of sets uniformly recursive in X .
Then there is an infinite set C that is cohesive for R such that no column-wise homogeneous set for G is
r.e. in X ⊕ C.
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Proof. For simplicity, assume that X is recursive. The proof relativizes to non-recursive X .

We force with recursive Mathias conditions (D, L), where D ⊆ ω is finite, L ⊆ ω is infinite and

recursive, and every element of D is less than every element of L. The order is (D1, L1)v (D0, L0) if

D0 ⊆ D1, L1 ⊆ L0, and D1r D0 ⊆ L0. Let H be sufficiently generic. Then H is an infinite cohesive set

for ~R (as in, for example, Section 4 of [4]).
Suppose for a contradiction that W H

e is column-wise homogeneous for G. Let (D, L) be a condition

such that D ⊆ H ⊆ L and

(D, L) � ∀x∀y(y ∈ (W H
e )
[x]→ {x , y} is homogeneous for G).

Let

W =
�

〈x , y〉 : ∃E(E is finite∧ D ⊆ E ⊆ L ∧ 〈x , y〉 ∈W E
e )
	

.

W is an r.e. set, and ∀x∀y(y ∈W [x]→ {x , y} is homogeneous for G). To see the second statement,

suppose there is a 〈x , y〉 ∈W such that {x , y} is not homogeneous for G, and let E witness 〈x , y〉 ∈W .

Then (E, L r E) � (D, L), but (E, L r E) � (y ∈ (W H
e )
[x] ∧ {x , y} is not homogeneous for G), a

contradiction. Finally, W ⊇W H
e because if 〈x , y〉 ∈W H

e , then there is a finite E with D ⊆ E ⊆ L such

that 〈x , y〉 ∈W E
e , in which case 〈x , y〉 ∈W . Thus W is an r.e. set that is column-wise homogeneous

for G. This contradicts the lemma’s hypothesis. Therefore no column-wise homogeneous set for G is

r.e. in H, so H is the desired cohesive set. �

Theorem 6.9. RCA0+CAC 0 RCOLOR2

Proof. Iterate and dovetail applications of Lemma 6.7 and Lemma 6.8 to build a collection of sets

S such that (ω,S ) � RCA0+COH+SCAC, the graph G from Lemma 6.2 is in S , and no set

that is r.e. in any set in S is column-wise homogeneous for G. Then (ω,S ) � CAC by [16], and

(ω,S ) 2 RCOLOR2 by the same argument as in Proposition 6.3. �

We conclude by proving that RCA0+DNR 0 RWKL, thereby answering [9] Question 9. In fact, we

prove the stronger result RCA0+WWKL 0 RCOLOR2. This is accomplished by building a recursive

bipartite graph G such that the measure of the set of oracles that compute homogeneous sets for G is

0. It follows that there is a Martin-Löf random X that does not compute a homogenous set for G,

and a model of RCA0+WWKL+¬RCOLOR2 is then easily built from the columns of X .

Recall that, in the context of a bipartite graph G = (V, E), a set H ⊆ V is 2-homogeneous for G if

no two vertices in H are connected by an odd-length path in G. Here we simply say that such an H is

G-homogeneous (or just homogeneous). Likewise, if H ⊆ V contains two vertices that are connected

by an odd-length path in G, then H is G-inhomogeneous (or just inhomogeneous).

Theorem 6.10. There is a recursive bipartite graph G = (ω, E) such that the measure of the set of
oracles that enumerate homogeneous sets for G is 0.

Proof. By Lebesgue density considerations (see, for example, [29] Theorem 1.9.4), if a positive

measure of oracles enumerate infinite homogeneous sets for a graph G, then

(∀ε > 0)(∃e)[µ{X : W X
e is infinite and G-homogeneous}> 1− ε].

Thus it suffices to build G to satisfy the following requirement Re for each e ∈ω:

Re : µ{X : W X
e is infinite and G-homogeneous} ≤ 0.9.
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Let us first give a rough outline of the construction. Observe our construction must necessarily

produce a graph G that does not contain an infinite connected component. If G has an infinite

connected component, then that component contains a vertex v such that infinitely many vertices

are connected to v by an even-length path. These vertices that are at an even distance from v can be

effectively enumerated, and they form a homogeneous set. Thus our graph G must be a union of

countably many finite connected components. Each stage of the construction adds at most finitely

many edges, and thus at each stage of the construction all but finitely many vertices are isolated.

