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Abstract. Informally, a mathematical statement is robust if its strength is left unchanged un-
der variations of the statement. In this paper, we investigate the lack of robustness of Ramsey’s
theorem and its consequence under the frameworks of reverse mathematics and computable
reducibility. To this end, we study the degrees of unsolvability of cohesive sets for different uni-
formly computable sequence of sets and identify different layers of unsolvability. This analysis
enables us to answer some questions of Wang about how typical sets help computing cohesive
sets.

We also study the impact of the number of colors in the computable reducibility between
coloring statements. In particular, we strengthen the proof by Dzhafarov that cohesiveness does
not strongly reduce to stable Ramsey’s theorem for pairs, revealing the combinatorial nature
of this non-reducibility and prove that whenever k is greater than `, stable Ramsey’s theorem
for n-tuples and k colors is not computably reducible to Ramsey’s theorem for n-tuples and `
colors. In this sense, Ramsey’s theorem is not robust with respect to his number of colors over
computable reducibility. Finally, we separate the thin set and free set theorem from Ramsey’s
theorem for pairs and identify an infinite decreasing hierarchy of thin set theorems in reverse
mathematics. This shows that in reverse mathematics, the strength of Ramsey’s theorem is
very sensitive to the number of colors in the output set. In particular, it enables us to answer
several related questions asked by Cholak, Giusto, Hirst and Jockusch.

1. Introduction

Ramsey’s theorem (RTnk) asserts that any k-coloring of [N]n admits an infinite monochromatic
set, where [N]n stands for the n-tuples over N. In this paper, we study the lack of robustness of
Ramsey’s theorem and its consequences under the frameworks of reverse mathematics and com-
putable reducibility. Informally, a mathematical statement is robust within a given framework
if its strength is invariant under slight variations of the statement. In reverse mathematics,
robustness can be understood as equiprovability of the various statements over the base theory
RCA0, while in computability, a Π1

2 statement is robust if its variations are computably equiv-
alent. We shall detail further reverse mathematics and computable reducibility in sections 1.1
and 1.2. Our investigations follow three axes.

Axis 1: We first study the degrees of unsolvability of cohesiveness. Given a sequence of sets

of integers R0, R1, . . . , an infinite set is ~R-cohesive if it is almost included in Ri or Ri for each i.
COH is a consequence of Ramsey’s theorem for pairs which finds many practical applications in
computability and reverse mathematics. Jockusch and Stephan [24] have studied the computa-
tional strength of cohesive sets for maximally difficult sequences of sets. We reveal that COH
contains hierarchies of complexity of its instances by establishing a one-to-one correspondence
between instances of COH and instances of König’s lemma (KL). This shows that the strength
of COH depends on the considered class of its instances, and is therefore not inner robust. This
correspondance enables us to reprove the existence of a computable sequence of sets with no
low cohesive set [24] and to answer several questions asked by Wang [46] about how randomness
and genericity help in solving computably unsolvable instances of COH.

Axis 2: A simple color amalgamation argument shows that RTnk and RTn` are provably equiv-
alent in reverse mathematics whenever k, ` ≥ 2. In this sense, Ramsey’s theorem is robust
with respect to numbers of colors in reverse mathematics. However, the standard proof that
RTnk → RTnk+1 involves two applications of RTnk . Mileti [31] first wondered whether those two
applications were really necessary. The question has been later formalized thanks to Weihrauch
and computable reducibility and investigated by Dorais, Dzhafarov, Hirst, Mileti and Shafer [9],
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Hirschfeldt and Jockusch [18], Brattka and Rakotoniaina [4], among others. We answer pos-
itively by proving that for every n ≥ 2, RTnk is not computably reducible to RTn` whenever
k > ` ≥ 2. Therefore, Ramsey’s theorem is not robust with respect to the number of colors
under computable reducibility.

Axis 3: Last, we investigate the reverse mathematics of a weakening of Ramsey’s theorem in
which more colors are allowed in the resulting set. The thin set theorem (TSnk) asserts that for
any k-coloring of [N]n, there is an infinite set H such that [H]n avoids at least one color. We
show that the thin set theorem is not robust in reverse mathematics by proving that for every
n,m, ` ≥ 2, TSnk does not imply TSm` for sufficiently large k’s. This is the first example of an
infinite decreasing hiearchy in reverse mathematics. This enables us to answer several questions
from Cholak, Giusto, Hirst and Jockusch [5], Montálban [33] and Hirschfeldt [17] about the
strength of the thin set theorem and its strengthening, the free set theorem, with respect to
Ramsey’s theorem for pairs.

1.1. Reverse mathematics

Reverse mathematics is a vast mathematical program whose goal is to classify ordinary theo-
rems in terms of their provability strength. It uses the framework of subsystems of second order
arithmetic, which is sufficiently rich to express many theorems in a natural way. The base sys-
tem, RCA0 standing for Recursive Comprehension Axiom, contains the basic first order Peano
arithmetic together with the ∆0

1 comprehension scheme and the Σ0
1 induction scheme. Thanks

to the equivalence between ∆0
1-definable sets and computable sets, RCA0 can be considered as

capturing “computable mathematics”. The proof-theoretic analysis of the theorems in reverse
mathematics is therefore closely related to their computational analysis. See Simpson [43] for
a formal introduction to reverse mathematics.

Early reverse mathematics have led to two main empirical observations: First, many ordinary
(i.e. non set-theoretic) theorems require very weak set existence axioms. Second, most of those
theorems are in fact equivalent to one of five main subsystems, known as the “Big Five”.
However, among the theorems studied in reverse mathematics, a notable class of theorems fails
to support the second observation, namely, Ramsey-type theorems. The underlying idea of
Ramsey’s theory is that whenever a collection of objects is sufficiently large, we can always find
an arbitrarily large sub-collection of objects satisfying some given structural property. Perhaps
the most well-known statement is Ramsey’s theorem, stating that every coloring of tuples of
integers with a finite number of colors admits an infinite monochromatic subset. The various
consequences of Ramsey’s theorem usually fail to coincide with the main five subsystems, and
slight variations of their statements lead to different subsystems. The study of Ramsey-type
statements has been a very active research subject in reverse mathematics over the past few
years [2, 6, 14, 19]. See Hirschfeldt [17] for a good introduction to recent reverse mathematics.

1.2. Reducibilities

Many theorems in reverse mathematics are Π1
2 statements, i.e., of the form (∀X)(∃Y )Φ(X,Y )

where Φ is an arithmetic formula. They can be considered as problems which usually come with
a natural class of instances. Given an instance X, a set Y such that Φ(X,Y ) holds is called
a solution to X. For example, König’s lemma states that every infinite, finitely branching tree
has an infinite path. In this statement, an instance is a infinite, finitely branching tree T , and
a solution to T is an infinite path through T .

Thanks to the computational nature of the axioms of RCA0, given two Π1
2 statements P

and Q, a proof of implication Q→ P consists in taking an arbitrary P-instance I and computing
a solution to I in a computational process involving several applications of the Q principle. If
the proof relativizes and can be formalized over RCA0 (the main concern being the restriction
to Σ0

1-induction), we obtain a proof of RCA0 ` Q→ P. It is often the case that the proof of the
implication Q→ P involves only one application of Q given an instance of P. Such a reduction
is called a computable reduction.

Definition 1.1 (Computable reducibility) Fix two Π1
2 statements P and Q.
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1. P is computably reducible to Q (written P ≤c Q) if every P-instance I computes a Q-
instance J such that for every solution X to J , X ⊕ I computes a solution to I.

2. P is strongly computably reducible to a Q (written P ≤sc Q) if every P-instance I com-
putes a Q-instance J such that every solution to J computes a solution to I.

Of course, proving that a statement P is not computably reducible to another statement Q is
not sufficient for separating the statements over RCA0. For example, we shall see that Ramsey’s
theorem for pairs with k + 1 colors is not computably reducible to Ramsey’s theorem for pairs
with k colors, whereas the statements are known to be logically equivalent over RCA0. However,
proving that P 6≤c Q can be seen as a preliminary step towards the separation of the principles.
Lerman et al. [29] have developped a framework for iterating a one-step non-reducibility into a
separation over RCA0.

Other reducibility notions have been introduced to better understand the computational
content of theorems from the point of view of reverse mathematics. Dorais et al. [9] studied the
uniformity of the computable reductions P ≤c Q by requiring the construction of a Q-instance J
given a P-instance I and the construction of a solution to I given a solution to J to be done with
two fixed Turing functionals. They showed that this uniform reducibility is the restriction of the
Weihrauch reduction to the second-order setting. Hirschfeldt and Jockusch [18] introduced a
game-theoretic approach and defined a generalized uniform reducibility extending the notion of
uniform reducibility to several applications of the statement Q. In this paper, we shall restrict
ourselves to computable reducibility and provability over RCA0.

1.3. Degrees of unsolvability of cohesiveness

Cohesiveness plays a central role in reverse mathematics. It appears naturally in the standard
proof of Ramsey’s theorem, as a preliminary step to reduce an instance of Ramsey’s theorem
over (n + 1)-tuples into a non-effective instance over n-tuples. An important part of current
research about Ramsey-type principles in reverse mathematics consists in trying to understand
whether cohesiveness is a consequence of stable Ramsey’s theorem for pairs, or more generally
whether it is a combinatorial consequence of the infinite pigeonhole principle [6, 12, 11, 46].
Chong et al. [8] recently showed using non-standard models that cohesiveness is not a proof-
theoretic consequence of the pigeonhole principle. However it is not known whether or not
cohesiveness is computably reducible to stable Ramsey’s theorem for pairs.

Definition 1.2 (Cohesiveness) An infinite set C is ~R-cohesive for a sequence of sets R0, R1, . . .

if for each i ∈ ω, C ⊆∗ Ri or C ⊆∗ Ri. A set C is p-cohesive if it is ~R-cohesive where ~R is an
enumeration of all primitive recursive sets. COH is the statement “Every uniform sequence of

sets ~R has an ~R-cohesive set.”

Jockusch and Stephan [24] studied the degrees of unsolvability of cohesiveness and proved
that COH admits a universal instance whose solutions are the p-cohesive sets. They character-
ized their degrees as those whose jump is PA relative to ∅′.

Cohesiveness is a Π1
2 statement whose instances are sequences of sets ~R and whose solutions

are ~R-cohesive sets. It is natural to wonder about the degrees of unsolvability of the ~R-cohesive

sets according to the sequence of sets ~R. Mingzhong Cai asked whether whenever a uniformly

computable sequence of sets R0, R1, . . . has no computable ~R-cohesive set, there exists a non-
computable set which does not compute one. In the opposite direction, one may wonder whether
every unsolvable instance of COH is maximally difficult. A natural first approach in the analysis
of the strength of a principle consists in looking in which way typical sets can help in computing
a solution to an unsolvable instance. The notion of typical set is usually understood in two
different ways: using the genericity approach and the randomness approach. Wang [46] answered
Cai’s question by investigating the solvability of cohesiveness by typical sets.

In this paper, we refine Wang’s analysis by establishing a pointwise correspondence between

sets cohesive for a sequence and sets whose jump computes a member of a Π0,∅′
1 class. Then,

using the known interrelations between typical sets and Π0
1 classes, we give precise genericity
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and randomness bounds above which no typical set helps computing a cohesive set. We identify
different layers of unsolvability and spot a class of instances sharing many properties with the
universal instance. Emulating work in [34] on the pigeonhole principle and weak König’s lemma
(WKL0), we show that some unsolvable instances of COH are combinatorial consequences of the
pigeonhole principle.

1.4. Ramsey’s theorem and computable reducibility

The strength of Ramsey-type statements is notoriously hard to tackle in the setting of reverse
mathematics. The separation of Ramsey’s theorem for pairs (RT2

2) from the arithmetical com-
prehension axiom (ACA0) was a long-standing open problem, until Seetapun and Slaman solved
it [40] with his notion of cone avoidance. The question of the relation between RT2

2 and weak
König’s lemma (WKL0) remained open for many years before Cholak, Jockusch and Slaman [6]
proved that WKL0 does not imply RT2

2 over RCA0. More than fifteen years after Seetapun,
Liu [30] solved the remaining direction by proving that RT2

2 does not imply WKL0 over RCA0.

Definition 1.3 (Ramsey’s theorem) A subset H of ω is homogeneous for a coloring f : [ω]n → k
(or f -homogeneous) if each n-tuple over H is given the same color by f . A coloring f : [ω]n+1 →
k is stable if for every n-tuple σ ∈ [ω]n, lims f(σ, s) exists. RTnk is the statement “Every coloring
f : [ω]n → k has an infinite f -homogeneous set”. SRTnk is the restriction of RTnk to stable
colorings.

Simpson [43, Theorem III.7.6] proved that whenever n ≥ 3 and k ≥ 2, RCA0 ` RTnk ↔ ACA0.
Ramsey’s theorem for pairs is probably the most famous example of statement escaping the
Big Five. Seetapun [40] proved that RT2

2 is strictly weaker than ACA0 over RCA0. Because of
the complexity of the related separations, RT2

2 received a particular attention from the reverse
mathematics community. Mileti [31] and Jockusch and Lempp [unpublished] proved that RT2

2

is equivalent to SRT2
2 + COH over RCA0. Recently, Chong et al. [8] proved that SRT2

2 is strictly
weaker than RT2

2 over RCA0. However they used non-standard models to separate the statements
and the question whether SRT2

2 and RT2
2 coincide over ω-models remains open. Stable Ramsey’s

theorem for pairs can be characterized by a purely computability-theoretic statement.

Definition 1.4 For every n, k ≥ 1, Dn
k is the statement “Every ∆0

n k-partition of the integers
has an infinite subset of one of its parts”. Dn

<∞ is the statement (∀k)Dn
k .

Cholak et al. [6] proved that D2
k and SRT2

k are computably equivalent and that the proof is for-
malizable over RCA0 + BΣ0

2. Later, Chong et al. [7] proved that D2
2 implies BΣ0

2 over RCA0, show-
ing therefore that RCA0 ` D2

k ↔ SRT2
` for every k, ` ≥ 2. Dzhafarov [12] proved that COH 6≤sc

D2
<∞ by constructing a sequence of sets R0, R1, . . . such that for every k ≥ 2, every instance

of RT1
k hyperarithmetic in ~R has a solution which does not compute an ~R-cohesive set. In

section 3.1, we strengthen this result by making ~R uniformly ∆0
2 and removing the effectiveness

restriction on the instance of RT1
k. The proof reveals the combinatorial nature of the rela-

tions between cohesiveness and RT1
k and answers a question of Antonio Montálban. Recently,

Dzhafarov [10] proved that COH 6≤sc SRT2
2.

