Canonical notions of forcing in reverse mathematics

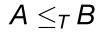
Ludovic PATEY Joint work with Denis Hirschfeldt

Computability 101

Motivations o●ooooooooooooooo	Framework	Applications	Questions

A set $A \subseteq \omega$ is computable if there is a computer program which, on input *n*, decides whether $n \in A$ or not.

A set $A \subseteq \omega$ is computable in *B* if there is a computer program in an language augmented with the characteristic function of *B* which, on input *n*, decides whether $n \in A$ or not.



A is computable in B

\leq_{T} is a preorder

Turing equivalence $A \equiv_T B$ if $A \leq_T B$ and $B \leq_T A$

Turing degree deg_T(A) = { $B : B \equiv_T A$ }

Turing degrees (\mathcal{D}, \leq) is a partial order

The Turing degrees are

- ► countable
- robust

They represent computational powers

 $\Phi_{\mathbf{e}}(\mathbf{X}) \downarrow$

The e-th program halts on input x.

$\Phi_{\mathbf{e}}(\mathbf{x})[\mathbf{t}]\downarrow$

The e-th program halts on input *x* in less than *t* steps.

Framework

 $\Phi_{\mathbf{e}}^{\mathbf{A}}(\mathbf{X})\downarrow$

The e-th program with oracle A halts on input x.

 $\Phi_{\mathbf{e}}^{\mathbf{A}}(\mathbf{x})[\mathbf{t}] \downarrow$

The e-th program with oracle *A* halts on input *x* in less than *t* steps.

Halting set $\emptyset' = \{ \mathbf{e} : \Phi_{\mathbf{e}}(\mathbf{e}) \downarrow \}$

Thm (Turing)

The halting set is not computable.

Turing jump $A' = \{ e : \Phi_e^A(e) \downarrow \}$

Thm

$$A <_T A'$$

$$A \equiv_T B \to A' \equiv_T B$$

Arithmetic hierarchy

$$\Sigma_n^0 \quad \exists x_1 \forall x_2 \dots Q x_n R(x_1, \dots, x_n)$$

$$\Pi_n^0 \quad \forall x_1 \exists x_2 \dots Q x_n R(x_1, \dots, x_n)$$

where *R* has only bounded quantifiers.

- A set is Σ_n^0 (Π_n^0) if it is definable by a Σ_n^0 (Π_n^0) formula
- A set is Δ_n^0 if it is both Σ_n^0 and Π_n^0 .

$Computability \equiv \text{Definability}$

Thm (Post)

A set is c.e. iff it is Σ_1^0 and computable iff it is Δ_1^0 .

Thm (Post)

A set is $\emptyset^{(n)}$ -c.e. iff it is Σ_{n+1}^0 and $\emptyset^{(n)}$ -computable iff it is Δ_{n+1}^0 .

Have we found the right techniques?

- ▶ Would martians come up with the same proof?
- ► Do we loose in generality with our constructions?

Applications

Questions

Example : weak 1-genericity

- ► A set $D \subseteq 2^{<\omega}$ is dense if for every $\sigma \in 2^{<\omega}$ there is a $\tau \succeq \sigma$ in D.
- A real *R* meets *D* if $\sigma \in D$ for some $\sigma \prec R$.
- A real *R* is weakly 1-generic if it meets every dense Σ₁⁰ set.

Example : weak 1-genericity

List all the Σ_1^0 sets $W_0, W_1, W_2, \dots \subseteq 2^{<\omega}$

Build a real with the finite extension method $\sigma_0 \prec \sigma_1 \prec \sigma_2 \prec \dots$

Let $f: \omega \to \omega$ be an increasing time function.

Search for an extension σ_{s+1} of σ_s in some unsatisfied W_e such that σ_s has no extension in W_i[f(|σ_{s+1}|)] for any unsatisfied W_i with i < e</p>

Thm (Kurtz)

Every weakly 1-generic real computes a function *f* which makes this construction produce a weakly 1-generic real.

The construction is without loss of generality

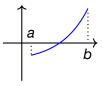
- ► The construction is natural
- ► The resulting object carries its own construction

Applications

Consider mathematical problems

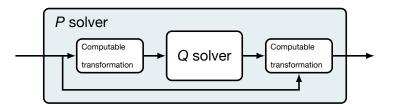
Intermediate value theorem

For every continuous function *f* over an interval [a, b] such that $f(a) \cdot f(b) < 0$, there is a real $x \in [a, b]$ such that f(x) = 0.



König's lemma Every infinite, finitely branching tree admits an infinite path.

