Part II : Ramsey's theorem computes through sparsity

Ludovic LEVY PATEY

Ramsey's theorem

$[X]^{n}$ is the set of unordered n-tuples of elements of X
A k-coloring of $[X]^{n}$ is a map $f:[X]^{n} \rightarrow k$
A set $H \subseteq X$ is homogeneous for f if $\left|f\left([H]^{n}\right)\right|=1$.
RT_{k}^{n}
Every k-coloring of $[\mathbb{N}]^{n}$ admits an infinite homogeneous set.

Encodability vs Domination

Encodability

A set S is P-encodable if there is an instance of P such that every solution computes S

Domination

A function f is P -dominated if there is an instance of P such that every solution computes a function dominating f.

What sets are

RT_{k}^{n}-encodable?

Thm (Jockusch)

Every function is RT_{2}^{2}-dominated.

Given $g: \omega \rightarrow \omega$, an interval $[x, y]$ is g-large if $y \geq g(x)$. Otherwise it is g-small.

$$
f(x, y)= \begin{cases}1 & \text { if }[x, y] \text { is } g \text {-large } \\ 0 & \text { otherwise }\end{cases}
$$

Every Δ_{1}^{1} set is RT_{2}^{2}-encodable

Thm (Folklore)

Every RT_{k}^{n}-encodable set is computably encodable.

For every coloring $f:[\mathbb{N}]^{n} \rightarrow k$ and every infinite $X \subseteq \mathbb{N}$ there is an infinite f-homogeneous set $Y \subseteq X$.

Whenever $n \geq 2$ and $k \geq 2$, RT_{k}^{n}-encodable $\equiv \Delta_{1}^{1}$

The encodability power of $R T_{k}^{n}$ comes from the

sparsity

of its homogeneous sets.

Thm (Dzhafarov and Jockusch)

The RT_{2}^{1}-encodable sets are the computable sets.

$$
\begin{array}{rrrrrll}
0 & 1 & 2 & 3 & 4 & \\
5 & 6 & 7 & 8 & 9 & & \\
10 & 11 & 12 & 13 & 14 & \begin{array}{l}
\text { Sparsity of red implies } \\
\text { non-sparsity of blue } \\
15
\end{array} & 16 \\
17 & 18 & 19 & \text { and conversely. } \\
20 & 21 & 22 & 23 & 24 & \\
25 & 26 & 27 & 28 & \ldots . &
\end{array}
$$

Cone avoidance 101

Strategy

Forcing in Computability Theory

Partial order
(\mathbb{P}, \leq)
Condition
$p \in \mathbb{P}$
approximation

Denotation
$[p] \subseteq 2^{\omega}$
class of candidates
Compatibility
If $q \leq p$ then $[q] \subseteq[p]$

Forcing in Computability Theory

Filter $\mathcal{F} \subseteq \mathbb{P}$
$\forall p \in \mathcal{F} \forall q \geq p q \in \mathcal{F}$
$\forall p, q \in \mathcal{F}, \exists r \in \mathcal{F} r \leq p, q$

Dense set $D \subseteq \mathbb{P}$
$\forall p \in \mathbb{P} \exists q \leq p q \in D$

Denotation
$[\mathcal{F}]=\bigcap_{p \in \mathcal{F}}[p]$

Forcing $p \Vdash \varphi(G)$
$\forall G \in[p] \varphi(G)$

Cohen forcing

$$
\left(2^{<\omega}, \preceq\right)
$$

$2^{<\omega}$ is the set of all finite binary strings
$\sigma \preceq \tau$ means σ is a prefix of τ
$[\sigma]=\left\{X \in 2^{\omega}: \sigma \prec X\right\}$

Thm (Folklore)

Let $C \not \mathbb{L}_{T} \emptyset$. For every sufficiently Cohen generic $G, C \not \not 又 T G$.