Another closely related subject of interest is the impact of the number of colors in the strength
of Ramsey’s theorem. For every n ≥ 1 and k, ` ≥ 2, RCA0 ` RTnk ↔ RTn` by a simple color
blindness argument. Whenever k > ` ≥ 2, the reduction of RTnk to RTn` involves more than one
application of RTn` and therefore is not a computable reduction. Hirschfeldt and Jockusch [18]
noticed that the proof of Dzhafarov [12] can be modified to obtain RT1

k 6≤sc RT1
` . Dorais et

al. [9] asked in which case RTnk ≤c RTn` . In section 3.2, we answer by proving that SRTnk 6≤c RTn`
whenever k > ` ≥ 2 and n ≥ 2.

1.5. The weakness of free set and thin set theorems

Simpson [43, Theorem III.7.6] proved that the hiearchy of Ramsey’s theorem collapses at level
three in reverse mathematics. One may wonder about some natural weakenings of Ramsey’s
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theorem over arbitrary tuples which remain strictly weaker than ACA0. Given a coloring f :
[ω]n → k, instead of stating the existence of an infinite f -homogeneous set H, we can simply
require that f avoids at least one color over the set H. This is the notion of f -thin set.

Definition 1.5 (Thin set theorem) Given a coloring f : [ω]n → k (resp. f : [ω]n → ω), an
infinite set H is thin for f if |f([H]n)| ≤ k− 1 (resp. f([H]n) 6= ω). For every n ≥ 1 and k ≥ 2,
TSnk is the statement “Every coloring f : [ω]n → k has a thin set” and TSn is the statement
“Every coloring f : [ω]n → ω has a thin set”. STSnk is the restriction of TSnk to stable colorings.
TS is the statement (∀n) TSn.

The reverse mathematical analysis of the thin set theorem started with Friedman [14, 15]. It
has been studied by Cholak et al. [5], Wang [48] and the author [34, 35] among others. Dorais
et al. [9] proved that TS1

k is not uniformly reducible to TS1
` whenever ` > k. Hirschfeldt and

Jockusch [18] extended the result to colorings over arbitrary tuples. We generalize the previous
theorems by proving that TSnk 6≤c TSn` whenever ` > k ≥ 2 and n ≥ 2. In the case of colorings
of singletons, we prove that TS1

k 6≤sc TS1
` whenever ` > k ≥ 2.

The free set theorem is a strengthening of the thin set theorem in which every member of a
free set is a witness of thinness of the same set. Indeed, if H is an infinite f -free set for some
function f , for every a ∈ H, H r {a} is f -thin with witness color a. See Theorem 3.2 in [5] for
a formal version of this claim.

Definition 1.6 (Free set theorem) Given a coloring f : [ω]n → ω, an infinite set H is free for f
if for every σ ∈ [H]n, f(σ) ∈ H → f(σ) ∈ σ. For every n ≥ 1, FSn is the statement “Every
coloring f : [ω]n → ω has a free set”. SFSn is the restriction of FSn to stable colorings. FS is
the statement (∀n) FSn.

Cholak et al. [5] proved that RCA0 ` RTn2 → FSn → TSn for every n ≥ 2. Wang [48] proved
that FS (hence TS) does not imply ACA0 over ω-models. The author [34] proved that FS does
not imply WKL0 (and in fact weak weak König’s lemma) over RCA0.

Cholak et al. [5] and Montalban [33] asked whether any of TS2, FS2, FS2 + COH and FS2 + WKL0

imply RT2
2 over RCA0. Hirschfeldt [17] asked whether FS2 + WKL0 implies any of SRT2

2, the as-
cending descending sequence (ADS) and the chain antichain principle (CAC). We answer all
these questions negatively by proving that for every k ≥ 2, the conjunction of COH, WKL0, the
Erdős-Moser theorem (EM), TS2

k+1, FS and TS implies neither STS2
k nor the stable ascending

descending sequence (SADS) over RCA0.

1.6. Organization of the paper

In section 2, we establish an instance-wise correspondence between cohesive sets and degrees

whose jump computes a member of a Π0,∅′
1 class. We take advantage of this correspondence to

study how typical sets are useful to compute unsolvable instances of cohesiveness, and extend
this analysis to Ramsey-type statements. In section 3.1, we reprove Dzhafarov’s result that
cohesiveness is not strongly computably reducible to D2

<∞ with a more combinatorial proof using
hyperimmunity. In section 3.2, we refine the forcing of the previous section to separate Ramsey’s
theorem over computable reducibility according to the number of colors. In section 4.1, we
separate variants of the thin set theorem for singletons over strong computable reducibility
according to the number of colors using preservation of non-c.e. definitions. Finally, we separate
the thin set theorem for pairs from Ramsey’s theorem for pairs over RCA0 in section 4.2, and
extend this separation to the full thin set theorem in section 4.3 and the full free set theorem
in section 4.4.

1.7. Notation

String, sequence. Fix an integer k ∈ ω. A string (over k) is an ordered tuple of integers
a0, . . . , an−1 (such that ai < k for every i < n). The empty string is written ε. A sequence (over
k) is an infinite listing of integers a0, a1, . . . (such that ai < k for every i ∈ ω). Given s ∈ ω,
ks is the set of strings of length s over k and k<s is the set of strings of length < s over k.
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Similarly, k<ω is the set of finite strings over k and kω is the set of sequences (i.e. infinite
strings) over k. If σ is a string, then |σ| denotes its length. Given two strings σ, τ ∈ k<ω, σ
is a prefix of τ (written σ � τ) if there exists a string ρ ∈ k<ω such that σρ = τ . Given a
sequence X, we write σ ≺ X if σ = X�n for some n ∈ ω, where X�n denotes the restriction
of X to its first n elements. A binary string (resp. real) is a string (resp. sequence) over 2.
We may identify a real with a set of integers by considering that the real is its characteristic
function. Accordingly, we identify a string σ ∈ 2<ω with the set set(σ) = {n < |σ| : σ(n) = 1}.
Therefore n ∈ σ means n ∈ set(σ) and given a set A ⊆ ω, we denote by σ∩A the string τ ∈ 2|σ|

such that τ(n) = 1 if and only if σ(n) = 1 and n ∈ A. We also write σ ⊆ A for set(σ) ⊆ A.
Given a real X ∈ 2ω and a string σ, we denote by X/σ the real obtained by replacing the |σ|
first bits of X by σ.

Tree, path. A tree T ⊆ ω<ω is a set downward closed under the prefix relation. The tree T is
finitely branching if every node σ ∈ T has finitely many immediate successors. A binary tree is
a tree T ⊆ 2<ω. A set P ⊆ ω is a path through T if for every σ ≺ P , σ ∈ T . A string σ ∈ k<ω
is a stem of a tree T if every τ ∈ T is comparable with σ. Given a tree T and a string σ ∈ T ,
we denote by T [σ] the subtree {τ ∈ T : τ � σ ∨ τ � σ}. We write P � X to say that P is of
PA degree relative to X.

Classes. Given a finite string σ ∈ ω<ω, [σ] is the set of sequences extending σ. Whenever
it is clear from the context that we are working with binary strings, [σ] denotes the set of

reals extending σ. A Π0,X
1 class is the collection of paths through an X-computable tree. The

complement of a Π0,X
1 class is a Σ0,X

1 class. A k-enum of a class C ⊆ 2ω is a uniform sequence
of finite sets of strings D0, D1, . . . such that Ds is a set of at most k binary strings of length s
such that one of those is a prefix of a member of C.

Sets, partitions. Given two sets A and B, we denote by A < B the formula (∀x ∈ A)(∀y ∈
B)[x < y] and by A ⊆∗ B the formula (∃b)(∀x ∈ A)[x 6∈ B → x < b], meaning that A is
contained in B except for at most finitely many elements. Given a set X and some integer k,
a k-cover of X is a k-uple A0, . . . , Ak−1 such that A0 ∪ · · · ∪ Ak−1 = X. We may simply
say k-cover when the set X is unambiguous. A k-partition is a k-cover whose sets are pairwise
disjoint.

2. The degrees of unsolvability of cohesiveness

In this section, we study the degree of unsolvability of ~R-cohesive sets according the degree of

unsolvability of the sequence ~R itself. Then we take advantage of this analysis to answer various
questions about which theorems in reverse mathematics can solve a computably unsolvable
instance of cohesiveness.

2.1. Cohesiveness and Π0,∅′
1 classes

Jockusch and Stephan characterized the p-cohesive degrees as those whose jump is of degree
PA relative to ∅′. We clarify the situation by establishing an instance-wise correspondence
between the degrees of the sets cohesive for a sequence, and the degrees whose jump computes

a member of a non-empty Π0,∅′
1 class.

Definition 2.1 Let R0, R1, . . . be a uniformly computable sequence of sets. For every σ ∈ 2<ω,
we define Rσ inductively as follows. First, Rε = ω and then, if Rσ has already been defined
for some string σ of length s, let Rσ0 = Rσ ∩ Rs and Rσ1 = Rσ ∩ Rs. For example, R0110 =

R0∩R1∩R2∩R3. Let C(~R) be the Π0,∅′
1 class of binary sequences P such that for every σ ≺ P ,

the set Rσ is infinite.

Our first lemma shows that the degrees of ~R-cohesive sets can be characterized by their jumps.
This lemma reveals in particular that low sets fail to solve unsolvable instances of cohesiveness.

Lemma 2.2 For every uniformly computable sequence of sets R0, R1, . . . , a set computes an ~R-

cohesive set if and only if its jump computes a member of C(~R).
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Proof. Fix an ~R-cohesive set C. Let P =
⋃
{σ ∈ 2<ω : C ⊆∗ Rσ}. The sequence P is infinite

and C ′-computable as there exists exactly one string σ of each length such that C ⊆∗ Rσ. In

particular, for every σ ≺ P , Rσ is infinite, so P is a member of C(~R).

Conversely, let X be a set whose jump computes a member P of C(~R). By Schoenfield’s limit
lemma [41], there exists an X-computable function f(·, ·) such that for each x, lims f(x, s) =

P (x). Define an ~R-cohesive set C =
⋃
sCs X-computably by stages C0 = ∅ ( C1 ( . . . as

follows. At stage s, search for some string σ of length s and some integer n ∈ Rσ greater
than s such that f(x, n) = σ(x) for each x < |σ|. We claim that such σ and n must exist,
as there exists a threshold n0 such that for every n > n0, f(x, n) = P (x) for each x < s.
Let σ ≺ P be of length s. By definition of P , Rσ is infinite, so there must exist some n ∈ Rσ
which is greater than n0 and s. Set Cs+1 = Cs ∪ {n} and go to the next stage. We now check

that C =
⋃
sCs is ~R-cohesive. For every x ∈ ω, there exists a threshold n1 such that for

every n > n1, f(x, n) = P (x). By construction, for every element n ∈ C r Cn1 , n ∈ Rσ for
some string σ such that σ(x) = P (x). Therefore C ⊆∗ Rx or C ⊆∗ Rx. �

Jockusch and Stephan [24] showed the existence of a uniformly computable sequence of

sets R0, R1, . . . having no low ~R-cohesive set. We prove that it suffices to consider any se-

quence ~R with no computable ~R-cohesive set to obtain this property.

Corollary 2.3 A uniformly computable sequence of sets R0, R1, . . . has a low ~R-cohesive set if

and only if it has a computable ~R-cohesive set.

Proof. Let X be a low ~R-cohesive set. By Lemma 2.2, the jump of X (hence ∅′) computes a

member of C(~R). By a second application of Lemma 2.2, the existence of a computable ~R-
cohesive set follows. �

One may naturally wonder about the shape of the Π0,∅′
1 classes C(~R) for uniformly computable

sequences R0, R1, . . . We show through the following lemma that C(~R) can be any Π0,∅′
1 class.

Together with Lemma 2.2, it establishes an instance-wise correspondence between cohesive sets

and Π0,∅′
1 classes.

Lemma 2.4 For every non-empty Π0,∅′
1 class D ⊆ 2ω, there exists a uniformly computable

sequence of sets R0, R1, . . . such that C(~R) = D.

Proof. By Schoenfield’s limit lemma [41], there exists a computable function g : 2<ω × ω → 2
whose limit exists and such that D is the collection of X such that for every σ ≺ X, lims g(σ, s) =
1. We can furthermore assume that whenever g(σ, s) = 1, then for every τ ≺ σ, g(τ, s) = 1, and
that for every s ∈ ω, the set Us = {σ ∈ 2s : g(σ, s) = 1} is non-empty. We define a uniformly

computable sequence of sets R0, R1, . . . such that C(~R) = D by stages as follows.
As stage 0, Ri = ∅ for every i ∈ ω. Suppose that we have already decided Ri � ns for

every i ∈ ω and some ns ∈ ω. At stage s+1, we will add elements to R0, . . . , Rs so that for each
string σ of length s + 1, Rσ � [ns, ns + p] 6= ∅ if and only if σ ∈ Us+1. To do so, consider the
set Us+1 = {σ0, . . . , σp} defined above and add {ns + i : σi(j) = 1, i ≤ p} to Rj for each j ≤ s.
Set ns+1 = ns + p+ 1 and go to the next stage.

We claim that Rσ is infinite if and only if σ ≺ X for some X ∈ D. Assume that Rσ is
infinite. By construction, there are infinitely many s such that Rσ � [ns, ns + p] 6= ∅. So there
are infinitely many stages s such that τ ∈ Us (g(τ, s) = 1) for some τ � σ. By assumption
on g, there are infinitely many τ � σ such that g(τ, s) = 1 for infinitely many s. Therefore, by
compactness, there exists some X ∈ D such that σ ≺ X. Conversely, if σ ≺ X for some X ∈ D,
then there are infinitely many stages s such that τ ∈ Us for some τ � σ. At each of these stages,
Rσ � [ns, ns + p] ⊇ Rτ � [ns, ns + p] 6= ∅. Therefore Rσ is infinite. �

Jockusch et al. proved in [22] that for every Π0,∅′
1 class C ⊆ 2ω, there exists a Π0

1 class D ⊆ ωω
such that deg(C) = deg(D), where deg(C) is the class of degrees of members of C. For the reader



8 LUDOVIC PATEY

who is familiar with Weihrauch degrees, what we actually prove here is that König’s lemma
is the jump of the cohesiveness principle under Weihrauch reducibility. Bienvenu [personal
communication] suggested the use of Simpson’s Embedding Lemma [42, Lemma 3.3] to prove
the reducibility of some unsolvable instances of cohesiveness to various statements.

Lemma 2.5 (Bienvenu) For every Σ0,∅′
3 class E ⊆ ωω with no ∅′-computable member, there

exists a uniformly computable sequence of sets R0, R1, . . . with no computable ~R-cohesive set

but such that every member of E computes an ~R-cohesive set.