Computable reduction



 $\mathsf{P} \leq_{\mathsf{C}} \mathsf{Q}$

Every P-instance *I* computes a Q-instance *J* such that for every solution *X* to *J*, $X \oplus I$ computes a solution to *I*.

Observations

When proving that $P \leq_c Q$, we usually

- construct a computable instance of P with complex solutions
- construct for every computable instance of Q a simple solution
- ► use a notion of forcing to build solutions to Q-instances

Observations

The notion of forcing for Q does not depend on P

- Q seems to have a canonical notion of forcing
- Separation proofs can be obtained without loss of generality using this notion of forcing

Examples

For WKL, forcing with Π_1^0 classes :

- ► ACA ≰_c WKL
- ► $\mathsf{RT}_2^2 \not\leq_{\mathsf{c}} \mathsf{WKL}$
- ▶ ...

For ADS, forcing with split pairs :

- ► ACA ≰_c ADS
- ► CAC ≰_c ADS
- ► $\mathsf{RT}_2^2 \not\leq_{\mathsf{c}} \mathsf{ADS}$
- ► DNC ≰_c ADS

(cone avoidance) (ω hyperimmunities)

(cone avoidance) (Towsner) (dep. hyperimmunity) (non-DNC degree)

For DNC, forcing with bushy trees

Towards a framework

Weakness property

- ► A weakness property is a class $W \subseteq 2^{\omega}$ which is closed downward under Turing reducibility.
- ► A problem P computably satisfies a weakness property *W* if every computable instance of P has a solution in *W*.

Example : Given a set *A*, let $W_A = \{X : X \not\geq_T A\}$. Then WKL computably satisfies W_A for every $A \not\leq_T \emptyset$. Weakness property

If Q computably satisfies ${\mathcal W}$ but P does not, then

P-forcing

Fix a problem P.

- A P-forcing is a forcing family P = (P_I : I ∈ dom P) such that for every P-instance I, every sufficiently generic filter yields a solution to I.
- A P-forcing ℙ computably satisfies a weakness property W if every computable I ∈ dom(P), every sufficiently generic filter yields an element in W.

Example : Given a set *A*, let $W_A = \{X : X \not\geq_T A\}$. Forcing with Π_1^0 classes computably satisfies W_A for every $A \not\leq_T \emptyset$. Fix a class \mathfrak{W} of weakness properties.

Defi

A P-forcing \mathbb{P} is canonical for \mathfrak{W} if for every $\mathcal{W} \in \mathfrak{W}$ such that P computably satisfies \mathcal{W} , then so does \mathbb{P} .

What class \mathfrak{W} to consider?

Weakness properties

Effectiveness properties:

Lowness ($\mathcal{W} = \{X : X' \leq_T \emptyset'\}$)

Arithmetical hierarchy ($W = \{X : X \text{ is arithmetical }\}$) Genericity properties:

Cone avoidance $(\mathcal{W}_A = \{X : X \not\geq_T A\} \text{ for } A \not\leq_T \emptyset)$

Preservation of hyperimmunity $(W_f = \{X : f \text{ is } X \text{-hyperimmune}\})$

Preservation of non- Σ_1^0 definitions ($\mathcal{W}_A = \{X : A \notin \Sigma_1^{0,X}\}$ for $A \notin \Sigma_1^0$)

Closed set avoidance

A closed set avoidance property is a property of the form

 $\mathcal{W}_{\mathcal{C}} = \{ X : \mathcal{C} \text{ has no } X \text{-computable member} \}$

for some closed set $\mathcal{C} \subseteq \omega^{\omega}$ in the Baire space.

- Cone avoidance: $C_A = \{A\}$
- ▶ Preservation of hyperimmunity: $C_f = \{g \in \omega^{\omega} : g \ge f\}$
- ► Non-DNC degree $C = \{ g \in \omega^{\omega} : \exists n(g(n) = \Phi_n(n)) \}$

First jump part

 First order part of P: first-order consequences of P in Reverse Mathematics

$$\{T \in \mathcal{L}_{PA} : \mathsf{RCA}_0 + \mathsf{P} \vdash T\}$$

 First order part of P: first-order problems reducible to it in Weihrauch degrees

$$\{\mathsf{Q}\subseteq\omega^{\omega}\rightrightarrows\omega:\mathsf{Q}\leq_{W}\mathsf{P}\}$$

 First jump part of P : closed sets computably avoided by the problem

{ closed $C \subseteq \omega^{\omega}$: P computably satisfies $\mathcal{W}_{\mathcal{C}}$ }

What problems admit a canonical forcing?