Lem

For every non-computable set C and Turing functional Φ_{e}, the following set is dense in $\left(2^{<\omega}, \preceq\right)$.

$$
D=\left\{\sigma \in 2^{<\omega}: \sigma \Vdash \Phi_{e}^{G} \neq C\right\}
$$

Given $\sigma \in 2^{<\omega}$, define the Σ_{1}^{0} set

$$
W=\left\{(x, v): \exists \tau \succeq \sigma \Phi_{e}^{\tau}(x) \downarrow=v\right\}
$$

- Case 1: $(x, 1-C(x)) \in W$ for some x Then τ is an extension forcing $\Phi_{e}^{G} \neq C$
- Case 2: $(x, C(x)) \notin W$ for some x Then σ forces $\Phi_{e}^{G} \neq C$
- Case 3: W is a Σ_{1}^{0} graph of C Impossible, since $C \not z_{T} \emptyset$

Weak König's lemma

$2^{<\omega}$ is the set of all finite binary strings
A binary tree is a set $T \subseteq 2^{<\omega}$ closed under prefixes
A path through T is an infinite sequence P such that every initial segment is in T

Every infinite binary tree admits an infinite path.

Jockusch-Soare forcing

$$
(\mathcal{T}, \subseteq)
$$

\mathcal{T} is the collection of infinite computable binary trees

$$
[T]=\left\{X \in 2^{\omega}: \forall \sigma \prec X \sigma \in T\right\}
$$

Thm (Jockusch-Soare)

Let $C \not \mathbb{Z}_{T} \emptyset$. For every infinite computable binary tree $T \subseteq 2^{<\omega}$, there is a path $P \in[T]$ such that $C \not \mathbb{Z}_{T} P$.

Lem

For every non-computable set C and Turing functional Φ_{e}, the following set is dense in (\mathcal{T}, \subseteq).

$$
D=\left\{T \in \mathcal{T}: T \Vdash \Phi_{e}^{G} \neq C\right\}
$$

Given $T \in \mathcal{T}$, define the Σ_{1}^{0} set

$$
W=\left\{(x, v): \exists \ell \in \mathbb{N} \forall \sigma \in 2^{\ell} \cap T \Phi_{e}^{\sigma}(x) \downarrow=v\right\}
$$

- Case 1: $(x, 1-C(x)) \in W$ for some x Then T forces $\Phi_{e}^{G} \neq C$
- Case 2: $(x, C(x)) \notin W$ for some x Then $\left\{\sigma \in T: \neg\left(\Phi_{e}^{\sigma}(x) \downarrow=v\right)\right\}$ forces $\Phi_{e}^{G} \neq C$
- Case 3: W is a Σ_{1}^{0} graph of C Impossible, since $C \not z_{T} \emptyset$

Forcing question

$$
\begin{aligned}
& p ? \vdash \varphi(G) \\
& \text { where } p \in \mathbb{P} \text { and } \varphi(G) \text { is } \Sigma_{1}^{0}
\end{aligned}
$$

Lem

Let $p \in \mathbb{P}$ and $\varphi(G)$ be a Σ_{1}^{0} formula.
(a) If p ? $\vdash \varphi(G)$, then $q \Vdash \varphi(G)$ for some $q \leq p$;
(b) If p ? $\vdash(G)$, then $q \Vdash \neg \varphi(G)$ for some $q \leq p$.

Jockusch-Soare forcing question

Cohen

forcing question

Suppose p ? $\vdash(G)$ is uniformly Σ_{1}^{0} whenever $\varphi(G)$ is Σ_{1}^{0}

Lem

For every non-computable set C and Turing functional Φ_{e}, the following set is dense in (\mathbb{P}, \leq).

$$
D=\left\{p \in \mathbb{P}: p \Vdash \Phi_{e}^{G} \neq C\right\}
$$

Given $p \in \mathbb{P}$, define the Σ_{1}^{0} set

$$
W=\left\{(x, v): p ? \vdash \Phi_{e}^{G}(x) \downarrow=v\right\}
$$

- Case 1: $(x, 1-C(x)) \in W$ for some x Then there is an extension forcing $\Phi_{e}^{G} \neq C$
- Case 2: $(x, C(x)) \notin W$ for some x Then there is an extension forcing $\Phi_{e}^{G} \neq C$
- Case 3: W is a Σ_{1}^{0} graph of C Impossible, since $C \not z_{T} \emptyset$