Proof. By a relativization of Lemma 3.3 in [42], there exists a Π0,∅′
1 class D whose degrees

(relative to ∅′) are exactly deg(E) ∪ PA[∅′]. Therefore D has no ∅′-computable member and
every member of E ∅′-computes a member of D. By Lemma 2.4, there exists a uniformly

computable sequence of sets R0, R1, . . . such that C(~R) = D. By Lemma 2.2, there exists no

computable ~R-cohesive set, but every member of D (and in particular every member of E)

computes an ~R-cohesive set. �

2.2. How genericity helps solving cohesiveness

We now take advantage of the analysis of the previous section to deduce optimal bounds on
how much genericity is needed to avoid solving an unsolvable instance of COH.

Definition 2.6 (Genericity) Fix a set of strings S ⊆ 2<ω. The set S is dense if every string
has an extension in S. A real G meets S if it has some initial segment in S. A real G avoids S
if it has an initial segment with no extension in S. Given an integer n ∈ ω, a real is n-generic
if it meets or avoids each Σ0

n set of strings. A real is weakly n-generic if it meets each Σ0
n dense

set of strings.

By Friedberg’s jump inversion theorem [13], there exists a 1-generic which is of high de-
gree, and therefore computes a cohesive set for every uniformly computable sequence of sets.
Wang [46] proved that whenever a uniformly computable sequence of sets R0, R1, . . . has no

computable ~R-cohesive sets, no weakly 3-generic computes an ~R-cohesive set. He asked whether

there exists a 2-generic computing an ~R-cohesive set. We prove the optimality of Wang’s bound
by showing the existence of an unsolvable instance of COH which is solvable by a 2-generic real.

Lemma 2.7 There exists a 2-generic real G together with a uniformly computable sequence of

sets R0, R1, . . . with no computable ~R-cohesive set such that G computes an ~R-cohesive set.

Proof. Fix any ∆0
3 2-generic real G and consider the singleton E = {G}. As no 2-generic is ∆0

2,
the class E has no ∅′-computable member. By Lemma 2.5, there exists a uniformly computable

sequence of sets R0, R1, . . . with no computable ~R-cohesive set, such that G computes an ~R-
cohesive set. �

However, if we slightly increase the unsolvability of the sequence of sets, no 2-generic real
helps computing a set cohesive for the sequence. Recall that a 1-enum of a class C ⊆ 2<ω is a
sequence of strings σ0, σ1, . . . such that |σs| = s and [σs] ∩ C 6= ∅ for each s ∈ ω. The notion
has been extensively studied in [34].

Theorem 2.8 For any uniformly computable sequence of sets R0, R1, . . . such that C(~R) has

no ∅′-computable 1-enum, no 2-generic real computes an ~R-cohesive set.

Proof. By Jockusch [21], every n-generic set is GLn and in particular, every 2-generic is GL1.

Therefore, by Lemma 2.2, a 2-generic set G computes an ~R-cohesive set if and only if there exists

some functional Γ such that ΓG⊕∅
′

is a member of C(~R). Fix a functional Γ such that ΓG⊕∅
′

is

total for some 2-generic set G, and define the following Σ0,∅′
1 set:

Wbad = {σ ∈ 2<ω : [Γσ⊕∅
′
] ∩ C(~R) = ∅}
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We claim G meets Wbad. Suppose for contradiction that G avoids Wbad. By 2-genericity of G,
there exists a string σ ≺ G with no extension in Wbad. We show that there exists a ∅′-effective

procedure which computes a 1-enum of C(~R), contradicting our hypothesis.

On input n, ∅′-effectively search for a τn � σ such that Γτn⊕∅
′
� n is defined. Such τn exists

as σ ≺ G and ΓG⊕∅
′

is total. As τn 6∈ Wbad, [Γτn⊕∅
′
] ∩ C(~R) 6= ∅ and therefore (τn : n ∈ ω) is a

∅′-computable 1-enum of C(~R). �

Note that if we assume that G is weakly 3-generic and therefore avoids the set Wbad∪Wpartial

where

Wpartial = {σ ∈ 2<ω : (∀τ � σ)|Γτ⊕∅′ | < |σ|}

then we can furthermore impose that τn+1 � τn and ∅′-compute a member of C(~R). This suffices
to reprove that no weakly 3-generic helps solving an unsolvable intance of COH.

We now prove a theorem inspired by the proof of domination closure of p-cohesive degrees
by Jockusch and Stephan [24].

Theorem 2.9 For any uniformly computable sequence of sets R0, R1, . . . such that C(~R) has

no ∅′-computable 1-enum, every ~R-cohesive set is of hyperimmune degree.

Proof. Suppose for the contradiction that there exists some ~R-cohesive set C = {a0 < a1 < . . . }
and a computable set B = {b0 < b1 < . . . } such that (∀i)(ai < bi). For each n ∈ ω, let
Bn = {n, n + 1, . . . , bn}. Note that an ∈ Bn for every n, and therefore for every length s,
there exists a string σs of length s such that (∃b)(∀n > b)Rσs ∩ Bn 6= ∅. Let σ0, σ1, . . . be

the ∅′-computable sequence of such strings. We claim that this sequence is a 1-enum of C(~R),
therefore contradicting our hypothesis. Indeed, as (∃b)(∀n > b)Rσs ∩ Bn 6= ∅, the set Rσs is

infinite and therefore C(~R) ∩ [σs] 6= ∅. �

Of course, there exists some uniformly computable sequence of sets R0, R1, . . . with no com-

putable ~R-cohesive set but with an ~R-cohesive set of hyperimmune-free degree. Simply apply
Lemma 2.5 with E = {X} where X is a ∆0

3 set of hyperimmune-free degree. Such a set is known
to exists by Miller and Martin [32]. The class E has no ∅′-computable member as every ∆0

2 set
is hyperimmune.

2.3. How randomness helps solving cohesiveness

We now explore the interrelations between cohesiveness and the measure-theoretic paradigm
of typicality, namely, algorithmic randomness.

Definition 2.10 (Randomness) A Σ0
n (Martin-Löf) test is a sequence U0, U1, . . . of uniformly Σ0

n

classes such that µ(Ui) ≤ 2−i for every i ∈ ω. A real Z is n-random if for every Σ0
n test

U0, U1, . . . , Z 6∈
⋂
i Ui. A real Z is weakly n-random if it is in every Σ0

n class of measure 1.

We shall say Martin-Löf random for 1-random. Wang [46] proved that whenever a uni-

formly computable sequence of sets R0, R1, . . . has no computable ~R-cohesive sets, there exists

a Martin-Löf random real computing no ~R-cohesive set. Thanks to Corollary 2.3, we know
that it suffices to take any low Martin-Löf random real to obtain this property. Wang asked

whether we can always ensure the existence of a 3-random real computing an ~R-cohesive set
whenever the instance is unsolvable. The next two lemmas answer this question by proving that

it depends on the considered sequence of sets ~R.

Lemma 2.11 There exists a uniformly computable sequence of sets R0, R1, . . . with no com-

putable ~R-cohesive set, but such that every 2-random real computes an ~R-cohesive set.

Proof. Let D be a Π0,∅′
1 class of positive measure with no ∅′-computable member. By Lemma 2.4,

there exists a uniformly computable sequence of sets R0, R1, . . . such that C(~R) = D. By
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Kautz [25, 26], every 2-random real is, up to prefix, a member of C(~R). Therefore, by Lemma 2.2,

every 2-random real computes an ~R-cohesive set. �

Lemma 2.12 For every n ≥ 3, no (weakly) n-random real computes a p-cohesive set.

Proof. Jockusch and Stephan [24] proved that degrees of p-cohesive sets are those whose jump
is PA relative to ∅′. By a relativization of Stephan [44], every 2-random real whose jump is of
PA degree relative to ∅′ is high. By Kautz [25], no weakly 3-random real is high. For every
n ≥ 3, every (weakly) n-random real is a weakly 3-random real. �

Avigad et al. [1] introduced the principle n-WWKL stating that every ∆0
n tree of positive

measure has a path. In particular, 1-WWKL is WWKL0. Thanks to Lemma 2.12, for every n ∈ ω,
one can apply the usual constructions to build an ω-model of n-WWKL which does not contain
any p-cohesive set and therefore is not a model of COH. Pick any n-random Z which does
not compute any p-cohesive set and consider it as an infinite join Z0 ⊕ Z1 ⊕ . . . . By Van
Lambalgen’s theorem [45], the ω-structure whose second-order part is the Turing ideal {X :
(∃i)X ≤T Z0⊕ · · · ⊕Zi} is a model of n-WWKL. Moreover it does not contain a p-cohesive set.

2.4. How Ramsey-type theorems help solving cohesiveness

In his paper separating Ramsey’s theorem for pairs from weak König’s lemma, Liu [30] proved
that every (non-necessarily effective) set A has an infinite subset of either it or its complement
which is not of PA degree. The absence of effectiveness conditions on A shows the combinatorial
nature of the weakness of the infinite pigeonhole principle. On the other hand, the author [34]
showed that this weakness depends on the choice of the instance of WKL0, by constructing a
computable tree with no computable path together with a ∆0

2 set A such that every infinite
subset of either A or A computes a path trough the tree. We answer a similar question for
cohesiveness and study the weakness of the pigeonhole principle for typical partitions.

Lemma 2.13 There exists a ∆0
3 (in fact low over ∅′) set A and a uniformly computable sequence

of sets R0, R1, . . . with no computable ~R-cohesive set, such that every infinite subset of either A

or A computes an ~R-cohesive set.

Proof. Fix a set A which is low over ∅′ and bi-immune relative to ∅′. The set of the infinite,

increasing sequences which form an subset of either A or A is Π0,A
1 , hence Π0,∅′

2 in the Baire
space:

E = {X ∈ ωω : (∀s)[X(s) < X(s+ 1)] ∧ [(∀s)(X(s) ∈ A) ∨ (∀s)(X(s) ∈ A)]}

Moreover, E has no ∅′-computable member by bi-immunity relative to ∅′ of A. Apply Lemma 2.5
to complete the proof. �

In a previous section, we constructed a uniformly computable sequence of sets R0, R1, . . .

with no computable ~R-cohesive set such that every 2-random real computes an ~R-cohesive set.
The following lemma strengthens this result by constructing an unsolvable instance of COH
solvable by every infinite subset of any 2-random real.

Definition 2.14 (Diagonal non-computability) A function f : ω → ω is diagonaly non-computable
relative to X if for every e ∈ ω, f(e) 6= ΦX

e (e).

By Kjos-Hanssen [28] and Greenberg and Miller [16], a set computes a function d.n.c. relative

to ∅(n−1) if and only if it computes an infinite subset of an n-random.

Lemma 2.15 There exists a uniformly computable sequence of sets R0, R1, . . . with no com-

putable ~R-cohesive set, such that every function d.n.c. relative to ∅′ computes an ~R-cohesive
set.



THE WEAKNESS OF BEING COHESIVE, THIN OR FREE IN REVERSE MATHEMATICS 11

Proof. The class of functions which are d.n.c. relative to ∅′ is Π0,∅′
1 in the Baire space:

E =
{
f ∈ ωω : (∀e)[Φ∅′e (e) ↑ ∨f(e) 6= Φ∅

′
e (e)]

}
Moreover, E has no ∅′-computable member. Apply Lemma 2.5 to complete the proof. �

In contrast with this lemma, if we require a bit more uncomputability in the ~R-cohesive sets
of the sequence R0, R1, . . . , we can ensure the existence of a function d.n.c. relative to ∅′ which

does not compute an ~R-cohesive set.

Theorem 2.16 Fix a uniformly computable sequence of sets R0, R1, . . . such that C(~R) has no
∅′-computable 1-enum. For every set X, there exists a function f d.n.c. relative to X whose

jump does not compute a 1-enum of C(~R). In particular, f does not compute an ~R-cohesive set.

The proof of Theorem 2.16 is done by a bushy tree forcing argument. See the survey from
Khan and Miller [27] for terminology and definitions. Fix a set X. We will construct a GL1

function which is d.n.c. relative to X. Our forcing conditions are tuples (σ,B) where σ ∈ ω<ω
and B ⊆ ω<ω is an upward-closed set k-small above σ for some k ∈ ω. A sequence f satisfies a
condition (σ,B) if σ ≺ f and B is small above every initial segment of f . Our initial condition
is (ε,BX

DNC) where

BX
DNC = {σ ∈ ω<ω : (∃e)σ(e) = ΦX

e (e)}
Therefore every infinite sequence f satisfying (ε,BX

DNC) is d.n.c. relative to X. Thanks to the

following lemma, we can prevent f ⊕ ∅′ from computing a 1-enum of C(~R). As the constructed

function f is GL1, f
′ ≤T f ⊕ ∅′ does not compute a 1-enum of C(~R).

Lemma 2.17 For every condition c = (σ,B) and every Turing functional Γ, there exists an

extension d = (τ, C) forcing Γf⊕∅
′

to be partial or such that Γτ⊕∅
′

is not a 1-enum of C(~R).

Proof. Suppose that B is k-small above σ. For every n ∈ ω, define the Σ0,∅′
1 set Dn = {τ ∈

ω<ω : Γτ⊕∅
′
(n) ↓∈ 2n}. Make a ∅′-effective search for an n ∈ ω such that one of the following

holds:

(a) Dn is k2n-small above σ for some n ∈ ω
(b) Dn,ρ = {τ ∈ ω<ω : Γτ⊕∅

′
(n) ↓= ρ} is k-big above σ for some string ρ ∈ 2n such that

[ρ] ∩ C(~R) = ∅.
Such n exists, as otherwise, for every n ∈ ω, Dn is k2n-big above σ. By the smallness additivity

property, Dn,ρ is k-big above σ for some ρ ∈ 2n. For every such string ρ, [ρ] ∩ C(~R) 6= ∅.
Therefore we can ∅′-compute a 1-enum of C(~R) by searching on each input n for some ρ of
length n such that Dn,ρ is k-big above σ.

If we are in case (a), take d = (τ, C∪Dn) as the desired extension. The condition d forces Γf⊕∅
′

to be partial. If we are in case (b), by the concatenation property, there exists an extension τ ∈
Dn,ρ such that B is still k-small above τ . The condition d = (τ,B) is an extension forcing Γf⊕∅

′

not to be a 1-enum of C(~R) as Γf⊕∅
′
(n) = Γτ⊕∅

′
(n) = ρ and [ρ] ∩ C(~R) = ∅. �

Looking at the proof of the previous lemma, we can ∅′-decide in which case we are, and then
use the knowledge of f to see which path has been chosen in the bushy tree. The construction
therefore yields a GL1 sequence.

