Lowness and avoidance

A guide to separation

Ludovic PATEY

Reverse mathematics

Infinitary mathematics

Theorem

7

$A_1, \dots, A_n \Rightarrow T$

$A_1, \dots, A_n \leftarrow T$

Second-order arithmetics

$$t ::= 0 \mid 1 \mid x \mid t_1 + t_2 \mid t_1 \cdot t_2$$

$$f ::= t_1 = t_2 \mid t_1 < t_2 \mid t_1 \in X \mid f_1 \vee f_2$$
$$\mid \neg f \mid \forall x.f \mid \exists x.f \mid \forall X.f \mid \exists X.f$$

(Hilbert and Bernays)

Robinson's arithmetics

1.
$$m + 0 = m$$

2.
$$m + (n + 1) = (m + n) + 1$$

3.
$$m \times 0 = 0$$

4.
$$m \times (n + 1) = (m \times n) + m$$

5.
$$m + 1 \neq 0$$

6.
$$m + 1 = n + 1 \rightarrow m = n$$

7.
$$\neg (m < 0)$$

8.
$$m < n + 1 \leftrightarrow (m < n \lor m = n)$$

Comprehension scheme

$$\exists X \forall n (n \in X \Leftrightarrow \varphi(n))$$

for every formula $\varphi(n)$ where X appears freely.

Arithmetic hierarchy

$$\Sigma_n^0 \quad \varphi(\mathbf{y}) \equiv \exists \mathbf{x}_1 \forall \mathbf{x}_2 \dots \mathbf{Q} \mathbf{x}_n \ \psi(\mathbf{y}, \mathbf{x}_1, \dots, \mathbf{x}_n)$$

$$\Pi_n^0 \quad \varphi(\mathbf{y}) \equiv \forall \mathbf{x}_1 \exists \mathbf{x}_2 \dots \mathbf{Q} \mathbf{x}_n \ \psi(\mathbf{y}, \mathbf{x}_1, \dots, \mathbf{x}_n)$$

where ψ contains only bounded first-order quantifiers

A set is Γ if it is Γ -definable A set is Δ_n^0 if it is Σ_n^0 and Π_n^0 .

Computability = Definability

Theorem (Gödel)

A set is c.e. iff it is Σ_1^0 and computable iff it is Δ_1^0 .

Theorem (Post)

A set is $\emptyset^{(n)}$ -c.e. iff it is Σ_{n+1}^0 and $\emptyset^{(n)}$ -computable iff it is Δ_{n+1}^0 .

Δ_1^0 comprehension scheme

$$\forall n(\varphi(n) \Leftrightarrow \psi(n)) \Rightarrow \exists X \forall n(n \in X \Leftrightarrow \varphi(n))$$

where $\varphi(n)$ is a Σ^0_1 formula where X does not occur freely, and ψ is a Π^0_1 formula.

Induction scheme

$$\varphi(0) \land \forall n(\varphi(n) \Rightarrow \varphi(n+1)) \Rightarrow \forall n\varphi(n)$$

for every formula $\varphi(n)$

Σ_1^0 induction scheme

$$\varphi(0) \land \forall \mathbf{n}(\varphi(\mathbf{n}) \Rightarrow \varphi(\mathbf{n}+1)) \Rightarrow \forall \mathbf{n}\varphi(\mathbf{n})$$

where $\varphi(n)$ is a Σ_1^0 formula

equivalent to

Σ^0_1 bounded comprehension scheme

$$\forall p \exists X \forall n (n \in X \Leftrightarrow n$$

where $\varphi(n)$ is a Σ_1^0 formula where X does not occur freely

RCA_0

Robinson's arithmetics

$$m+1 \neq 0$$

 $m+1 = n+1 \to m = n$
 $\neg (m < 0)$
 $m < n+1 \leftrightarrow (m < n \lor m = n)$

$$m + 0 = m$$

 $m + (n + 1) = (m + n) + 1$
 $m \times 0 = 0$
 $m \times (n + 1) = (m \times n) + m$

Σ_1^0 induction scheme

$$\varphi(0) \land \forall n(\varphi(n) \Rightarrow \varphi(n+1))$$

\Rightarrow \forall n\varphi(n)

where $\varphi(n)$ is a Σ_1^0 formula

Δ_1^0 comprehension scheme

$$\forall n(\varphi(n) \Leftrightarrow \psi(n)) \\ \Rightarrow \exists X \forall n(n \in X \Leftrightarrow \varphi(n))$$

where $\varphi(n)$ is a Σ_1^0 formula where X does not occur freely, and ψ is a Π_1^0 formula.