For each e, our plan is the following. We monitor the action of W X
e for all oracles X until we see a

sufficient measure of X ’s produce enough vertices (in a sense to made precise). Then, the idea is to

satisfy the requirement by adding edges to these vertices in a way that defeats about half (in the

measure-theoretic sense) of the oracles X . This is done by a two-step process. Requirement Re acts

by either type I or type II actions, the second type following the first type. In a type I action, Re locks

some finite number of vertices, thereby preventing lower priority requirements from adding edges

to these locked vertices. In a type II action, Re merges finitely many of G’s connected components

into one connected component by adding some new edges while maintaining that G is a bipartite

graph. This merging is made in a way which ensures that for a sufficient measure of oracles X , W X
e

is inhomogeneous for the resulting graph.

We now present the construction in full detail. At stage s, we say that

− Re requires type I attention if Re has no vertices locked and there are strings of length s witnessing

that

µ{X : (∃x ∈W X
e,s)(x is not connected to any v locked by Rk for any k < e)}> 0.9;

− Re requires type II attention if it currently has locked vertices due to a type I action, has never

acted according to type II, and there are strings of length s witnessing that

µ{X : (∃y ∈W X
e,s)(y is not connected to any v locked by Rk for any k ≤ e)}> 0.9;

− Re requires attention if Re requires type I attention or requires type II attention.

At stage 0, E = ;, and no requirement has locked any vertices.

At stage s + 1, let e < s be least such that Re requires attention (if there is no such e, then go

on to the next stage). If Re requires type I attention, let x0, x1, . . . , xn−1 be vertices that are not

connected to any v locked by Rk for any k < e and such that the strings of length s witness that

µ{X : (∃i < n)(x i ∈W X
e,s)}> 0.9. Re locks the vertices x0, x1, . . . , xn−1. All requirements Rk for k > e

unlock all of their vertices.

If Re requires type II attention, let y0, y1, . . . , ym−1 be vertices that are not connected to any v locked

by Rk for any k ≤ e and such that the strings of length s witness that µ{X : (∃ j < m)(y j ∈W X
e,s)}> 0.9.

Let x0, x1, . . . , xn−1 be the vertices that are locked by Re. First we merge the connected components

of the x i ’s into a single connected component and the connected components of the y j ’s into a single

connected component. To do this, let a, b, c, d > s be fresh vertices, and add the edges (a, b) and

(c, d). The graph is currently bipartite, so for each i < n add either the edge (x i , a) or (x i , b) so as to

maintain a bipartite graph. Similarly, merge the connected components of the y j ’s by adding either

the edge (y j , c) or (y j , d) for each j < m. The component of the x i ’s is disjoint from the component

of the y j ’s because the y j ’s were chosen not to be connected to the x i ’s. Thus both the graph G1

obtained by adding the edge (a, c) and the graph G2 obtained by adding the edge (a, d) are bipartite.

Each pair {x i , y j} is homogeneous for exactly one of G1 and G2, and the strings of length s witness
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that

µ{X : (∃i < n)(∃ j < m)(x i ∈W X
e,s ∧ y j ∈W X

e,s)}> 0.8

and therefore that

µ{X : W X
e,s is either G1-inhomogeneous or G2 inhomogeneous}> 0.8.

Thus the strings of length s either witness that

µ{X : W X
e,s is G1-inhomogeneous}> 0.4,

in which case we extend to G1 by adding the edge (a, c), or that

µ{X : W X
e,s is G2-inhomogeneous}> 0.4,

in which case we extend to G2 by adding the edge (a, d). This completes the construction.

To verify the construction, we first notice that G is bipartite because it is bipartite at every stage.

Furthermore, G is recursive because if an edge (u, v) is added at stage s, either u> s or v > s. Thus

to check whether an edge (u, v) is in G, it suffices to check whether the edge has been added by stage

max(u, v).
We now verify that every requirement is satisfied. Suppose that Re acts according to type II at

some stage s+ 1. Then Re is satisfied because we have ensured that

µ{X : W X
e is G-inhomogeneous}> 0.4

and thus that

µ{X : W X
e is G-homogeneous} ≤ 0.6.

We prove by induction that, for every e ∈ ω, Re is satisfied and there is a stage past which Re

never requires attention. Consider Re. If µ{X : W X
e is infinite} ≤ 0.9, then Re is satisfied and Re never

requires attention. So assume that µ{X : W X
e is infinite}> 0.9. By induction, let s0 be a stage such

that no Rk for k < e ever requires attention at a stage past s0. If Re has locked vertices at stage s0,

then these vertices remain locked at all later stages because no higher priority Rk ever unlocks them.