3. Ramsey’s theorem and computable reducibility

The strength of Ramsey’s theorem is known to remain the same when changing the number
of colors in the setting of reverse mathematics. Indeed, given some coloring f : [ω]n → k2, we
can define another coloring g : [ω]n → k by merging colors together by blocks of size k. After
one application of RTnk to the coloring g, we obtain an infinite set H over which f uses at most k
different colors. Another application of RTnk gives an infinite f -homogeneous set. This standard
proof of RCA0 ` RTnk → RTnk2 involves two applications of RTnk . In this section, we show that
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in the computable reducibility setting, multiple applications are really necessary to reduce RTnk
to RTn` whenever k > ` and n ≥ 2.

Note that two applications of RTn2 are sufficient to deduce RTnk in the case n ≥ 4, as
Jockusch [20] proved that every computable instance of RTnk has a Π0

n solution, and that for every

set X, there exists an X-computable instance of RTn2 such that every solution computes X(n−2).

3.1. Cohesiveness and strong reducibility

We start our analysis with partitions of integers. Of course, every computable partition has
an infinite computable homogeneous set, so we need to consider non-effective partitions and
strong computable reducibility. The study of RT1

k over strong reducibility has close connections
with cohesiveness. Dzhafarov [12] proved that COH 6≤sc D2

<∞ by iterating the following theorem.

Theorem 3.1 (Dzhafarov [12]) For every k ≥ 2 and ` < 2k, there is a finite sequenceR0, . . . , Rk−1
such that for all partitions A0∪· · ·∪A`−1 = ω hyperarithmetical in ~R, there is an infinite subset

of some Aj that computes no ~R-cohesive set.

Hirschfeldt and Jockusch noticed in [18] that the proof of Theorem 3.1 can be slightly modified
to obtain a proof that RT1

k 6≤sc RT1
` whenever k > ` ≥ 2. Montálban asked whether the

hyperarithmetic effectiveness restriction can be removed from Dzhafarov’s theorem. We give
a positive answer, which has been proved independently by Hirschfeldt and Jockusch [18].

Moreover, we show that ~R can be chosen to be low.
Given two integers k, ` ≥ 1, we let π(k, `) denote the unique a ≥ 1 such that k = a · ` − b

for some b ∈ [0, `). Informally, π(k, `) is the minimal number of pigeons we can ensure in at
least one pigeonhole, given k pigeons and ` pigeonholes. In particular, π(k, `) ≥ 2 whenever
k > ` ≥ 1. We prove the following theorem, from which we deduce several corollaries about
cohesiveness and RT1

k.

Theorem 3.2 Fix some k ≥ 1 and ` ≥ 2, some set I and a sequence of k I-hyperimmune
sets B0, . . . , Bk−1. For every `-partition A0 ∪ · · · ∪ A`−1 = ω, there exists an infinite subset H
of some Ai such that π(k, `) sets among the B’s are I ⊕H-hyperimmune.

We will postpone the proof of Theorem 3.2 until after Corollary 3.6. Using the existence of
a low k-partition B0 ∪ · · · ∪Bk−1 = ω such that Bj is hyperimmune for every j < k, we deduce
the following corollary.

Corollary 3.3 For every k > ` ≥ 2, there is a low k-partition B0 ∪ · · · ∪ Bk−1 = ω such
that for all `-partitions A0 ∪ · · · ∪ A`−1 = ω, there is an infinite subset H of some Ai and a
pair j0 < j1 < k such that every infinite H-computable set intersects both Bj0 and Bj1 .

Proof. Fix some k > ` ≥ 2 and a low k-partitionB0∪· · ·∪Bk−1 = ω such that Bj is hyperimmune
for every j < k. Since k > ` ≥ 2, π(k, `) ≥ 2. Therefore, by Theorem 3.2, for every `-partition
A0 ∪ · · · ∪ A`−1 = ω, there is an infinite subset H of some Ai and a pair j0 < j1 < k such
that Bj0 and Bj1 are H-hyperimmune. In particular, every infinite H-computable set intersects
both Bj0 and Bj1 . �

The positive answer to Montálban’s question is an immediate consequence of the previous
corollary.

Corollary 3.4 For every k ≥ 2 and ` < 2k, there is a finite sequence of low sets R0, . . . , Rk−1
such that for all partitions A0 ∪ · · · ∪ A`−1 = ω, there is an infinite subset of some Ai that

computes no ~R-cohesive set.

Proof. Given k ≥ 2 and ` < 2k, fix the low 2k-partition (Bσ : σ ∈ 2k) whose existence is stated
by Corollary 3.3. For each i < k, define Ri =

⋃
σ(i)=1Bσ. Note that by disjointness of the B’s,

Ri =
⋃
σ(i)=0Bσ. By choice of the B’s, for all `-partitions A0 ∪ · · · ∪ A`−1 = ω, there is an
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infinite subset H of some Aj and a pair σ <lex τ ∈ 2k such that every infinite H-computable set
intersects both Bσ and Bτ . Let i < k be the least bit such that σ(i) 6= τ(i). As σ <lex τ , σ(i) = 0
and τ(i) = 1. By definition of Ri, Bτ ⊆ Ri and Bσ ⊆ Ri. Therefore no infinite H-computable

set is homogeneous for Ri. In particular no infinite H-computable set is ~R-cohesive. �

The construction of the B’s is done uniformly in k. We can therefore deduce the following
corollary.

Corollary 3.5 There exists a sequence of low sets R0, R1, . . . such that every finite partition

of ω has an infinite subset in one of its parts which does not compute an ~R-cohesive set.

The effectiveness of B in the statement of Corollary 3.3 enables us to deduce computable
non-reducibility results about stable Ramsey’s theorem for pairs, thanks to the computable
equivalence between SRT2

` and the statement D2
` .

Corollary 3.6 For every k > ` ≥ 2, SRT2
k 6≤c SRT2

` .

Proof. Fix k > ` ≥ 2. By Corollary 3.3, there is a ∆0
2 k-partition B0 ∪ · · · ∪ Bk−1 = ω such

that for all `-partitions A0, . . . , A`−1 of ω, there is an infinite subset H of some Ai which does
not compute an infinite subset of any Bj . By Cholak et al. [6], for every stable computable
function f : [ω]2 → `, there exists a ∆0

2 `-partition A0 ∪ · · · ∪ A`−1 = ω such that every
infinite subset of a part computes an infinite f -homogeneous set. Therefore, for every such
function f , there exists an infinite f -homogeneous set which does not compute an infinite
subset of any Bj . By Schoenfield’s limit lemma [41], the ∆0

2 approximation g : [ω]2 → k
of the k-partition B0 ∪ · · · ∪ Bk−1 = ω is a stable computable function and every infinite g-
homogeneous set with color j is an infinite subset of Bj . �

We now turn to the proof of Theorem 3.2. We shall prove it by induction over `, using
a forcing construction whose forcing conditions are Mathias conditions (F,X) where X is an
infinite set such that the B’s are X ⊕ I-hyperimmune. The case where ` = 1 trivially holds
since π(k, 1) = k.

3.1.1. Forcing limitlessness. For every `-partition A0 ∪ · · · ∪ A`−1 = ω, we want to satisfy the
following scheme of requirements to ensure that G ∩Ai is infinite for each i < `.

Qp : (∃n0, . . . , n`−1 > p)[n0 ∈ G ∩A0 ∧ · · · ∧ n`−1 ∈ G ∩A`−1]
Of course, all requirements may not be satisfiable if some part Ai is finite. Usually, a forcing
argument starts with the assumption that the instance is non-trivial, that is, does not admit a
solution with the desired properties (cone avoiding, low, ...). In order to force the solution to
be infinite, it suffices to ensure that the reservoirs satisfy the desired properties, and therefore
cannot be a solution to a non-trivial instance.

In our case, we say that an `-partition A0∪· · ·∪A`−1 is non-trivial if there is no infinite set H
included in the complement of one of the A’s and such that the B’s are H ⊕ I-hyperimmune.
The following lemma states that we can focus on non-trivial partitions without loss of generality.

Lemma 3.7 For every trivial `-partition A0 ∪ · · · ∪ A`−1, there is an infinite set H ⊆ Ai for
some i < ` such that π(k, `) sets among the B’s are H ⊕ I-hyperimmune.

Proof. Let G = {n0 < n1 < . . . } be an infinite subset of Ai for some i < ` such that the B’s are
G⊕ I-hyperimmune. Define the (`− 1)-partition (Cj : j 6= i) by setting Cj = {s ∈ ω : ns ∈ Aj}
for each j 6= i. By induction hypothesis, there exists an infinite set H0 ⊆ Cj for some j 6= i such
that π(k, `−1) sets among the B’s are H0⊕G⊕I-hyperimmune. Note that π(k, `−1) ≤ π(k, `).
The set H = {ns : s ∈ H0} is an H0 ⊕ G-computable subset of Aj and π(k, `) sets among the
B’s are H ⊕ J-hyperimmune. �

Notice that the proof of Lemma 3.7 uses the induction hypothesis with a different context,
namely, G ⊕ I instead of I. This is where we needed to use the relativized version of the
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theorem in the proof. A condition c = (F,X) forces Qp if there exists some n0, . . . , nm−1 > p
such that ni ∈ F ∩Aj for each i < `. Therefore, if G satisfies c and c forces Qp, then G satisfies
the requirement Qp. We now prove that the set of conditions forcing Qp is dense for each p ∈ ω.
Thus, every sufficiently generic filter will induce an infinite solution.

Lemma 3.8 For every condition c and every p ∈ ω, there is an extension forcing Qp.

Proof. Fix some p ∈ ω. It is sufficient to show that given a condition c = (F,X) and some i < `,
there exists an extension d0 = (E, Y ) and some integer ni > p such that ni ∈ E∩Ai. By iterating
the process for each i < `, we obtain the desired extension d. By definition of non-triviality,
Ai is co-immune in X and therefore X ∩ Ai is infinite. Take any ni ∈ X ∩ Ai ∩ (p,+∞). The
condition d0 = (F ∪ {ni}, X r [0, ni]) is the desired extension. �

3.1.2. Forcing non-homogeneity. The second scheme of requirements aims at ensuring that for
some i < `, at least π(k, `) sets among the B’s are (G∩Ai)⊕I-hyperimmune. The requirements
are of the following form for each j < k and each tuple of indices ~e = e0, . . . , e`−1.

R~e,j : RA0,Bj
e0 ∨ · · · ∨ RA`−1,Bj

e`−1

where RA,Be is the statement “Φ
(G∩A)⊕I
e does not dominate pB”.

We claim that if all the requirements are satisfied, then (G ∩ Ai) has the desired property
for some i < `. Indeed, if for some fixed j < k, all the requirements R~e,j are satisfied, then by
the usual pairing argument, there is some i < ` such that Bj is (G ∩Ai)⊕ I-hyperimmune. So
if all the requirements are satisfied, then by the pigeonhole principle, there is some i < ` such
that π(k, `) sets among the B’s are (G ∩Ai)⊕ I-hyperimmune.

A condition forces R~e,j if every set G satisfying this condition also satisfies the require-
ment R~e. The following lemma is the core of the forcing argument.

Lemma 3.9 For every condition c = (F,X), every j < k and every tuple of Turing indices ~e,

there exists an extension d = (E, Y ) forcing Φ
(G∩Ai)⊕I
ei not to dominate pBj for some i < `.

Proof. Let f be the partial X⊕I-computable function which on input x, searches for a finite set
of integers U such that for every `-partition Z0 ∪ · · · ∪ Z`−1 = X, there is some i < ` and some

set E ⊆ Zi such that Φ
((F∩Ai)∪E)⊕I
ei (x) ↓∈ U . If such a set U is found, then f(x) = max(U)+1,

otherwise f(x) ↑. We have two cases.

− Case 1: The function f is total. By X ⊕ I-hyperimmunity of Bj , f(x) ≤ pBj (x) for
some x. Let U be the finite set witnessing f(x) ↓. Letting Zi = X ∩ Ai for each i < `,

there is some i and some finite set E ⊆ X ∩ Ai such that Φ
((F∩Ai)∪E)⊕I
ei (x) ↓∈ U . The

condition d = (F ∪ E,X r [0,max(E)]) is an extension forcing Φ
(G∩Ai)⊕I
ei (x) < f(x) ≤

pBj (x).

− Case 2: There is some x such that f(x) ↑. By compactness, the Π0,X⊕I
1 class C of

sets Z0⊕· · ·⊕Z`−1 such that Z0∪· · ·∪Z`−1 = X and for every i < ` and every set E ⊆ Zi,
Φ
((F∩Ai)∪E)⊕I
ei (x) ↑ is non-empty. By the hyperimmune-free basis theorem [23], there is

some `-partition Z0 ⊕ · · · ⊕ Z`−1 ∈ C such that all the B’s are Z0 ⊕ · · · ⊕ Z`−1 ⊕X ⊕ I-
hyperimmune. Let i < ` be such that Zi is infinite. The condition d = (F,Zi) is an

extension of c forcing Φ
(G∩Ai)⊕I
ei (x) ↑.

�

3.1.3. Construction. We have all necessary ingredients to build an infinite set G such that
each G∩Ai is infinite, and such that π(k, `) sets among the B’s are (G∩Ai)⊕ I-hyperimmune
for some i < `. Thanks to Lemma 3.8 and Lemma 3.9, define an infinite descending sequence
of conditions (ε, ω) ≥ c0 ≥ . . . such that for each s ∈ ω,

(a) cs forces Qs
(b) cs forces R~e,j if s = 〈~e, j〉
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where cs = (Fs, Xs). Define the set G =
⋃
s Fs. By (a), G ∩ Ai is infinite for every i < `, and

by (b), each requirement R~e,j is satisfied. This finishes the proof of Theorem 3.2.

3.2. Reducibility to Ramsey’s theorem for pairs

Dorais et al. [9] asked whether RTnk 6≤c RTn` for every n ≥ 2 and k > ` ≥ 2. Hirschfeldt
and Jockusch [18] and Rakotoniaina [38] proved that SRTnk is not uniformly reducible to RTn`
whenever k > `. We extend the result to computable reducibility. In the first place, we shall
focus on the case n = 2. For this, we will take advantage of the proof of RT2

` that applies
the cohesiveness principle to obtain a stable coloring f : [ω]2 → `. This coloring can itself
be considered as the ∆0

2 approximation of a ∅′-computable `-partition of ω, and therefore as a
non-effective instance of RT1

` . Any infinite subset of one of its parts computes an infinite set
homogeneous for f .

In the previous section, we have shown how to diagonalize against every `-partition, simply
using the fact that the complement of the parts of the instance of RTnk are hyperimmune. The
author proved in [36] that COH instances admit solutions preserving the hyperimmunity of a
predefined collection of hyperimmune sets.