Reverse mathematics

Mathematics are computationally very structured

Almost every theorem is empirically equivalent to one among five big subsystems. $\Pi^1_1\mathsf{CA}$ **ATR** ACA WKI RCA_n

Reverse mathematics

Mathematics are computationally very structured

Almost every theorem is empirically equivalent to one among five big subsystems.

Except for Ramsey's theory...

How to prove a separation?

Given two statements P and Q.

How to prove that $RCA_0 + P \nvdash Q$?

Build a model \mathcal{M} such that

- $ightharpoonup \mathcal{M} \models P$
- $ightharpoonup \mathcal{M}
 ot \models Q$

$$\omega$$
-structure $\mathcal{M} = \{\omega, \mathcal{S}, <, +, \cdot\}$

- (i) ω is the set of standard natural numbers
- (ii) < is the natural order
- (iii) + and \cdot are the standard operations over natural numbers
- (iv) $S \subseteq \mathcal{P}(\omega)$

An ω -structure is fully specified by its second-order part S.

Turing ideal \mathcal{M}

- $\blacktriangleright \ (\forall X \in \mathcal{M})(\forall Y \leq_T X)[Y \in \mathcal{M}]$
- $\blacktriangleright \ (\forall X, Y \in \mathcal{M})[X \oplus Y \in \mathcal{M}]$

Examples

- ► {*X* : *X* is computable }
- ▶ $\{X : X \leq_T A \land X \leq_T B\}$ for some sets A and B

Let $\mathcal{M} = \{\omega, \mathcal{S}, <, +, \cdot\}$ be an ω -structure

$$\mathcal{M} \models \mathsf{RCA}_0$$
 \equiv

 $\mathcal S$ is a Turing ideal

Many theorems can be seen as problems.

Intermediate value theorem

For every continuous function f over an interval [a,b] such that $f(a) \cdot f(b) < 0$, there is a real $x \in [a,b]$ such that f(x) = 0.

König's lemma

Every infinite, finitely branching tree admits an infinite path.

Π_2^1 -problem

$$\mathsf{P} \equiv \forall \mathbf{X} [\varphi(\mathbf{X}) \to \exists \mathbf{Y} \psi(\mathbf{X}, \mathbf{Y})]$$

where φ and ψ are arithmetic formulas

- ▶ P-instances: dom P = $\{X : \varphi(X)\}$
- ▶ P-solutions to X: $P(X) = \{Y : \psi(X, Y)\}$

Given two Π_2^1 -problems P and Q.

How to prove that $RCA_0 + P \nvdash Q$?

Build a Turing ideal $\mathcal M$ such that

- ightharpoonup $\mathcal{M} \models P$
- $ightharpoonup \mathcal{M}
 ot \models Q$

Construct an ω -model of RCA₀ +P

Start with $\mathcal{M}_0 = \{Z : Z \leq_{\mathcal{T}} \emptyset\}$

Construct an ω -model of RCA₀ +P

Start with
$$\mathcal{M}_0 = \{Z : Z \leq_T \emptyset\}$$

Given a Turing ideal $\mathcal{M}_n = \{Z : Z \leq_T U\}$ for some set U,

1. pick an instance $X \in \mathcal{M}_n$ of P

Construct an ω -model of RCA₀+P

Start with
$$\mathcal{M}_0 = \{Z : Z \leq_{\mathcal{T}} \emptyset\}$$

- 1. pick an instance $X \in \mathcal{M}_n$ of P
- 2. choose a solution Y to X

Construct an ω -model of RCA₀+P

Start with
$$\mathcal{M}_0 = \{Z : Z \leq_{\mathcal{T}} \emptyset\}$$

- 1. pick an instance $X \in \mathcal{M}_n$ of P
- 2. choose a solution *Y* to *X*
- 3. define $\mathcal{M}_{n+1} = \{Z : Z \leq_T Y \oplus U\}$

Construct an ω -model of RCA₀+P

Start with
$$\mathcal{M}_0 = \{Z : Z \leq_{\mathcal{T}} \emptyset\}$$

- 1. pick an instance $X \in \mathcal{M}_n$ of P
- 2. choose a solution Y to X
- 3. define $\mathcal{M}_{n+1} = \{Z : Z \leq_T Y \oplus U\}$

Let
$$\mathcal{M} = \bigcup_n \mathcal{M}_n$$
. Then $\mathcal{M} \models \mathsf{RCA}_0 + \mathsf{P}$

Beware, adding sets to \mathcal{M} may add solutions to instances of Q!