Pigeonhole principle

$$
R T_{k}^{1} \quad \begin{gathered}
\text { Every } k \text {-partition of } \mathbb{N} \text { admits } \\
\text { an infinite subset of a part. }
\end{gathered}
$$

$$
\begin{array}{rrrrr}
0 & 1 & 2 & 3 & 4 \\
5 & 6 & 7 & 8 & 9 \\
10 & 11 & 12 & 13 & 14 \\
15 & 16 & 17 & 18 & 19 \\
20 & 21 & 22 & 23 & 24 \\
25 & 26 & 27 & 28 & \ldots .
\end{array}
$$

Thm (Dzhafarov and Jockusch)

A set is RT_{2}^{1}-encodable iff it is computable.

Thm (Dzhafarov and Jockusch)

A set is $R T_{2}^{1}$-encodable iff it is computable.

Input : a set $C \not \mathbb{Z}_{T} \emptyset$ and a 2-partition $A_{0} \sqcup A_{1}=\mathbb{N}$
Output : an infinite set $G \subseteq A_{i}$ such that $C \not \leq T G$

$\left(F_{0}, F_{1}, X\right)$

 Initial segment

Reservoir

- F_{i} is finite, X is infinite, $\max F_{i}<\min X$
- $C \not \mathbb{I}_{T} X$
- $F_{i} \subseteq A_{i}$
(Mathias condition)
(Weakness property)
(Combinatorics)

Extension

$$
\begin{array}{ll}
\left(E_{0}, E_{1}, Y\right) \leq\left(F_{0}, F_{1}, X\right) & \left\langle G_{0}, G_{1}\right\rangle \in\left[F_{0}, F_{1}, X\right] \\
>F_{i} \subseteq E_{i} & >F_{i} \subseteq G_{i} \\
>Y \subseteq X & >G_{i} \backslash F_{i} \subseteq X \\
>E_{i} \backslash F_{i} \subseteq X &
\end{array}
$$

$$
\left(F_{0}, F_{1}, X\right) \Vdash \varphi\left(\mathcal{G}_{0}, G_{1}\right)
$$
 Condition
 Formula

$\varphi\left(G_{0}, G_{1}\right)$ holds for every $\left\langle G_{0}, G_{1}\right\rangle \in\left[F_{0}, F_{1}, X\right]$

Input : a set $C \not \leq T \emptyset$ and a 2-partition $A_{0} \sqcup A_{1}=\mathbb{N}$

Output : an infinite set $G \subseteq A_{i}$ such that $C \not \leq T G$

Input : a set $C \not \leq T \emptyset$ and a 2-partition $A_{0} \sqcup A_{1}=\mathbb{N}$
Output : an infinite set $G \subseteq A_{i}$ such that $C \not \mathbb{Z}_{T} G$

$$
\Phi_{e_{0}}^{G_{0}} \neq C \vee \Phi_{e_{1}}^{G_{1}} \neq C
$$

Input : a set $C \not \leq T \emptyset$ and a 2-partition $A_{0} \sqcup A_{1}=\mathbb{N}$
Output : an infinite set $G \subseteq A_{i}$ such that $C \not \leq T G$

$$
\Phi_{e_{0}}^{G_{0}} \neq \mathrm{C} \vee \Phi_{e_{1}}^{G_{1}} \neq \mathrm{C}
$$

The set $\left\{p \in \mathbb{P}: p \Vdash \Phi_{e_{0}}^{G_{0}} \neq C \vee \Phi_{e_{1}}^{G_{1}} \neq C\right\}$ is dense

Disjunctive forcing question

$p ? \vdash \varphi_{0}\left(G_{0}\right) \vee \varphi_{1}\left(G_{1}\right)$
 where $p \in \mathbb{P}$ and $\varphi_{0}\left(G_{0}\right), \varphi_{1}\left(G_{1}\right)$ are Σ_{1}^{0}