Theorem 3.10 (Patey [36]) For every sequence of hyperimmune sets A0, A1, . . . and every

uniformly computable sequence of sets R0, R1, . . . , there is an infinite ~R-cohesive set C such
that the A’s are hyperimmune relative to C.

Note that this theorem is optimal in the sense that every p-cohesive set is hyperimmune.
Using Theorem 3.2, we can deduce the following theorem.

Theorem 3.11 Fix some k ≥ 1 and ` ≥ 2, some set I and a sequence of k I-hyperimmune
sets B0, . . . , Bk−1. Every I-computable coloring f : [ω]2 → ` has an infinite f -homogeneous
set H such that π(k, `) sets among the B’s are I ⊕H-hyperimmune.

Proof. Fix k, a sequence of I-hyperimmune sets B0, . . . , Bk−1 for some set I. Let f : [ω]2 → `
be an I-computable coloring and consider the sequence of sets R0, R1, . . . defined for each x ∈ ω
by

Rx = {s : f(x, s) = 1}

By Theorem 3.10, there is an infinite ~R-cohesive set C such that the B’s are hyperimmune
relative to C ⊕ I. Let f̃ : ω → ` be defined by f̃(x) = lims∈C f(x, s). By Theorem 3.2

relativized to C ⊕Z, there is an infinite f̃ -homogeneous set H such that π(k, `) among the B’s
are H ⊕ C ⊕ Z-hyperimmune. In particular, H ⊕ C ⊕ I computes an infinite f -homogeneous
set. �

Using again the existence of a low k-partition B0 ∪ · · · ∪Bk−1 such that Bj is hyperimmune
for every j < k, we deduce the following corollary.

Corollary 3.12 For every k > ` ≥ 2, there is a low k-partition B0∪· · ·∪Bk−1 = ω such that each
computable coloring f : [ω]2 → ` has an infinite f -homogeneous set H and a pair j0 < j1 < k
such that every infinite H-computable set intersects both Bj0 and Bj1 .

Proof. Fix some k > ` ≥ 2 and a low k-partitionB0∪· · ·∪Bk−1 = ω such that Bj is hyperimmune

for every j < k. Since k > ` ≥ 2, π(k, `) ≥ 2. Therefore, by Theorem 3.11, for every RT2
` -

instance f : [ω]2 → `, there is an infinite f -homogeneous set H and a pair j0 < j1 < k such
that Bj0 and Bj1 are H-hyperimmune. In particular, every infinite H-computable set intersects
both Bj0 and Bj1 . �

Using Corollary 3.12 in a relativized form, we can extend the result to colorings over arbitrary
tuples.
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Theorem 3.13 For every n ≥ 2, and every k > ` ≥ 2, there is a ∆0
n k-partition B0∪· · ·∪Bk−1 =

ω such that each computable coloring f : [ω]n → ` has an infinite f -homogeneous set H and a
pair j0 < j1 < k such that every infinite H-computable set intersects both Bj0 and Bj1 .

Proof. This is proved in a relativized form by induction over n. The case n = 2 is proved by
relativizing Corollary 3.12. Now assume it holds for some n in order to prove it for n+1. Let P �
∅(n−1) be such that P ′ ≤ ∅(n). Such a set exists by the relativized low basis theorem [23].

Applying the induction hypothesis to P , there is a ∆0,P
2 (hence ∆0

n+1) k-partition B0 ∪ · · · ∪
Bk−1 = ω such that each P -computable coloring f : [ω]n → ` has an infinite f -homogeneous
set H and a pair j0 < j1 < k such that every infinite H ⊕P -computable set intersects both Bj0
and Bj1 .

Let f : [ω]n+1 → ` be a computable coloring. By Jockusch [20, Lemma 5.4], there exists an
infinite set C pre-homogeneous for f such that C ≤T P . (A set C is pre–homogeneous if any
two (n + 1)-element subsets of C with the same first n elements are assigned the same color

by f .) Let f̃ : [C]n → ` be the P -computable coloring defined for each σ ∈ [C]n by f̃(σ) =

f(σ, a), where a ∈ A, a > max(σ). Every f̃ -homogeneous set is f -homogeneous. By definition

of B0 ∪ · · · ∪ Bk−1 = ω, there exists an infinite f̃ -homogeneous (hence f -homogeneous) set H
and a pair j0 < j1 < k such that every infinite H ⊕ P -computable set intersects both Bj0
and Bj1 . �

Using the fact that Dn
k ≤c SRTnk for every n, k ≥ 2, we obtain the following corollary strength-

ening the result of Hirschfeldt and Jockusch [18] and Rakotoniaina [38].

Corollary 3.14 For every n ≥ 2 and every k > ` ≥ 2, SRTnk 6≤c RTn` .

This answers in particular Question 7.1 of Dorais et al. [9]. The following corollary answers
positively Question 5.5.3 of Mileti [31].

Corollary 3.15 There exists two stable computable functions f1 : [ω]2 → 2 and f2 : [ω]2 → 2
such that there is no computable g : [ω]2 → 2 with the property that every set Hg homogeneous
for g computes both a set Hf1 homogeneous for f1 and a set Hf2 homogeneous for f2.

Proof. By Corollary 3.12 with ` = 2 and k = 3, there exists a ∆0
2 3-partition B0 ∪B1 ∪B2 = ω

such that each computable coloring f : [ω]2 → 2 has an infinite f -homogeneous set H and a
pair j0 < j1 < 3 such that every infinite H-computable set intersects both Bj0 and Bj1 . As in
Corollary 3.4, we assume that the B’s are disjoint. By Schoenfield’s limit lemma [41], there exist
two stable computable colorings f1 and f2 such that lims f1(·, s) = B0 and lims f2(·, s) = B1.
If j0 = 0 (resp. j0 = 1) then H does not compute an infinite set homogeneous for f1 (resp. f2).
This completes the proof. �

4. The weakness of free set and thin set theorems

The combinatorics involved in our study of the free set and thin set theorems differ deeply
from our analysis of Ramsey’s theorem in the previous sections. Let RTn`,d be the statement
“Every coloring f : [ω]n → ` has an infinite set H on which f uses at most d colors.” An analysis
of the thin set theorems in the continuity of the previous sections would consists in considering
the computable reductions between RTn`,d and RTnk,d whenever ` < k for a fixed parameter d.
In this section, we consider the variation of the parameter d, and show that different d’s lead
to different subsystems of second-order arithmetic.

4.1. Thin set theorem and strong reducibility

We start our analysis with partitions of integers like we did with Ramsey’s theorem. Every
computable partition has an infinite computable set avoiding one of its parts. The natural
reducibility to consider is therefore strong computable reducibility. In this section, we show
that TS1

k 6≤sc TS1
k+1. We could have proven this separation using the notion of hyperimmunity

as we did in the previous section (and this is indeed the approach chosen by the author in [36]).
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However, we want to apply preservation of definitions, emulating Wang’s analysis of theorems
in reverse mathematics in terms of preservation of definitions.

4.1.1. Preservation of non-c.e. definitions. The notion of preservation of definitions was intro-
duced by Wang in [47], in the context of a new analysis of principles in reverse mathematics in
terms of their definitional strength. Wang defined a set X to preserve properly ∆0

2 definitions

if every properly ∆0
2 set (i.e. ∆0

2 but neither Σ0
1 nor Π0

1) is properly ∆0,X
2 . He deduced several

separation results, and in particular constructed an ω-model of the conjunction of COH, WKL0,
the Erdős-Moser theorem (EM), the rainbow Ramsey theorem for pairs (RRT2

2) and the Π0
1-

genericity principle (Π0
1G) which is not a model of TS2. His analysis has been extended by the

author in [37].

Definition 4.1 (Preservation of non-c.e. definitions)

1. A set X preserves non-c.e. definitions of some non-c.e. sets A0, A1, . . . if no Ai is X-c.e.
2. A Π1

2 statement P admits preservation of k non-c.e. definitions if for each C, each
sequence of non-C-c.e. sets A0, . . . , Ak−1 and each C-computable P-instance X, there
exists a solution Y to X such that Y ⊕C preserves non-c.e. definitions of A0, . . . , Ak−1.

Wang proved [47] that COH, EM, WKL0, RRT2
2 and Π0

1G admit preservation of k non-c.e.
definitions for every k ∈ ω. By a trivial adaptation of Proposition 2.4 from [47], if some
statement P admits preservation of k non-c.e. definitions and some other statement Q does
not, then there exists an ω-model of P which is not a model of Q. We start with a trivial
lemma showing that our preservation proofs subsume Wang’s analysis of cone avoidance of
Ramsey-type theorems from [48].

Lemma 4.2 If some statement P admits preservation of 1 non-c.e. definition, then it admits
cone avoidance.

Proof. Fix any set C, any set A 6≤T C and any C-computable P-instance X. As A 6≤T C, either
A or A is not C-c.e. Call this set B. As P admits preservation of 1 non-c.e. definition, there exists
a solution Y of X such that B is not Y ⊕C-c.e. In particular A is not Y ⊕C-computable. �

4.1.2. Negative preservation results. The following theorem can be proven by a direct adaptation
of Theorem 4.3 proven by Wang [47]. However, we provide a simpler proof.

Theorem 4.3 For every k ≥ 2, there exists a ∆0
2 k-partition B0 ∪ · · · ∪Bk−1 = ω such that for

each j < k, Bj is non-c.e. but is H-c.e. for every infinite set H ⊆ Bj .

Proof. It suffices to construct a stable computable function f : [ω]2 → k with no infinite
computable f -thin set, and such that for each i < k and each x < y < z ∈ ω,

f(x, y) 6= i ∧ f(y, z) 6= i→ f(x, z) 6= i

We first justify that those properties are sufficient for proving our theorem. Let Bi = {x :
lims f(x, s) = i}. Every infinite subset of Bi computes an infinite set thin for f with witness i,
therefore no Bi is c.e. Moreover, Bi is H-c.e. for every infinite set H ⊆ Bi since

Bi = {x ∈ ω : (∃y ∈ H)f(x, y) 6= i}

The construction of the function f is done by a finite injury priority argument with a movable
marker procedure. We want to satisfy the following scheme of requirements for each e ∈ ω
and i < k:

Re,i : We infinite → (∃x ∈We) lim
s
f(x, s) = i

The requirements are given the usual priority ordering. We proceed by stages, maintaining k
sets B0, . . . , Bk−1 which represent the limit of the function f . At stage 0, Bi,0 = ∅ for each i < k
and f is nowhere defined. Moreover, each requirement Re,i is given a movable marker me,i

initialized to 0.
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A strategy for Re,i requires attention at stage s + 1 if We,s ⊂ Bi,s and We,s ∩ [me,i, s] 6= ∅.
The strategy sets Bi,s+1 = Bi,s∪ [me,i, s], and Bj,s+1 = Bj,sr [me,i, s] for every j 6= i. Then it is
declared satisfied until some strategy of higher priority changes its marker. Each marker me′,i′

of strategies of lower priorities is assigned the value s+ 1.
At stage s + 1, assume that B0,s ∪ · · · ∪ Bk−1,s = [0, s) and that f is defined for each pair

over [0, s). For each x ∈ [0, s), set f(x, s) = i for the unique i such that x ∈ Bi,s. If some strategy
requires attention at stage s + 1, take the least one and satisfy it. If no such requirement is
found, set B0,s+1 = B0,s ∪ {s} and Bi,s+1 = Bi,s for i > 0. Then go to the next stage. This
ends the construction.

Each time a strategy acts, it changes the markers of strategies of lower priority, and is declared
satisfied. Once a strategy is satisfied, only a strategy of higher priority can injury it. Therefore,
each strategy acts finitely often and the markers stabilize. It follows that the B’s also stabilize
and that f is a stable function.

Lemma 4.4 For every i < k and every x < y < z, f(x, y) 6= i ∧ f(y, z) 6= i→ f(x, z) 6= i.

Proof. Suppose that f(x, y) 6= i but f(x, z) = i for some i < k. Let s ≤ z be the least stage
such that f(x, t) = i for every t ∈ [s+ 1, z]. At stage s+ 1, some strategy Re,i moved to Bi the
whole interval [me,i, s]. Since me′,i′ ≤ me,i for every strategy Re′,i′ of higher priority, none of
the elements in [me,i, s] leave Bi before stage z+ 1. As f(x, y) 6= i, y 6∈ [s+ 1, z] so y ∈ [me,i, s].
Therefore y ∈ Bi,z and thus f(y, z) = i. �

Lemma 4.5 For every e ∈ ω and i < k, Re,i is satisfied.

Proof. By induction over the priority order. Let s0 be a stage after which no strategy of higher
priority will ever act. By construction, me,i will not change after stage s0. If We is infinite,
it will eventually enumerate some element u bigger than me,i, and therefore Re,i will require
attention at some stage s ≥ u. As no strategy of higher priority ever acts after stage s0, Re,i
will receive attention, be satisfied and never be injured. �

Satisfying Re,i for every e ∈ ω and i < k guarantees that f has no computable thin set. This
last claim finishes the proof of Theorem 4.3. �

Corollary 4.6 For every k ≥ 2, STS2
k does not admit preservation of k non-c.e. definitions.

4.1.3. Strong preservation of non-c.e. definitions. Because every computable instance of TS1
k

having a computable solution, TS1
k admits preservation of k non-c.e. definitions for every k.

On the other hand, we would like to say that TS1
k does not combinatorially preserve k non-

c.e. definitions since Theorem 4.3 shows the existence of a non-effective instance of TS1
k whose

solutions do not preserve k non-c.e. definitions. This combinatorial notion of preservation is
called strong preservation.

Definition 4.7 (Strong preservation of non-c.e. definitions) A Π1
2 statement P admits strong

preservation of k non-c.e. definitions if for each set C, each sequence of non-C-c.e. setsA0, . . . , Ak−1
and each (arbitrary) P-instance X, there exists a solution Y to X such that Y ⊕ C preserves
non-c.e. definitions of A0, . . . , Ak−1.

We have seen through Theorem 4.3 that for every k ≥ 2, TS1
k does not admit strong preser-

vation of k non-c.e. definitions. The following theorem shows the optimality of Theorem 4.3.

Theorem 4.8 For every k ≥ 2, TS1
k+1 admits strong preservation of k non-c.e. definitions.

The proof of Theorem 4.8 follows Corollary 4.10. Putting Theorem 4.3 and Theorem 4.8
together, we obtain the desired separation over strong computable reducibility.

Corollary 4.9 For every ` > k ≥ 2, TS1
k 6≤sc TS1

`
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Using the computable equivalence between the problem of finding a infinite set thin for an ∆0
2

`-partition and STS2
` , we deduce the following corollary.