A weakness property is a collection of sets closed downward under the Turing reduction.

Exemples

 \blacktriangleright {X: X is low}

▶ $\{X : A \not\leq_T X\}$ given a set A

► {*X* : *X* is hyperimmune-free}

Let \mathcal{W} be a weakness property.

A problem P preserves W if for every $Z \in W$, every Z-computable instance X of P admits a solution Y such that $Y \oplus Z \in W$

Lemma

If P preserves \mathcal{W} , then for every $Z \in \mathcal{W}$, there is an ω -model $\mathcal{M} \models \mathsf{RCA}_0 + \mathsf{P}$ with $Z \in \mathcal{M} \subseteq \mathcal{W}$.

Lemma

If P preserves $\mathcal W$ and Q does not, then RCA₀ +P $\not\vdash$ Q

Cone avoidance

ACA_0

Arithmetic Comprehension Axiom

- ► Every increasing sequence of reals admits a supremum.
- Bolzano/Weierstrass theorem: Every sequence of reals admits a converging sub-sequence.
- ▶ Every countable commutative ring admits a maximal ideal.
- ► König's lemma: Every infinite, finitely branching tree admits an infinite path.
- ▶ Ramsey's theorem for colorings of $[\mathbb{N}]^3$.
- ▶ ..

ACA_0

Arithmetic Comprehension Axiom

$$X' = \{ \mathbf{e} : \exists t \; \Phi_{\mathbf{e}}^{X}(\mathbf{e})[t] \downarrow \}$$

Lemma

$$\mathsf{RCA}_0 \vdash \mathsf{ACA}_0 \leftrightarrow \forall X \ \exists Y \ (Y = X')$$

Lemma

If a Π_2^1 -problem P preserves $\mathcal{W}_{\emptyset'} = \{Z : \emptyset' \not\leq_{\mathcal{T}} Z\}$, then $\mathsf{RCA}_0 + \mathsf{P} \not\vdash \mathsf{ACA}_0$.

Cone avoidance

A Π_2^1 -problem P admits cone avoidance if for every set Z, every set $C \not\leq_T Z$ and every Z-computable P-instance X, there is a P-solution Y to X such that $C \not\leq_T Y \oplus Z$.

P admits cone avoidance

 \equiv

P preserves $W_C = \{Z : C \not\leq_T Z\}$ for every set C

Strategy

Examples

Cohen forcing Jockusch-Soare forcing

Pattern

Forcing question

Application

Pigeonhole forcing

Forcing in Computability Theory

Partial order

 (\mathbb{P}, \leq)

Condition

 $p \in \mathbb{P}$ approximation

Denotation

 $[p] \subseteq 2^{\omega}$ class of candidates

Compatibility

If $q \le p$ then $[q] \subseteq [p]$

Forcing in Computability Theory

Filter
$$\mathcal{F} \subseteq \mathbb{P}$$

$$\forall p \in \mathcal{F} \ \forall q \geq p \ q \in \mathcal{F}$$

 $\forall p, q \in \mathcal{F}, \exists r \in \mathcal{F} \ r \leq p, q$

Dense set
$$D \subseteq \mathbb{P}$$

$$\forall p \in \mathbb{P} \exists q \leq p \ q \in D$$

Denotation

$$[\mathcal{F}] = \bigcap_{\boldsymbol{\rho} \in \mathcal{F}} [\boldsymbol{\rho}]$$

Forcing
$$p \Vdash \varphi(G)$$

$$\forall \mathbf{G} \in [\mathbf{p}] \ \varphi(\mathbf{G})$$

Cohen forcing

$$(2^{<\omega}, \preceq)$$

 $2^{<\omega}$ is the set of all finite binary strings

 $\sigma \preceq \tau$ means σ is a prefix of τ

$$[\sigma] = \{ \mathbf{X} \in 2^{\omega} : \sigma \prec \mathbf{X} \}$$

Theorem (Folklore

Let $C \not\leq_{\mathcal{T}} \emptyset$. For every sufficiently Cohen generic $G, C \not\leq_{\mathcal{T}} G$.