Lem

Let $p \in \mathbb{P}$ and $\varphi_{0}\left(G_{0}\right), \varphi_{1}\left(G_{1}\right)$ be Σ_{1}^{0} formulas.
(a) If p ? $\vdash \varphi_{0}\left(G_{0}\right) \vee \varphi_{1}\left(G_{1}\right)$, then $q \Vdash \varphi_{0}\left(G_{0}\right) \vee \varphi_{1}\left(G_{1}\right)$ for some $q \leq p$;
(b) If p ? $\not \varphi_{0}\left(G_{0}\right) \vee \varphi_{1}\left(G_{1}\right)$, then $q \Vdash \neg \varphi_{0}\left(G_{0}\right) \vee \neg \varphi_{1}\left(G_{1}\right)$ for some $q \leq p$.

Suppose the following relation is uniformly $\Sigma_{1}^{0}(X)$ whenever $\varphi_{0}\left(G_{0}\right), \varphi_{1}\left(G_{1}\right)$ are Σ_{1}^{0}

$$
\left(F_{0}, F_{1}, X\right) ? \vdash \varphi_{0}\left(G_{0}\right) \vee \varphi_{1}\left(G_{1}\right)
$$

Lem

For every non-computable set C and Turing functionals $\Phi_{e_{0}}, \Phi_{e_{1}}$, the following set is dense in (\mathbb{P}, \leq).

$$
D=\left\{p \in \mathbb{P}: p \Vdash \Phi_{e_{0}}^{G_{0}} \neq C \vee \Phi_{e_{1}}^{G_{1}} \neq C\right\}
$$

Consider the $\Sigma_{1}^{0}(X)$ set

$$
W=\left\{(x, v): p ? \vdash \Phi_{e_{0}}^{G_{0}}(x) \downarrow=v \vee \Phi_{e_{0}}^{G_{0}}(x) \downarrow=v\right\}
$$

Problem: complexity of the instance

"Can we find an extension for this instance of RT_{2}^{1} ?"

Defi

$$
\begin{gathered}
\left(F_{0}, F_{1}, X\right) ? \vdash \varphi_{0}\left(G_{0}\right) \vee \varphi_{1}\left(G_{1}\right) \\
\equiv \\
(\exists i<2)\left(\exists E_{i} \subseteq X \cap A_{i}\right) \varphi_{i}\left(F_{i} \cup E_{i}\right)
\end{gathered}
$$

The formula is $\Sigma_{1}^{0}\left(X \oplus A_{i}\right)$

Idea: make an overapproximation

"Can we find an extension for every instance of RT_{2}^{1} ?"

Defi

$$
\begin{gathered}
\left(F_{0}, F_{1}, X\right) ? \vdash \varphi_{0}\left(G_{0}\right) \vee \varphi_{1}\left(G_{1}\right) \\
\equiv \\
\left(\forall B_{0} \sqcup B_{1}=\mathbb{N}\right)(\exists i<2)\left(\exists E_{i} \subseteq X \cap B_{i}\right) \varphi_{i}\left(F_{i} \cup E_{i}\right)
\end{gathered}
$$

The formula is $\Sigma_{1}^{0}(X)$

Case 1: p ? $\vdash \varphi_{0}\left(G_{0}\right) \vee \varphi_{1}\left(G_{1}\right)$

Letting $B_{i}=A_{i}$, there is an extension $q \leq p$ forcing

$$
\varphi_{0}\left(G_{0}\right) \vee \varphi_{1}\left(G_{1}\right)
$$

Case 2: \mathbf{p} ? $\nvdash \varphi_{0}\left(G_{0}\right) \vee \varphi_{1}\left(G_{1}\right)$

$$
\left(\exists B_{0} \sqcup B_{1}=\mathbb{N}\right)(\forall i<2)\left(\forall E_{i} \subseteq X \cap B_{i}\right) \neg \varphi_{i}\left(F_{i} \cup E_{i}\right)
$$

The condition $\left(F_{0}, F_{1}, X \cap B_{i}\right) \leq p$ forces

$$
\neg \varphi_{0}\left(G_{0}\right) \vee \neg \varphi_{1}\left(G_{1}\right)
$$

Ramsey's theorem

Over n-tuples

Ramsey's theorem

Using k colors

$R T_{k, \ell}^{n}$-encodable sets

Thm (Cholak, P.)