Corollary 4.10 For every ` > k ≥ 2, STS2
k 6≤c STS2

`

Proof. Fix ` > k ≥ 2 and consider the ∆0
2 k-partition B0 ∪ · · · ∪ Bk−1 = ω of Theorem 4.3.

By Schoenfield’s limit lemma [41], there exists a stable computable function g : [ω]2 → k such
that Bj = {x : lims g(x, s) = j} for each j < k. Every infinite set thin for g is thin for
the B’s. Fix any stable computable function f : [ω]2 → ` and let Ai = {x : lims f(x, s) = i}
for each i < m. By Theorem 4.8, there exists an infinite set H thin for the A’s which does not
compute an infinite set thin for the B’s (hence for g). As H⊕ f computes an infinite set G thin
for f , f has an infinite f -thin set which does not compute an infinite set thin for g. �

The remainder of this section is devoted to the proof of Theorem 4.8. Fix some set C
preserving non-c.e. definitions of some sets B0, . . . , Bk−1 and fix some (k + 1)-partition A0 ∪
· · ·∪Ak = ω. We will construct a set G such that G∩Ai is infinite for each i ≤ k and none of the
B’s are (G∩Ai)⊕C-c.e. for some i ≤ k. Our forcing conditions are Mathias conditions (σ,X)
where X is an infinite set of integers such that none of the B’s are X ⊕ C-c.e.

4.1.4. Forcing limitlessness. We want to satisfy the following scheme of requirements to ensure
that G ∩Ai is infinite for each i ≤ k:

Qp : (∃m0, . . . ,mk > p)[m0 ∈ G ∩A0 ∧ · · · ∧mk ∈ G ∩Ak]

We say that an (k + 1)-partition A0 ∪ · · · ∪ Ak = ω is non-trivial if there exists no infinite
set H homogeneous for the A’s such that none of the B’s are H ⊕ C-c.e. Of course, every
infinite set homogeneous for the A’s is thin for the A’s, so if the partition A0 ∪ · · · ∪Ak = ω is
trivial, we succeed. Therefore we will assume from now on that the partition is non-trivial. A
condition c = (σ,X) forces Qp if there exist some m0, . . . ,mk > p such that mi ∈ σ ∩ Ai for
each i ≤ k. Therefore, if G satisfies c and c forces Qp, then G satisfies the requirement Qp. We
now prove that the set of conditions forcing Qp is dense for each p ∈ ω. Thus, every sufficiently

generic filter will induce a set G such that G ∩Ai is infinite for each i ≤ k.

Lemma 4.11 For every condition c and every p, there is an extension forcing Qp.

Proof. Fix some p ∈ ω. It is sufficient to show that given a condition c = (σ,X) and some i ≤ k,
there exist an extension d0 = (τ, Y ) and some integer mi > p that mi ∈ τ ∩Ai. By iterating the
process for each i ≤ k, we obtain an extension forcing Qp. Suppose for the sake of contradiction

that X ∩ Ai is finite. One can then X-compute an infinite set H ⊆ Ai, contradicting non-
triviality of the A’s. Therefore, there exists an mi ∈ X ∩ Ai such that mi > max(σ, p). The
condition d0 = (σ_mi, X) is the desired extension. �

4.1.5. Forcing preservation. The second scheme of requirements consists in ensuring that the
sets B0, . . . , Bk−1 are all non-(G ∩ Ai) ⊕ C-c.e. for some i ≤ k. The requirements are of the
following form for each tuple of indices ~e = (ei : i ≤ k):

R~e :
∧
j<k

W (G∩A0)⊕C
e0 6= Bj ∨ · · · ∨

∧
j<k

W (G∩Ak)⊕C
ek

6= Bj

A condition forces R~e if every set G satisfying this condition also satisfies requirement R~e.
The following lemma is the core of the forcing argument.

Lemma 4.12 For every condition c = (σ,X), every i0 < i1 ≤ k, every j < k and every vector

of indices ~e, there exists an extension d forcing either W
(G∩Ai0 )⊕C
ei0

6= Bj or W
(G∩Ai1 )⊕C
ei1

6= Bj .
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Proof. Let W be the set of all a ∈ ω such that for every 2-cover Zi0 ∪ Zi1 = X, there is some

i ∈ {i0, i1} and some set Gi ⊆ Zi such that a ∈ W
(Gi/(σ∩Ai))⊕C
ei . The set W is X ⊕ C-c.e.

Therefore W 6= Bj . Let a ∈W∆Bj . We have two cases:

− Case 1: a ∈ W r Bj . By definition of W , taking in particular the sets Zi0 = X ∩ Ai0
and Zi1 = X ∩ Ai1 , there is some i ∈ {i0, i1} and some finite set Gi ⊆ Zi such that a ∈
W

(Gi/(σ∩Ai))⊕C
ei . The condition d = (Gi/σ,X) is an extension forcing W

(G∩Ai)⊕C
ei 6= Bj .

− Case 2: a ∈ BjrW . Let C be the Π0,X⊕C
1 class of sets Zi0⊕Zi1 such that Zi0 ∪Zi1 = X

and for every i ∈ {i0, i1} and every set Gi ⊆ Zi a 6∈ W
(Gi/(σ∩Ai))⊕C
ei . By definition

of W , C is non-empty. As WKL0 admits preservation of k non-c.e. definitions, there
exists some Zi0 ⊕ Zi1 ∈ C such that none of the B’s are Zi0 ⊕ Zi1 ⊕X ⊕ C-c.e. Let i ∈
{i0, i1} be such that Zi is infinite. The condition d = (σ, Zi) is an extension of c

forcing W
(G∩Ai)⊕C
ei 6= Bj .

�

As usual, the following lemma iterates Lemma 4.12 and uses the fact that k+1 > k to satisfy
the requirement R~e.

Lemma 4.13 For every condition c, and every indices ~e, there exists an extension d forcing R~e.

Proof. Fix a condition c, and iterate applications of Lemma 4.12 to obtain an extension d such

that for each j < k, d forces W
(G∩Ai)⊕C
ei 6= Bj for k different i’s. By the pigeonhole principle,

there exists some i ≤ k such that d forces W
(G∩Ai)⊕C
ei 6= Bj for each j < k. Therefore, d

forces R~e. �

4.1.6. Construction. Thanks to Lemma 4.11 and Lemma 4.13, define an infinite descending
sequence of conditions (ε, ω) ≥ c0 ≥ . . . such that for each s ∈ ω,

(a) cs forces Qs
(b) cs forces R~e if s = 〈~e〉

where cs = (σs, Xs). Let G =
⋃
s σs. By (a), G ∩ Ai is infinite for every i ≤ k and by (b), G

satisfies each requirement R~e. This finishes the proof of Theorem 4.8.

4.2. Thin set theorem for pairs and reverse mathematics

There is a fundamental difference in the way we proved that RT1
k 6≤sc RT1

` and that TS1
` 6≤sc

TS1
k whenever k > `. In the former case, we have built an instance I of RT1

k satisfying some
hyperimmunity properties, and used those properties to construct a solution X to each instance
of RT1

` which does not compute a solution to I. We did not ensure that those hyperimmunity
properties are preserved relative to the solution X, which prevents us from iterating the con-
struction. As it happens, those properties are not preserved as multiple applications of RT1

` are
sufficient to compute a solution to I. In the latter case, we proved that TS1

` has an instance
whose solutions do not preserve some definitional property, whereas each instance of TS1

k has a
solution preserving it. This preservation enables us to iterate the applications of TS1

k and build
ω-structures whose second-order part is made of sets preserving this property. We will take
advantage of those observations to obtain new separations in reverse mathematics.

In this section, we prove that TS2
k+1 does not imply TS2

k over RCA0 for every k ≥ 2. In
particular, we answer several questions asked by Cholak, Giusto, Hirst and Jockusch [5] and by
Montálban [33] about the relation between RT2

2 and TS2. Dorais et al. [9] proved that RCA0 `
TSnk → ACA0 for n ≥ 3 whenever k is not large enough. Therefore we cannot hope to obtain
the same separation result over RCA0 for arbitrary tuples. However, we shall see that TSnk is
not computably reducible to TSnk+1 for n, k ≥ 2.

Theorem 4.14 For every k ≥ 2, let Φ be the conjunction of COH, WKL0, RRT2
2, Π0

1G, EM,
TS2

k+1. Over RCA0, Φ implies neither STS2
k nor SADS.
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The proof of Theorem 4.14 follows Corollary 4.20. Cholak et al. [5] and Montálban [33] asked
whether TS2 implies RT2

2 over RCA0. Thanks to Theorem 4.14, we answer negatively, noticing
that TS2

2 is the statement RT2
2 and RCA0 ` TS2

k → TS2 for every k ≥ 2 (see Dorais et al. [9]).

Corollary 4.15 TS2 does not imply RT2
2 over RCA0.

Using the standard trick of prehomogeneous sets, we can generalize from computable non-
reducibility over pairs to arbitrary tuples.

Corollary 4.16 For every k, n ≥ 2 there exists a ∆0
n k-partition B0 ∪ · · · ∪Bk−1 = ω such that

every computable coloring f : [ω]n → k + 1 has an infinite f -thin set computing no set thin for
the B’s.

Proof. This is proved in a relativized form by induction over n ≥ 2. The case n = 2 is obtained
by relativizing the proof of Theorem 4.14, which shows indeed the existence of a ∆0

2 k-partition
B0∪· · ·∪Bk−1 = ω such that every computable coloring f : [ω]2 → k+1 has an infinite f -thin set
computing no set thin for the B’s. Now assume it holds for some n in order to prove it for n+1.
By the relativized low basis theorem [23], let P � ∅(n−1) be such that P ′ ≤ ∅(n). Applying the

induction hypothesis to P , there is a ∆0,P
2 (hence ∆0

n+1) k-partition B0 ∪ · · · ∪ Bk−1 = ω such
that each P -computable coloring f : [ω]n → k + 1 has an infinite f -homogeneous set H such
that H ⊕ P does not compute an infinite set thin for the B’s.

Let f : [ω]n+1 → k + 1 be a computable coloring. By Jockusch [20, Lemma 5.4], there exists

an infinite set C pre-homogeneous for f such that C ≤T P . Let f̃ : [C]n → k + 1 be the P -

computable coloring defined for each σ ∈ [C]n by f̃(σ) = f(σ, a), where a ∈ A, a > max(σ).

Every f̃ -thin set is f -thin. By definition of B0 ∪ · · · ∪Bk−1 = ω, there exists an infinite f̃ -thin
(hence f -thin) set H such that H ⊕ P does not compute an infinite set thin for the B’s. �

Corollary 4.17 For every k, n ≥ 2, STSnk 6≤c TSnk+1

We proved in section 4.1 that STS2
k does not admit preservation of k non-c.e. definitions.

Jockusch noticed (see Hirschfeldt and Shore [19]) that SADS does not admit preservation of 2
non-c.e. definitions. We give the proof for the sake of completeness.

Theorem 4.18 SADS does not admit preservation of 2 non-c.e. definitions.

Proof. Tennenbaum (see Rosenstein [39]) constructed a computable linear order of order type ω+
ω∗ with no computable infinite ascending or descending sequence. Let B0 be the ω-part and B1

be the ω∗ part of this linear order. Every infinite subset of B0 (resp. B1) computes an infinite
ascending (resp. descending) sequence, therefore B0 and B1 are non-c.e. The ω part (resp. ω∗

part) is c.e. in every infinite ascending (resp. descending) sequence. �

By Schoenfield’s limit lemma [41], a stable computable coloring over (n + 1)-tuples can be
considered as a non-effective coloring over n-tuples. This consideration establishes a bridge
between preservation properties for colorings over (n+ 1)-tuples and strong preservation prop-
erties for colorings over n-tuples. In particular, it enables us to prove preservation results by
induction over n. The following lemma has been proven by the author in its full generality
in [34]. Nevertheless we reprove it in the context of preservation of non-c.e. definitions.

Lemma 4.19 For every k, n ≥ 1 and ` ≥ 2, if TSn` admits strong preservation of k non-c.e.
definitions, then TSn+1

` admits preservation of k non-c.e. definitions.

Proof. Fix any set C, k non-C-c.e. sets A0, . . . , Ak−1 and any C-computable coloring f :

[ω]n+1 → `. Consider the uniformly C-computable sequence of sets ~R defined for each σ ∈ [ω]n

and i < ` by

Rσ,i = {s ∈ ω : f(σ, s) = i}
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As COH admits preservation of k non-c.e. definitions, there exists some ~R-cohesive set G such
that G ⊕ C preserves non-c.e. definitions of the A’s. The cohesive set induces a (G ⊕ C)′-

computable coloring f̃ : [ω]n → ` defined by:

(∀σ ∈ [ω]n)f̃(σ) = lim
s∈G

f(σ, s)

As TSn` admits strong preservation of k non-c.e. definitions, there exists an infinite f̃ -thin set H
such that H ⊕G⊕C preserves non-c.e. definitions of the A’s. H ⊕G⊕C computes an infinite
f -thin set. �

Using Theorem 4.8 together with Lemma 4.19, we deduce the following corollary.

Corollary 4.20 For every k ≥ 2, TS2
k+1 admits preservation of k non-c.e. definitions.

We are now ready to prove Theorem 4.14.

Proof of Theorem 4.14. Fix some k ≥ 2. Wang proved in [47] that COH, WKL0, RRT2
2, Π0

1G and
EM admit preservation of k non-c.e. definitions. By Corollary 4.20, so does TS2

k+1. By Corol-

lary 4.6 and Theorem 4.18, neither STS2
k nor SADS admit preservation of k non-c.e. definitions.

The theorem follows by an application of Proposition 2.4 of Wang [47]. �

4.3. Thin set theorem for tuples and reverse mathematics

In this section, we extend the preservation of non-c.e. definitions of the thin set theorem for
pairs to arbitrary tuples, using the same construction pattern as Wang [48]. We deduce that
TSn` does not imply TSnk over RCA0 whenever ` is large enough, which is informally the strongest
result we can obtain since Proposition 5.3 in Dorais et al. [9] states that RCA0 ` ACA0 ↔ TSnk
for n ≥ 3 whenever k is not large enough.

Theorem 4.21 For every k, n ≥ 1, TSn` admits strong preservation of k non-c.e. definitions for
sufficiently large `.

The proof of Theorem 4.21 begins below in section 4.3.1. Using the fact that RCA0 ` TSn` →
TSn for every n, ` ≥ 2, we obtain the following preservation result for TS.

Corollary 4.22 For every k ≥ 1, TS admits strong preservation of k non-c.e. definitions.

Thanks to the existing preservations of non-c.e. definitions and Proposition 2.4 from Wang [47],
we deduce the following separations over ω-models.

Corollary 4.23 For every k ≥ 2, let Φ be the conjunction of COH, WKL0, RRT2
2, Π0

1G, EM,
TS2

k+1 and TS. Over RCA0, Φ implies neither STS2
k nor SADS.