Lemma

For every non-computable set C and Turing functional Φ_e , the following set is dense in $(2^{<\omega}, \preceq)$.

$$\mathbf{D} = \{ \sigma \in 2^{<\omega} : \sigma \Vdash \Phi_{\mathbf{e}}^{\mathbf{G}} \neq \mathbf{C} \}$$

Given $\sigma \in 2^{<\omega}$, define the Σ_1^0 set

$$W = \{(x, v) : \exists \tau \succeq \sigma \ \Phi_{\mathbf{e}}^{\tau}(x) \downarrow = v\}$$

- ► Case 1: $(x, 1 C(x)) \in W$ for some xThen τ is an extension forcing $\Phi_e^G \neq C$
- ► Case 2: $(x, C(x)) \not\in W$ for some xThen σ forces $\Phi_e^G \neq C$
- ► Case 3: W is a Σ_1^0 graph of C Impossible, since $C \not\leq_T \emptyset$

Weak König's lemma

 $2^{<\omega}$ is the set of all finite binary strings

A binary tree is a set $T \subseteq 2^{<\omega}$ closed under prefixes

A path through *T* is an infinite sequence *P* such that every initial segment is in *T*

WKL

Every infinite binary tree admits an infinite path.

Jockusch-Soare forcing

$$(\mathcal{T},\subseteq)$$

 \mathcal{T} is the collection of infinite computable binary trees

$$[T] = \{ \mathbf{X} \in 2^\omega : \forall \sigma \prec \mathbf{X} \ \sigma \in \mathbf{T} \}$$

Theorem (Jockusch-Soare)

Let $C \not\leq_T \emptyset$. For every infinite computable binary tree $T \subseteq 2^{<\omega}$, there is a path $P \in [T]$ such that $C \not\leq_T P$.

Lemma

For every non-computable set C and Turing functional Φ_e , the following set is dense in (\mathcal{T}, \subseteq) .

$$\textit{D} = \{\textit{T} \in \mathcal{T} : \textit{T} \Vdash \Phi_{\textit{e}}^{\textit{G}} \neq \textit{C}\}$$

Given $T \in \mathcal{T}$, define the Σ_1^0 set

$$W = \{(x, v) : \exists \ell \in \mathbb{N} \forall \sigma \in 2^{\ell} \cap T \Phi_{\mathsf{e}}^{\sigma}(x) \downarrow = v\}$$

- ► Case 1: $(x, 1 C(x)) \in W$ for some xThen T forces $\Phi_e^G \neq C$
- ► Case 2: $(x, C(x)) \not\in W$ for some xThen $\{\sigma \in T : \neg(\Phi_e^{\sigma}(x) \downarrow = v)\}$ forces $\Phi_e^G \neq C$
- ► Case 3: W is a Σ_1^0 graph of C Impossible, since $C \not\leq_T \emptyset$

Forcing question

$$p ? \vdash \varphi(G)$$

where $p \in \mathbb{P}$ and $\varphi(G)$ is Σ^0_1

Specification

Let $p \in \mathbb{P}$ and $\varphi(G)$ be a Σ^0_1 formula.

- (a) If $p ? \vdash \varphi(G)$, then $q \Vdash \varphi(G)$ for some $q \leq p$;
- (b) If $p : \not\vdash \varphi(G)$, then $q \Vdash \neg \varphi(G)$ for some $q \leq p$.

Fix a notion of forcing (\mathbb{P}, \leq) .

A forcing question is Γ -preserving if for every $p \in \mathbb{P}$ and every Γ -formula $\varphi(G, x)$, the relation $p ? \vdash \varphi(G, x)$ is in Γ uniformly in x.

Lemma

Suppose $?\vdash$ is Σ^0_1 -preserving. For every non-computable set C and Turing functional Φ_e , the following set is dense in (\mathbb{P}, \leq) .

$${\it D} = \{{\it p} \in \mathbb{P} : {\it p} \Vdash \Phi_{\it e}^{\it G}
eq {\it C}\}$$

Given $p \in \mathbb{P}$, define the Σ^0_1 set

$$W = \{(x, v) : p ? \vdash \Phi_{\mathsf{e}}^{\mathsf{G}}(x) \downarrow = v\}$$

- ► Case 1: $(x, 1 C(x)) \in W$ for some xThen there is an extension forcing $\Phi_e^G \neq C$
- ► Case 2: $(x, C(x)) \notin W$ for some xThen there is an extension forcing $\Phi_e^G \neq C$
- Case 3: W is a Σ⁰₁ graph of C Impossible, since C ∠_T ∅

Pigeonhole principle

 $\mathsf{RT}^1_{\pmb{k}}$ Every k-partition of $\mathbb N$ admits an infinite subset of a part.

```
0 1 2 3 4 0 1 2 3 4 5 6 7 8 9 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 .... 25 26 27 28 ....
```

Theorem (Dzhafarov and Jockusch)

For every set $C \not\leq_{\mathcal{T}} \emptyset$ and every 2-partition $A_0 \sqcup A_1 = \mathbb{N}$, there is some i < 2 and an infinite set $G \subseteq A_i$ such that $C \not\leq_{\mathcal{T}} G$.