Trivial examples

Cohen genericity

Lem (Folklore)

If $C \subseteq \omega^{\omega}$ is a closed set with no computable member, then C has no *G*-computable member for every sufficiently Cohen generic.

Proof: Given a Cohen condition $\sigma \in 2^{<\omega}$ forcing totality of a functional Φ_{e} , there is a $\tau \succeq \sigma$ such that $[\Phi_{e}^{\tau}] \cap \mathcal{C} = \emptyset$.

The Atomic Model Theorem (AMT) admits a canonical notion of forcing for closed set avoidance properties.

Highness

Lem (Folklore)

If $C \subseteq \omega^{\omega}$ is a closed set with no computable member and $A \in 2^{\omega}$, then C has no G-computable member for some G such that $G' \geq_T A$.

Proof: Use forcing conditions (h, n), where $h \subseteq \omega^2 \to 2$ is a finite Δ_2^0 approximation, and *n* fixes the first *n* columns to *A*.

Cohesiveness (COH) and highness admit a canonical notion of forcing for closed set avoidance properties.

A non-trivial example

WKL: Every infinite binary tree has an infinite path

Let \mathcal{C} be the closed set of all completions of PA.

Then WKL does not computably preserve $W_{\mathcal{C}}$.

Thm

The WKL-forcing with non-empty Π_1^0 classes is canonical for closed set avoidance properties.

Thm

The WKL-forcing with non-empty Π_1^0 classes is canonical for closed set avoidance properties.

- Fix a closed set $C \subseteq \omega^{\omega}$ and a functional Φ_{e} .
- ▶ Try to prove that the set of Π_1^0 classes forcing $\Phi_e^G \notin C$ is dense.
- ▶ If it fails, show that WKL does not computably preserve $\mathcal{W}_{\mathcal{C}}$.

Fix a closed set $\mathcal{C} \subseteq \omega^{\omega}$, a non-empty Π_1^0 class \mathcal{D} and Φ_e .

Success if

- ▶ there is a $\sigma \in 2^{<\omega}$ such that $[\sigma] \cap D \neq \emptyset$ and $[\Phi_e^{\sigma}] \cap C = \emptyset$.
- or $\{X \in \mathcal{D} : \Phi_e^X(n) \uparrow\} \neq \emptyset$ for some *n*.

Otherwise $\{\Phi_e^X : X \in \mathcal{D}\}$ is an effectively compact subset of \mathcal{C} . Every PA degree computes a member of \mathcal{C} .

Thm

WKL computably preserves W_C iff C has no non-empty effectively compact subset.

- Cone avoidance : $C = \{A\}$ if $A \leq_T \emptyset$
- ▶ Preservation of hyperimmunity: $C_f = \{g \in \omega^{\omega} : g \ge f\}$
- ► DNC : The II₁⁰ class of {0, 1}-valued DNC is a non-empty effectively compact subset

The proofs of canonicity yield forcing-free criteria of preservations.

The existence of a canonical notion of forcing yields uniform procedures.

Ascending Descending Sequence

SADS: Every linear order of type $\omega + \omega^*$ has an infinite ascending or descending sequence.

Let $L = (\omega, <_L)$ be an instance of SADS with ω -part U and ω^* -part V.

Forcing conditions : (σ_0, σ_1) such that

- ▶ $\sigma_0, \sigma_1 \in \omega^{<\omega}$ are $<_{\mathbb{N}}$ -ascending
- ► $\sigma_0 \subseteq U$ is <_L-ascending
- ► $\sigma_1 \subseteq V$ is <_L-descending

Applications

Ascending Descending Sequence

Thm

The SADS-forcing is canonical for closed set avoidance properties.

- Fix a closed set $C \subseteq \omega^{\omega}$ and two functionals Φ_{e_0}, Φ_{e_1} .
- ► Try to prove that the set of conditions (σ_0, σ_1) forcing $\Phi_{e_0}^{G_0} \notin C \lor \Phi_{e_1}^{G_1} \notin C$ is dense.
- ▶ If it fails, show that SADS does not computably preserve W_C .

Applications

Ascending Descending Sequence

Thm

The SADS-forcing is canonical for closed set avoidance properties.

A split pair is a pair (τ_0, τ_1) such that

- ▶ $\tau_0, \tau_1 \in \omega^{<\omega}$ are $<_{\mathbb{N}}$ -ascending
- ▶ τ_0 is <_L-ascending, τ_1 is <_L-descending
- $\blacktriangleright \max_L \tau_0 <_L \min_L \tau_1$

Ascending Descending Sequence

Fix a closed set $\mathcal{C} \subseteq \omega^{\omega}$, a condition (σ_0, σ_1) and Φ_{e_0}, Φ_{e_1} .