The remainder of this section is devoted to the proof of Theorem 4.21.

4.3.1. Proof structure. We shall follow the proof structure of strong cone avoidance used by
Wang [48]. Fix some k ≥ 1. The induction works as follows:

(A1) In section 4.2 we proved that TS1
k+1 admits strong preservation of k non-c.e. definitions.

This is the base case of our induction.
(A2) Assuming that for each t ∈ (0, n), TStdt+1 admits strong preservation of k non-c.e.

definitions, we prove that TSndn−1+1 admits preservation of k non-c.e. definitions. This
is done by Lemma 4.19.

(A3) Then we prove that TSndn+1 admits strong preservation of k non-c.e. definitions where

dn = d1dn−1 +
∑

0<t<n

dtdn−t

Properties (A1) and (A2) are already proven. We now prove property (A3). It is again done
in several steps. Fix a coloring f : [ω]n → dn + 1 and a set C preserving non-c.e. definitions of
k sets A0, . . . , Ak−1.
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(S1) First, we construct an infinite set D ⊆ ω such that D⊕C preserves non-c.e. definitions
of the A’s and a sequence (Iσ : 0 < |σ| < n) such that for each t ∈ (0, n) and each
σ ∈ [ω]t

(a) Iσ is a subset of {0, . . . , dn} with at most dn−t many elements
(b) (∃b)(∀τ ∈ [D ∩ (b,+∞)]n−t)f(σ, τ) ∈ Iσ

(S2) Second, we construct an infinite set E ⊆ D such that E⊕C preserves non-c.e. definitions
of the A’s and a sequence (It : 0 < t < n) such that for each t ∈ (0, n)
(a) It is a subset of {0, . . . , dn} of size at most dtdn−t
(b) (∀σ ∈ [E]t)(∃b)(∀τ ∈ [E ∩ (b,+∞)]n−t)f(σ, τ) ∈ It

(S3) Third, we construct a sequence (ξi ∈ [E]<ω : i < ω) such that
(a) The set G =

⋃
i ξi is infinite and G⊕ C preserves non-c.e. definitions of the A’s

(b) |f([ξi]
n)| ≤ dn−1 and max(ξi) < min(ξi+1) for each i < ω

(c) For each t ∈ (0, n) and σ ∈ [
⋃
j<i ξj ]

t, f(σ, τ) ∈ It for all τ ∈ [
⋃
j≥i ξj ]

n−t

(S4) Finally, we build an infinite set H ⊆ G such that H ⊕ C preserves non-c.e. definitions
of the A’s and |f([H]n)| ≤ dn.

4.3.2. Generalized cohesiveness. Before proving that TSndn+1 admits strong preservation of k
non-c.e. definitions, we need to prove strong preservation for a generalized notion of cohesiveness
already used by the author in [34]. Cohesiveness can be seen as the problem which takes as an
input a coloring of pairs f : [ω]2 → ` and fixes the first parameter to obtain an infinite sequence
of colorings of integers fx : ω → ` for each x ∈ ω. A solution to this problem is an infinite set G
which is eventually homogeneous for each coloring fx.

Going further in this approach, we can consider that cohesiveness is a degenerate case of
the problem which takes as an input a coloring of pairs f : [ω]2 → ω using infinitely many
colors, and fixes again the first parameter to obtain an infinite sequence of colorings of integers
fx : ω → ω. A solution to this problem is an infinite set G such that for each color i, either
eventually the color will be avoided by fx over G, or G will be eventually homogeneous for fx
with color i.

We can generalize the notion to colorings over tuples f : [ω]n → ω, seeing f as an infinite
sequence of colorings over t-uples fσ : [ω]t → ω for each σ ∈ [ω]n−t. We will create a set G such
that at most dt colors will appear for arbitrarily large pairs over G for each function fσ. This
set will be constructed by applying TStdt+1 to fσ for each σ.

We do not need Theorem 4.24 in its full generality to complete our step (S1). However, it
will be useful in a later section for proving that the free set theorem admits preservation of k
non-c.e. definitions.

Theorem 4.24 Fix a coloring f : [ω]n → ω, some t ≤ n and suppose that TSsds+1 admits
strong preservation of k non-c.e. definitions for each s ∈ (0, t]. For every set C preserving
non-c.e. definitions of some sets A0, . . . , Ak−1, there exists an infinite set G such that G ⊕ C
preserves non-c.e. definitions of the A’s and for every σ ∈ [ω]<ω such that n− t ≤ |σ| < n,∣∣∣{x : (∀b)(∃τ ∈ [G ∩ (b,+∞)]n−|σ|)f(σ, τ) = x

}∣∣∣ ≤ dn−|σ|
Proof. Our forcing conditions are Mathias conditions (F,X) where X ⊕ C preserves non-c.e.
definitions of the A’s. Lemma 3.16 in Wang [47] states that for every set G which is sufficiently
generic for (F,X), G ⊕ C preserves k non-c.e. definitions. It suffices therefore to prove the
following lemma.

Lemma 4.25 For every condition (F,X) and σ ∈ [ω]<ω such that n − t ≤ |σ| < n, for every

finite set I such that |I| = dn−|σ|, there exists an extension (F, X̃) such that

{f(σ, τ) : τ ∈ [X̃]n−|σ|} ⊆ I or I 6⊆ {f(σ, τ) : τ ∈ [X̃]n−|σ|}
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Proof. Define the function g : [X]n−|σ| → I ∪ {⊥} by g(τ) = f(σ, τ) if f(σ, τ) ∈ I and

g(τ) = ⊥ otherwise. By strong preservation of k non-c.e. definitions of TS
n−|σ|
dn−|σ|+1, there ex-

ists an infinite subset X̃ ⊆ X such that X̃ ⊕ C preserves non-c.e. definitions of the A’s and∣∣∣{g(τ) : τ ∈ [X̃]n−|σ|}
∣∣∣ ≤ dn−|σ|. The condition (F, X̃) is the desired extension. �

Using Lemma 3.16 in [47] and Lemma 4.25, one can define an infinite descending sequence
of conditions (∅, ω) ≥ c0 ≥ c1 ≥ . . . such that for each s ∈ ω

1. cs = (Fs, Xs) with |Fs| ≥ s
2. cs forces WG⊕C

e 6= Ai if s = 〈e, i〉
3. {f(σ, τ) : τ ∈ [Xs]

n−|σ|} ⊆ I or I 6⊆ {f(σ, τ) : τ ∈ [Xs]
n−|σ|} if s = 〈σ, I〉 and |I| =

dn−|σ|.

The set G =
⋃
s Fs is an infinite set such that G ⊕ C preserves non-c.e. definitions of the A’s.

We claim that G satisfies the desired properties. Fix a σ ∈ [ω]<ω such that n − t ≤ |σ| <
n. Suppose that there exists dn−|σ| + 1 elements x0, . . . , xdn−|σ| such that (∀b)(∃τ ∈ [G ∩
(b,+∞)]n−|σ|)f(σ, τ) = xi for each i ≤ dn−|σ|. Let I = {x0, . . . , xdn−|σ|−1}. By step s = 〈σ, I〉,
G satisfies (Fs, Xs) such that {f(σ, τ) : τ ∈ [Xs]

n−|σ|} ⊆ I or I 6⊆ {f(σ, τ) : τ ∈ [Xs]
n−|σ|}. In

the first case it contradicts the choice of xdn−|σ| and in the second case it contradicts the choice
of an element of I. This finishes the proof of Theorem 4.24. �

4.3.3. Step (S1) : Construction of the set D. We start with the construction of an infinite
set D ⊆ ω such that D ⊕ C preserves non-c.e. definitions of the A’s and a sequence (Iσ : 0 <
|σ| < n) such that for each t ∈ (0, n) and each σ ∈ [ω]t

(a) Iσ is a subset of {0, . . . , dn} with at most dn−t many elements
(b) (∃b)(∀τ ∈ [G ∩ (b,+∞)]n−t)f(σ, τ) ∈ Iσ

Let D be the set constructed in Theorem 4.24 for t = n − 1. For each σ ∈ [ω]<ω such that
0 < |σ| < n, let

Iσ = {x ≤ dn : (∀b)(∃τ ∈ [G ∩ (b,+∞)]n−|σ|)f(σ, τ) = x}

By choice of D, the set Iσ has at most dn−|σ| many elements. Moreover, for each y ≤ dn such

that y 6∈ Iσ, there exists a bound by such that (∀τ ∈ [D ∩ (by,+∞)]n−|σ|)f(σ, τ) 6= x. So taking
b = max(by : y ≤ dn ∧ y 6∈ Iσ), we obtain

(∀τ ∈ [D ∩ (b,+∞)]n−|σ|)f(σ, τ) ∈ Iσ

4.3.4. Step (S2) : Construction of the set E. We now construct an infinite set E ⊆ D such that
E ⊕ C preserves non-c.e. definitions of the A’s and a sequence (It : 0 < t < n) such that for
each t ∈ (0, n)

(a) It is a subset of {0, . . . , dn} of size at most dtdn−t
(b) (∀σ ∈ [E]t)(∃b)(∀τ ∈ [E ∩ (b,+∞)]n−t)f(σ, τ) ∈ It

For each t ∈ (0, n) and σ ∈ [ω]t, let Ft(σ) = Iσ. Using strong preservation of k non-c.e.
definitions of TStdt+1, we build a finite sequence D ⊇ E1 ⊇ · · · ⊇ En−1 such that for each
t ∈ (0, n)

1. Et ⊕ C preserves non-c.e. definitions of the A’s
2. |Ft([Et]t)| ≤ dt

Let E = En−1 and It =
⋃
Ft([E]t) for each t ∈ (0, n). As for each σ ∈ [E]t, |Ft(σ)| = |Iσ| ≤ dn−t,

|It| ≤ dtdn−t, so property (a) holds. We now check that property (b) is satisfied. Fix a σ ∈ [E]t.
By definition of It, Ft(σ) = Iσ ⊆ It. As E ⊆ D,

(∃b)(∀τ ∈ [E ∩ (b,+∞)]n−t)f(σ, τ) ∈ Iσ ⊆ It
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4.3.5. Step (S3) : Construction of the set G. Given the set E and the sequence of sets of
colors (It : 0 < t < n), we will construct a sequence (ξi ∈ [E]<ω : i < ω) such that

(a) The set G =
⋃
i ξi is infinite and G⊕ C preserves non-c.e. definitions of the A’s

(b) |f([ξi]
n)| ≤ dn−1 and max(ξi) < min(ξi+1) for each i < ω

(c) For each t ∈ (0, n) and σ ∈ [
⋃
j<i ξj ]

t, f(σ, τ) ∈ It for all τ ∈ [
⋃
j≥i ξj ]

n−t

We construct our set G by Mathias forcing (σ,X) where X is an infinite subset of E such
that X ⊕ C preserves non-c.e. definitions of the A’s. Using property (b) of E, we can easily
construct an infinite sequence (ξi ∈ [E]<ω : i < ω) satisfying properties (b) and (c) of step (S3).
The following lemma shows how to satisfy property (a).

Lemma 4.26 Fix a condition (σ,X), some e ∈ ω and some j < k. There exists an exten-
sion (σξ, Y ) with |f([ξ]n)| ≤ dn−1, forcing WG⊕C

e 6= Aj .

Proof. Let W be the set of a ∈ ω such that for every coloring g : [X]n → dn + 1, there

is a set ξ ∈ [X]<ω such that |g([ξ]n)| ≤ dn−1 and a ∈ W σξ⊕C
e . The set W is X ⊕ C-c.e,

therefore W 6= Aj . Let a ∈W∆Aj . We have two cases:

− Case 1: a ∈ W r Aj . In particular, taking g = f , there exists a set ξ ∈ [X]<ω such

that |f([ξ]n)| ≤ dn−1 and a ∈W σξ⊕C
e . Take the condition (σξ,X) as the extension.

− Case 2: a ∈ Aj rW . By definition of W , the collection C of colorings g : [X]n → dn + 1

such that for every set ξ ∈ [X]<ω satisfying |g([ξ]n)| ≤ dn−1, a 6∈ W σξ⊕C
e is a non-

empty Π0,X⊕C
1 class. As WKL0 admits preservation of k non-c.e. definitions, there is

some coloring g ∈ C such that g ⊕X ⊕ C preserves non-c.e. definitions of the A’s. By
preservation of k non-c.e. definitions of TSndn−1+1, there exists an infinite subset Y ⊆ X
such that Y ⊕ C preserves non-c.e. definitions of the A’s and |g([Y ]n)| ≤ dn−1. The
condition (σ, Y ) forces a 6∈WG⊕C

e .

�

Using Lemma 4.26 and property (b) of the set E, we can construct an infinite descending
sequence of conditions (ε, E) ≥ c0 ≥ . . . such that for each s ∈ ω

(i) σs+1 = σsξs with |σs| ≥ s and f([ξs]
n) ≤ dn−1

(ii) f(σ, τ) ∈ It for each t ∈ (0, n), σ ∈ [σs]
t and τ ∈ [X]n−t.

(iii) cs forces WG⊕C
e 6= Aj if s = 〈e, j〉

where cs = (σs, Xs). The set G =
⋃
s σs satisfies the desired properties.

4.3.6. Step (S4) : Construction of the set H. Finally, we build an infinite set H ⊆ G such
that H ⊕ C preserves non-c.e. definitions of the A’s and |f([H]n)| ≤ dn.

For each i < ω, let Ji = f([ξi]
n). By property (b) of step (S3), Ji is a subset of {0, . . . , dn}

such that |Ji| ≤ dn−1. For each subset J ⊆ {0, . . . , dn} of size dn−1, define the set

ZJ = {x ∈ G : (∃i)x ∈ ξi ∧ f([ξi]
n) ⊆ J}

There exists finitely many such J ’s, and the Z’s form a partition of G. Apply strong preservation
of k non-c.e. definitions of TS1

d1+1 to obtain a finite set S of J ’s of such that |S| ≤ d1 and an
infinite set H ⊆

⋃
J∈S ZJ ⊆ G such that H ⊕G⊕ C preserves non-c.e. definitions of the A’s.

Lemma 4.27 |f([H]n)| ≤ dn

Proof. As H ⊆ G, any σ ∈ [H]n can be decomposed into ρ_τ for some ρ ∈ [ξi]
<ω and some τ ∈

[
⋃
j≥i ξj ]

<ω with |ρ| > 0. If |τ | = 0 then f(σ) ∈
⋃
J∈S J by definition of H. If |τ | > 0,

then f(σ) ∈ I|ρ| by property (c) of step (S3). In any case

f(σ) ∈ (
⋃
J∈S

J) ∪ (
⋃

t∈(0,n)

It)
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Recall that |S| ≤ d1, |J | = dn−1 for each J ∈ S, and |It| ≤ dtdn−t for each t ∈ (0, n).
Thus, applying the definition of dn from (A3), |f([H]n)| ≤ d1dn−1 +

∑
0<t<n dtdn−t = dn, as

desired. �

This completes property (A3) and the proof of Theorem 4.21.