Theorem (Dzhafarov and Jockusch)

For every set $C \not\leq_{\mathcal{T}} \emptyset$ and every 2-partition $A_0 \sqcup A_1 = \mathbb{N}$, there is some i < 2 and an infinite set $G \subseteq A_i$ such that $C \not\leq_{\mathcal{T}} G$.

Input: a set $C \not\leq_{\mathcal{T}} \emptyset$ and a 2-partition $A_0 \sqcup A_1 = \mathbb{N}$

Output: an infinite set $G \subseteq A_i$ such that $C \not\leq_T G$

$$(F_0,F_1,X)$$
Initial segment Reservoir

- $ightharpoonup F_i$ is finite, X is infinite, $\max F_i < \min X$
- $ightharpoonup C \not\leq_T X$
- $ightharpoonup F_i \subseteq A_i$

(Mathias condition)

(Weakness property)

(Combinatorics)

Extension

$$(E_0, E_1, Y) \leq (F_0, F_1, X)$$

- ▶ $F_i \subseteq E_i$
- $ightharpoonup Y \subseteq X$
- $ightharpoonup E_i \setminus F_i \subseteq X$

Denotation

$$\langle \textbf{G}_0, \textbf{G}_1 \rangle \in [\textbf{\textit{F}}_0, \textbf{\textit{F}}_1, \textbf{\textit{X}}]$$

- $ightharpoonup F_i \subseteq G_i$
- $ightharpoonup G_i \setminus F_i \subseteq X$

$$[\textbf{\textit{E}}_0,\textbf{\textit{E}}_1,Y]\subseteq[\textbf{\textit{F}}_0,\textbf{\textit{F}}_1,X]$$

$$(F_0, F_1, X) \Vdash \varphi(G_0, G_1)$$
Condition Formula

 $\varphi(G_0, G_1)$ holds for every $\langle G_0, G_1 \rangle \in [F_0, F_1, X]$

Input: a set $C \not\leq_T \emptyset$ and a 2-partition $A_0 \sqcup A_1 = \mathbb{N}$

Output : an infinite set $G \subseteq A_i$ such that $C \not\leq_T G$

Input: a set $C \not\leq_T \emptyset$ and a 2-partition $A_0 \sqcup A_1 = \mathbb{N}$

Output: an infinite set $G \subseteq A_i$ such that $C \not\leq_T G$

$$\Phi_{\mathbf{e}_0}^{\mathbf{G}_0} \neq \mathbf{C} \vee \Phi_{\mathbf{e}_1}^{\mathbf{G}_1} \neq \mathbf{C}$$

Input: a set $C \not\leq_T \emptyset$ and a 2-partition $A_0 \sqcup A_1 = \mathbb{N}$

Output: an infinite set $G \subseteq A_i$ such that $C \not\leq_T G$

$$\Phi_{\mathbf{e}_0}^{\mathbf{G}_0} \neq \mathbf{C} \vee \Phi_{\mathbf{e}_1}^{\mathbf{G}_1} \neq \mathbf{C}$$

The set $\{p \in \mathbb{P} : p \Vdash \Phi_{e_0}^{G_0} \neq C \lor \Phi_{e_1}^{G_1} \neq C\}$ is dense

Disjunctive forcing question

$$p ? \vdash \varphi_0(\mathbf{G}_0) \lor \varphi_1(\mathbf{G}_1)$$

where $\pmb{p} \in \mathbb{P}$ and $arphi_0(\pmb{G}_0)$, $arphi_1(\pmb{G}_1)$ are Σ^0_1

Lemma

Let $p \in \mathbb{P}$ and $\varphi_0(G_0)$, $\varphi_1(G_1)$ be Σ_1^0 formulas.

- (a) If $p ? \vdash \varphi_0(G_0) \lor \varphi_1(G_1)$, then $q \Vdash \varphi_0(G_0) \lor \varphi_1(G_1)$ for some $q \le p$;
- (b) If $p \not \cong \varphi_0(G_0) \vee \varphi_1(G_1)$, then $q \Vdash \neg \varphi_0(G_0) \vee \neg \varphi_1(G_1)$ for some $q \leq p$.