Every function is $\mathrm{RT}_{k, \ell}^{n}$-dominated for $\ell<2^{n-1}$.

$$
f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left\langle\left[x_{1}, x_{2}\right] \text { g-large?, } \ldots,\left[x_{n-1}, x_{n}\right] \text { g-large? }\right\rangle
$$

- Case 1: the color $\langle n o, \ldots, n o\rangle$ is avoided
- Case 2: the color $\left\langle q_{1}, \ldots, q_{k}\right.$, yes, no $\left., \ldots, n o\right\rangle$ is avoided

Catalan numbers

C_{n} is the number of trails of length $2 n$.

$1,1,2,5,14,42,132,429,1430,4862,16796,58786, \ldots$

Defi

A largeness graph is a pair $(\{0, \ldots, n-1\}, E)$ such that
(a) If $\{i, i+1\} \in E$, then for every $j>i+1,\{i, j\} \notin E$
(b) If $i<j<n,\{i, i+1\} \notin E$ and $\{j, j+1\} \in E$, then $\{i, j+1\} \in E$
(c) If $i+1<j<n-1$ and $\{i, j\} \in E$, then $\{i, j+1\} \in E$
(d) If $i+1<j<k<n$ and $\{i, j\} \notin E$ but $\{i, k\} \in E$, then $\{j-1, k\} \in E$

Largeness graphs of size 4

(0)(1) (2) ${ }^{3}$
(0) (1) ${ }^{2}$
(3)
(0)(1) (2) 3

(0) (1)
(2)
(3)
(0)(1) (2) (3)

(0) (1) (2) (3)
(0) (1) (2) (3)
(0) (1) (2)
(3)

Counting largeness graphs

(0) (1) (2) (3) (4) (5) (6)

A largeness graph $\mathcal{G}=(\{0, \ldots, n-1\}, E)$ is packed if for every $i<n-2,\{i, i+1\} \notin E$.

- $L_{n}=$ number of largeness graphs of size n
- $P_{n}=$ number of packed largeness graphs of size n

$$
L_{0}=1 \quad \text { and } \quad L_{n+1}=\sum_{i=0}^{n} P_{i+1} L_{n-i}
$$

Counting packed largeness graphs

A largeness graph $\mathcal{G}=(\{0, \ldots, n-1\}, E)$ of size $n \geq 2$ is normal if $\{n-2, n-1\} \in E$.

(0) (1) Thm (Cholak, P)

The following are in one-to-one correspondance:
(a) packed largeness graphs of size n
(b) normal largeness graphs of size n
(c) largeness graphs of size $n-1$

Thm (Cholak, P)

Every left-c.e. function is $\mathrm{RT}_{k, \ell}^{n}$-dominated for $\ell<C_{n}$.

$$
f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\text { the largeness graph of } g
$$

- Case 1: a packed graph is avoided
- Case 2: a graph of the following form is avoided

Conclusion

RT_{k}^{n} for $n \geq 2$ has instances having only sparse solutions, hence encodes all the Δ_{1}^{1} sets
RT_{k}^{1} cannot force having sparse solutions, so encodes only the computable sets

A trichotomy appears when we allow more colors in the solutions

References

Peter Cholak and Ludovic Patey.Thin set theorems and cone avoidance.
Trans. Amer. Math. Soc., 373(4):2743-2773, 2020.
Damir D. Dzhafarov and Carl G. Jockusch, Jr.
Ramsey's theorem and cone avoidance.
J. Symbolic Logic, 74(2):557-578, 2009.