4.4. Free set theorem for tuples and non-c.e. definitions

Cholak et al. [5] studied the thin set theorem with infinitely many colors as a weakening
of the free set theorem. The forcing notions used by Wang in [47] and by the author in [34]
for constructing solutions to free set instances both involve the thin set theorem for a finite,
but arbitrary number of colors. These constructions may suggest some relation between FSn

and TSnk for arbitrarily large k, but the exact nature of this relation is currently unclear.
In this section, we use the preservation of non-c.e. definitions of the thin set theorem to

deduce similar preservation results for the free set theorem, and thereby separate FS from RT2
2

over RCA0. More precisely, we prove the following preservation theorem.

Theorem 4.28 For every k ∈ ω, FS admits strong preservation of k non-c.e. definitions.

The proof of Theorem 4.28 follows Corollary 4.30. Cholak et al. [5] asked whether any of FS2,
FS2 + COH and FS2 + WKL0 imply RT2

2 and Hirschfeldt [17] asked whether FS2 + WKL0 implies
any of SRT2

2, ADS or CAC. We answer all of those questions negatively with the following
corollary.

Corollary 4.29 For every k ≥ 2, let Φ be the conjunction of COH, WKL0, RRT2
2, Π0

1G, EM,
TS2

k+1 and FS. Over RCA0, Φ implies neither STS2
k nor SADS.

Corollary 4.30 FS does not imply RT2
2 over ω-models.

The remainder of this section is devoted to the proof of Theorem 4.28. The proof is done
by induction over the size of the tuples. The base case of our induction states that FS0 admits
strong preservation of k non-c.e. definitions. Consider FS0 as a degenerate case of the free set
theorem, where an instance is a constant c and a solution to c is an infinite set H which does
not contain c. Indeed, a function f : [ω]0 → ω can be considered as a constant c, and a set H
is f -free if for every ε ∈ [H]0, f(ε) ∈ H → f(ε) ∈ ε. As f(ε) 6∈ ε, f(ε) = c 6∈ H. From now on,
we will assume that FSt admits strong preservation of k non-c.e. definitions for every t ∈ [0, n).

We start with a lemma similar to Lemma 4.19.

Lemma 4.31 For every n ≥ 1 and k ≥ 2, if FSn admits strong preservation of k non-c.e.
definitions, then FSn+1 admits preservation of k non-c.e. definitions.

Proof. Fix any set C, k non-C-c.e. sets A0, . . . , Ak−1 and any C-computable coloring f :

[ω]n+1 → ω. Consider the uniformly C-computable sequence of sets ~R defined for each σ ∈ [ω]n

and y ∈ ω by

Rσ,y = {s ∈ ω : f(σ, s) = y}

As COH admits preservation of k non-c.e. definitions, there exists some ~R-cohesive set G such
that G ⊕ C preserves non-c.e. definitions of the A’s. The cohesive set induces a coloring f̃ :
[ω]n → ω defined for each σ ∈ [ω]n by

f̃(σ) =

{
lims∈G f(σ, s) if it exists
0 otherwise

As FSn admits strong preservation of k non-c.e. definitions, there exists an infinite f̃ -free set H
such that H ⊕G⊕ C preserves non-c.e. definitions of the A’s. In particular,

(∀σ ∈ [H]n)(∀y ∈ H r σ)(∃b)(∀s > b)f(σ, s) 6= y

H ⊕G⊕ C computes an infinite f -free set. �
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4.4.1. Trapped functions. Although the notion of free set can be defined for every coloring over
tuples of integers, we shall restrict ourselves to a particular kind of colorings: left trapped
functions. The notion of trapped function was introduced by Wang in [48] to prove that FS
does not imply ACA0 over ω-models. It was later reused by the author in [34] to separate FS
from WWKL0 over ω-models.

Definition 4.32 A function f : [ω]n → ω is left (resp. right) trapped if for every σ ∈ [ω]n,
f(σ) ≤ σ(n− 1) (resp. f(σ) > σ(n− 1)).

The following lemma is a particular case of a more general statement proven by the author
in [34]. It follows from the facts that FSn for right trapped functions is strongly uniformly re-
ducible to the diagonally non-computable principle (DNR), which itself is computably reducible
to FSn for left trapped functions.

Lemma 4.33 (Patey in [34]) For each k, n ≥ 1, if FSn for left trapped functions admits (strong)

preservation of k non-c.e. definitions then so does FSk.

It therefore suffices to prove strong preservation of k non-c.e. definitions for left trapped
functions.

4.4.2. Case of left trapped functions. In this part, we will prove the following theorem which,
together with Lemma 4.33 is sufficient to prove Theorem 4.28 by induction over n.

Theorem 4.34 For each k, n ≥ 1, if FSt admits strong preservation of k non-c.e. definitions for
each t ∈ [0, n), then so does FSn for left trapped functions.

The proof of Theorem 4.34 begins after Lemma 4.36 and ends after Lemma 4.38. The
two following lemmas will ensure that the reservoirs of our forcing conditions will have good
properties, so that the conditions will be extensible.

Lemma 4.35 (Patey in [34]) Suppose that FSt admits strong preservation of k non-c.e. defi-
nitions for each t ∈ (0, n) for some k ∈ ω. Fix a set C, some non-C-c.e. sets A0, . . . , Ak−1, a
finite set F and an infinite set X computable in C. For every function f : [X]n → ω there
exists an infinite set Y ⊆ X such that Y ⊕ C preserves non-c.e. definitions of the A’s and
(∀σ ∈ [F ]t)(∀τ ∈ [Y ]n−t)f(σ, τ) 6∈ Y r τ for each t ∈ (0, n).

Proof. Fix the finite enumeration σ0, . . . , σm−1 of all elements of [F ]t for all t ∈ (0, n). We
define a finite decreasing sequence of sets X = Y0 ⊇ Y1 ⊇ · · · ⊇ Ym such that for each s < m

(a) none of the A’s are Ys+1 ⊕ C-c.e.

(b) ∀τ ∈ [Ys+1]
n−|σs|f(σs, τ) 6∈ Ys+1 r τ

Given some stage s < m and some set Ys, define the function fσs : [Ys]
n−|σs| → ω by fσs(τ) =

f(σs, τ). By strong preservation of k non-c.e. definitions of FSn−|σs|, there exists an infinite set
Ys+1 ⊆ Ys satisfying (a) and (b). We claim that Ym satisfies the properties of the lemma. Fix
some σ ∈ [F ]t and some τ ∈ [Ym]n−t for some t ∈ (0, n). There is a stage s < m such that

σ = σs. Moreover, τ ∈ [Ys+1]
n−|σs|, so by (b), f(σs, τ) 6∈ Ys+1 r τ , therefore f(σ, τ) 6∈ Ym r τ ,

completing the proof. �

Lemma 4.36 Suppose that TStdt+1 admits strong preservation of k non-c.e. definitions for each

t ∈ (0, n] and FSt admits strong preservation of k non-c.e. definitions for each t ∈ [0, n). For every
function f : [ω]n → ω and every set C preserving non-c.e. definitions of some sets A0, . . . , Ak−1,
there exists an infinite set X such that X ⊕ C preserves non-c.e. definitions of the A’s and for
every σ ∈ [X]<ω such that 0 ≤ |σ| < n,

(∀x ∈ X r σ)(∃b)(∀τ ∈ [X ∩ (b,+∞)]n−|σ|)f(σ, τ) 6= x
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Proof. Let X be the infinite set constructed in Theorem 4.24 with t = n. For each s <
n and i < dn−s, let fs,i : [X]s → ω be the function such that fs,i(σ) is the ith element
of {x : (∀b)(∃τ ∈ [X ∩ (b,+∞)]n−s)f(σ, τ) = x} if it exists, and 0 otherwise. Define a finite
sequence X ⊇ X0 ⊇ · · · ⊇ Xn−1 such that for each s < n

1. Xs ⊕ C preserves non-c.e. definitions of the A’s
2. Xs is fs,i-free for each i < dn−s

We claim thatXn−1 is the desired set. Fix s < n and take any σ ∈ [Xn−1]
s and any x ∈ Xn−1rσ.

If (∀b)(∃τ ∈ [X∩(b,+∞)]n−s)f(σ, τ) = x, then by choice of X, there exists an i < dn−s such that
fs,i(σ) = x, contradicting fs,i-freeness of Xn−1. So (∃b)(∀τ ∈ [X ∩ (b,+∞)]n−s)f(σ, τ) 6= x. �

Proof of Theorem 4.34. Fix k ≥ 2, some set C, some non-C-c.e. sets A0, . . . , Ak−1 and a left
trapped coloring f : [ω]n → ω. We will construct an infinite f -free set H such that none of the
A’s is H ⊕ C-c.e. Our forcing conditions are Mathias conditions (F,X) such that

(a) X ⊕ C preserves non-c.e. definitions of the A’s
(b) (∀σ ∈ [F ∪X]n)f(σ) 6∈ F r σ
(c) (∀σ ∈ [F ∪X]t)(∀x ∈ (F ∪X) r σ)(∃b)(∀τ ∈ [(F ∪X) ∩ (b,+∞)]n−t)

f(σ, τ) 6= x for each t ∈ [0, n).
(d) (∀σ ∈ [F ]t)(∀τ ∈ [X]n−t)f(σ, τ) 6∈ X r τ for each t ∈ (0, n)

Properties (c) and (d) will be obtained by Lemma 4.36 and Lemma 4.35 and are present to
maintain the property (b) over extensions. A set G satisfies a condition (F,X) if it is f -free
and satisfies the Mathias condition (F,X). Our initial condition is (∅, Y ) where Y is obtained
by Lemma 4.36.

Lemma 4.37 For every condition (F,X) there exists an extension (H,Y ) such that |H| > |F |.

Proof. Choose an x ∈ X such that (∀σ ∈ [F ]n)f(σ) 6= x and set H = F ∪ {x}. By property (c)
of (F,X), there exists a b such that

(∀σ ∈ [F ]t)(∀τ ∈ [X ∩ (b,+∞)]n−t)f(σ, τ) 6= {x}r σ

for each t ∈ [0, n]. By Lemma 4.35, there exists an infinite set Y ⊆ X r [0, b] such that Y ⊕ C
preserves non-c.e. definitions of the A’s and property (d) is satisfied for (H,Y ). We claim that
(H,Y ) is a valid condition. Properties (a), (c) and (d) trivially hold. We now check property
(b). By property (b) of (F,X), we only need to check that (∀σ ∈ [F ∪ Y ]k)f(σ) 6= x. This
follows from our choice of b. �

Lemma 4.38 For every condition (F,X), every e ∈ ω and j < k, there exists an extension
(H,Y ) forcing WG⊕C

e 6= Aj .

Proof. By removing finitely many elements of X, we can assume that (∀σ ∈ [F ]n)f(σ) 6∈ X.

For each a ∈ ω, let Ca be the Π0,X⊕C
1 class of left trapped functions g : [X]n → ω such that

for every g-free set E ⊂ X, a 6∈ W (F∪E)⊕C
e . Also define W = {a ∈ ω : Ca = ∅}. The set W is

X ⊕ C-c.e. but Aj is not X ⊕ C-c.e., therefore W 6= Aj . Let a ∈W∆Aj . We have two cases:

− Case 1: a ∈WrAj . As f 6∈ Ca, there exists a finite f -free set E such that a ∈W (F∪E)⊕C
e .

Set H = F ∪ E. By property (c) of (F,X), there exists a b such that

(∀σ ∈ [H]t)(∀x ∈ H)(∀τ ∈ [X ∩ (b,+∞)]n−t)f(σ, τ) 6= {x}r σ

for each t ∈ [0, n). By Lemma 4.35, there exists an infinite set Y ⊆ X ∩ (b,+∞) such
that Y ⊕ C preserves non-c.e. definitions of the A’s and property (d) is satisfied for
(H,Y ). We claim that (H,Y ) is a valid condition.

Properties (a), (c) and (d) trivially hold. We now check property (b). By our choice
of b, we only need to check that (∀σ ∈ [H]n)f(σ) 6∈ H r σ. By property (b) of (F,X),
it suffices to check that (∀σ ∈ [H]n)f(σ) 6∈ E r σ. By property (d) of (F,X), and our
initial assumption on X, we only need to check that (∀σ ∈ [E]n)f(σ) 6∈ E r σ, which is
exactly f -freeness of E.
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− Case 2: a ∈ AjrW . By definition of W , Ca 6= ∅. As WKL0 admits preservation of k non-
c.e. definitions, there exists a left trapped functions g ∈ Ca such that g⊕X⊕C preserves
non-c.e. definitions of the A’s. As FSn admits preservation of k non-c.e. definitions, there
exists some infinite g-free set Y ⊆ X such that Y ⊕ C preserves non-c.e. definitions of
the A’s. The condition (F, Y ) forces a 6∈WG⊕C

e and therefore WG⊕C
e 6= Aj .

�

Let Y be the set constructed in Lemma 4.36. Using Lemma 4.37 and Lemma 4.38, we can
define an infinite decreasing sequence of conditions (∅, Y ) ≥ c0 ≥ . . . such that for every s ∈ ω

(i) |Fs| ≥ s
(ii) cs forces WG⊕C

e 6= Aj if s = 〈e, j〉
where cs = (Fs, Xs). Let G =

⋃
s Fs. By (i), G is infinite and by (ii), none of the A’s are G⊕C-

c.e. This completes the proof of Theorem 4.34. �

5. Conclusion

In this last section, we recall some existing open questions about the free set and thin set
theorems, and state some new ones. Cholak et al. [5] asked the following question which remains
open.

Question 5.1 Does TS2 imply FS2 over RCA0?

We ask a related question motivated by the fact that the proof of cone avoidance of FS by
Wang [48] and the preservation of k non-c.e. definitions of FS2 in section 4.4 both use TS2

k for
any k to construct a solution to an instance of FS2. We know by Corollary 4.29 that FS2 does
not imply TS2

k over RCA0 for any k, but the reverse implication is still open.

Question 5.2 Does TS2
3 imply FS2 over RCA0?

Cholak et al. [5] also asked whether FS2 + CAC implies RT2
2 over RCA0. Using the equivalence

between RT2
2 and EM + ADS proven by Bovykin and Weiermann [3], we ask the following related

questions.

Question 5.3 Does any of FS2, TS2 and TS2
3 imply EM over RCA0?
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