If Re does not have locked vertices at stage s0, then let s1 ≥ s0 be least such that the strings of length

s1 witness that Re requires type I attention. Such an s1 exists because µ{X : W X
e is infinite} > 0.9

and because the finite set of vertices that are connected to vertices locked by the Rk for k < e have

stabilized by stage s0. Re then requires and receives type I attention at stage s1, and the vertices that

Re locks at stage s1 are never later unlocked. So there is a stage s1 ≥ s0 by which Re has locked a

set of vertices that are never unlocked. If Re has acted according to type II by stage s1, then Re is

satisfied and never requires attention past stage s1. If Re has not acted according to type II by stage

s1, let s2 ≥ s1 be least such that the strings of length s2 witness that Re requires type II attention.

Such an s2 exists because µ{X : W X
e is infinite} > 0.9 and because, past stage s1, no requirement

except Re can act to connect a vertex to a vertex locked by an Rk for a k ≤ e. Re then requires and

receives type II attention at stage s2. Hence Re is satisfied, and Re never requires attention at a later

stage. This completes the proof. �

Theorem 6.11. RCA0+WWKL 0 RCOLOR2.

Proof. Let G be the recursive graph from Theorem 6.10. There are measure 1 many Martin-Löf

random sets, but only measure 0 many sets compute homogeneous sets for G. Thus let X be a

Martin-Löf random set that does not compute a homogeneous set for G, and let M be the structure
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whose first-order part is ω and whose second-order part is {Y : ∃k(Y ≤T
⊕

i<k X [i])}. It is well-

known that M � RCA0+WWKL, which one may see by appealing to van Lambalgen’s theorem

(see [6] Section 6.9) and the equivalence between WWKL and 1-RAN. Moreover, M 2 RCOLOR2

because M contains the bipartite graph G, but it does not contain any homogeneous set for G. �

It now follows that RCA0+DNR 0 RWKL. This has been proved independently by Flood and

Towsner [12] using the techniques introduced by Lerman, Solomon, and Towsner [23]. Recently,

Patey [30] enhanced the separation of DNR and RWKL by proving that for every recursive order h,

there is an ω-model of the statement “for every X there is a function that is DNR relative to X and

bounded by h” that is not a model of RCOLOR2. This answers a question in [12].

Corollary 6.12. RCA0+DNR 0 RWKL.

Proof. This follows from Theorem 6.11 because RCA0 ` WWKL → DNR and RCA0 ` RWKL →
RCOLOR2. �

7. OPEN QUESTIONS

In this section, we briefly recall the remaining open questions surrounding the Ramsey-type

combinatorial principles.

By Avigad, Dean, and Rute [2], RCA0+2-WWKL ` BΣ0
2, but by Slaman [36], RCA0+2-RAN 0

BΣ0
2. Thus we ask whether or not RCA0+2-RWWKL proves BΣ0

2.

Question 3.9. Does RCA0+2-RWWKL ` BΣ0
2?

We readily see that RCA0 ` ∀k(SRT2
k → RWKLk) and therefore that RCA0 ` ∀k SRT2

k →
∀k RWKLk. However, the use of ∀k SRT2

k may not be strictly necessary.

Question 3.28. Does RCA0 ` SRT2
2→∀k RWKLk?

We proved that the Ramsey-type graph k-coloring problems are equivalent to RWKL over RCA0

for all k ∈ω with k ≥ 3 (Corollary 5.14). However, we do not know if the k = 2 case has the same

strength as the k ≥ 3 cases.

Question 5.15. Does RCA0 ` RCOLOR2→ RWKL?

By Theorem 6.11, there is an ω-model of DNR (and even of WWKL) which is not a model of

RCOLOR2. Therefore DNR does not imply RCOLOR2 over RCA0. However, we were unable to

determine whether or not the converse holds. The combinatorics of RCOLOR2 prevents directly

adapting Flood’s proof that RCA0 ` RWKL→DNR to a proof that RCA0 ` RCOLOR2→DNR.

Question 5.16. Does RCA0 ` RCOLOR2→DNR?

Of course, a negative answer to Question 5.16 would also provide a negative answer to Ques-

tion 5.15.
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APPENDIX A. LOCAL REVERSE MATHEMATICS ZOO BEFORE AND AFTER

In the following diagrams, double arrows indicate strict implications, single arrows indicate

implications not known to be strict, and dotted arrows indicate non-implications. All implications

and non-implications are over RCA0.

RT2
2

2-RWKL

WKL SRT2
2

RRT2
2 RWKL SEM CAC

DNR

RCA0

FIGURE 1. Local zoo before.

RT2
2

2-RWKL

WKLSRT2
2

RRT2
2, 2-RWWKL RWKL, RCOLOR3

SEM CAC

DNR, RWWKL

RCA0

RCOLOR2

FIGURE 2. Local zoo after.
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