Success if

- ► there is a $\tau_0 \succeq \sigma_0$ such that (τ_0, σ_1) is a condition, and $[\Phi_{e_0}^{\tau_0}] \cap C = \emptyset$.
- ► there is a $\tau_1 \succeq \sigma_1$ such that (σ_0, τ_1) is a condition, and $[\Phi_{\mathbf{e}_1}^{\tau_1}] \cap \mathcal{C} = \emptyset$.
- ▶ or there is no split pair (τ_0, τ_1) with $\tau_0 \succeq \sigma_0, \tau_1 \succeq \sigma_1$ and such that $\{0, ..., n\} \subseteq \operatorname{dom} \Phi_{e_0}^{\tau_0} \cap \operatorname{dom} \Phi_{e_1}^{\tau_1}$ for some *n*.

Otherwise, we can computably enumerate split pairs (τ_0^s, τ_1^s) such that $\Phi_{e_0}^{\tau_0^s}$ and $\Phi_{e_1}^{\tau_1^s}$ are defined on $\{0, \ldots, s\}$. {max $\tau_0^s : s \in \omega$ } is a computable instance of SADS such that every solution computes member of C.

Second-jump parts

Closed set jump avoidance

A closed set jump avoidance property is a property of the form

 $\mathcal{J}_{\mathcal{C}} = \{X : \mathcal{C} \text{ has no } X' \text{-computable member}\}$

for some closed set $\mathcal{C} \subseteq \omega^{\omega}$ in the Baire space.

Let C be the closed set of all completions of PA relative to 0'. Then COH does not computably preserve \mathcal{J}_{C} .

Cohesiveness

Let R_0, R_1, R_2, \ldots be an instance of COH

Let
$$R_{\sigma} = \bigcap_{\sigma(i)=1} R_i \bigcap_{\sigma(i)=0} \overline{R}_i$$

Forcing conditions: (*F*, σ , D) such that

- ▶ *F* is a finite set, $\sigma \in 2^{<\omega}$
- \mathcal{D} is a non-empty $\Pi_1^{0,\emptyset'}$ subclass of $[\sigma]$
- $(\textit{\textit{E}}, \tau, \textit{\textit{E}}) \leq (\textit{\textit{F}}, \sigma, \textit{\textit{D}})$ if
 - ▶ (E, R_{τ}) Mathias extends (F, R_{σ}) .
 - $\blacktriangleright \ \sigma \prec \tau \text{ and } \mathcal{E} \subseteq \mathcal{D}.$

Cohesiveness

Thm

The COH-forcing is canonical for closed set jump avoidance properties.

Thm

COH computably preserves $\mathcal{J}_{\mathcal{C}}$ iff \mathcal{C} has no non-empty \emptyset' -effectively compact subset.

If A is not ∆₂⁰, every computable instance of COH admits a solution G such that A is not ∆₂⁰(G).

Open questions

DNC functions

A function *f* is DNC if for every $e, f(e) \neq \Phi_e(e)$.

A tree $T \subseteq \omega^{<\omega}$ is *k*-bushy above $\sigma \in \omega^{<\omega}$ if every element of *T* is comparable with *T*, and for every $\tau \in T$ which extends σ and is not a leaf, τ has at least *k* immediate extensions in *T*.

A set $B \subseteq \omega^{<\omega}$ is *k*-small above σ if there is no finite tree *k*-bushy above σ whose leaves belong to *B*.

DNC functions

Bushy tree forcing : (σ, B) where

- $\blacktriangleright \ \sigma \in \omega^{<\omega}$
- *B* is *k*-small above σ for some *k*.

Question

Is bushy tree DNC-forcing canonical for closed set avoidance properties?

Intuition

Lem

Let X be a set. TFAE

- ► X computes a DNC function
- ► X computes a function g such that if $|W_e| \le n$, then $g(e, n) \notin W_e$.

Lem

Suppose *B* is a *k*-small c.e. set above σ . Then the set

{n : B is not k-small above σn }

is c.e. of size at most k - 1.

Conclusion

Natural combinatorial problems seem to have canonical notions of forcing.

The proofs of canonicity yield forcing-free criteria of preservations.

The right notion of forcing for DNC functions is not fully understood.

References

Mushfeq Khan and Joseph S Miller.

Forcing with bushy trees.

Bulletin of Symbolic Logic, 23(2):160–180, 2017.

Publisher: Cambridge University Press.

Ludovic Patey.

Controlling iterated jumps of solutions to combinatorial problems.

```
Computability, 6(1):47–78, 2017.
```