Suppose the following relation is uniformly $\Sigma^0_1(X)$ whenever $\varphi_0(G_0), \varphi_1(G_1)$ are Σ^0_1

$$(F_0,F_1,X)$$
? $\vdash \varphi_0(G_0) \lor \varphi_1(G_1)$

Lemma

For every non-computable set C and Turing functionals Φ_{e_0} , Φ_{e_1} , the following set is dense in (\mathbb{P}, \leq) .

$$D = \{ p \in \mathbb{P} : p \Vdash \Phi_{e_0}^{\mathsf{G}_0} \neq C \lor \Phi_{e_1}^{\mathsf{G}_1} \neq C \}$$

Consider the $\Sigma_1^0(X)$ set

$$W = \{(x, v) : \rho ? \vdash \Phi_{e_0}^{G_0}(x) \downarrow = v \lor \Phi_{e_0}^{G_0}(x) \downarrow = v \}$$

Problem: complexity of the instance

"Can we find an extension for this instance of RT₂?"

Definition
$$(F_0, \digamma_1, X) ? \vdash \varphi_0(G_0) \lor \varphi_1(G_1)$$

$$\equiv$$

$$(\exists i < 2) (\exists E_i \subseteq X \cap A_i) \varphi_i(F_i \cup E_i)$$

The formula is
$$\Sigma_1^0(X \oplus A_i)$$

Idea: make an overapproximation

"Can we find an extension for every instance of RT₂?"

$$\begin{array}{c} (\textit{\textbf{F}}_{0}, \textit{\textbf{F}}_{1}, \textit{\textbf{X}}) ? \vdash \varphi_{0}(\textit{\textbf{G}}_{0}) \lor \varphi_{1}(\textit{\textbf{G}}_{1}) \\ & \equiv \\ (\forall \textit{\textbf{B}}_{0} \sqcup \textit{\textbf{B}}_{1} = \mathbb{N}) (\exists \textit{\textbf{i}} < 2) (\exists \textit{\textbf{E}}_{\textit{\textbf{i}}} \subseteq \textit{\textbf{X}} \cap \textit{\textbf{B}}_{\textit{\textbf{i}}}) \varphi_{\textit{\textbf{i}}}(\textit{\textbf{F}}_{\textit{\textbf{i}}} \cup \textit{\textbf{E}}_{\textit{\textbf{i}}}) \end{array}$$

The formula is $\Sigma^0_1(X)$

Case 1:
$$p ? \vdash \varphi_0(G_0) \lor \varphi_1(G_1)$$

Letting $B_i = A_i$, there is an extension $q \le p$ forcing

$$\varphi_0(\mathbf{G}_0) \vee \varphi_1(\mathbf{G}_1)$$

Case 2:
$$p ? \not\vdash \varphi_0(\mathbf{G}_0) \lor \varphi_1(\mathbf{G}_1)$$

$$(\exists B_0 \sqcup B_1 = \mathbb{N})(\forall i < 2)(\forall E_i \subseteq X \cap B_i) \neg \varphi_i(F_i \cup E_i)$$

The condition $(F_0, F_1, X \cap B_i) \leq p$ forces

$$\neg \varphi_0(\mathbf{G}_0) \vee \neg \varphi_1(\mathbf{G}_1)$$

What we know so far...

Forcing question ?⊢	Notion of forcing (\mathbb{P}, \leq)
Σ_1^0 -preserving	cone avoidance

Lecture 2

Preservation of hyperimmunity

A function $g : \mathbb{N} \to \mathbb{N}$ dominates $f : \mathbb{N} \to \mathbb{N}$ if $\forall^{\infty} x \ g(x) \ge f(x)$.

A function $f: \mathbb{N} \to \mathbb{N}$ is a modulus for a set $A \subseteq \mathbb{N}$ if every function dominating f computes A.

A function $f: \mathbb{N} \to \mathbb{N}$ is hyperimmune if it is not dominated by any computable function.

An infinite set $A \subseteq \mathbb{N}$ is hyperimmune if there is no infinite computable sequence of pairwise disjoint blocs intersecting A.

Computation

 Δ_1^1 (hyperarithmetic) sets

High degrees ($\mathbf{d}' \geq \mathbf{0}''$)

Hyperimmune sets

Function growth

Sets admitting a modulus

Functions dominating every computable function

Hyperimmune functions

A set G is weakly 1-generic if for every c.e. dense set of strings $W_e \subseteq 2^{<\mathbb{N}}$, there is some $\sigma \prec G$ in W_e .

Lemma

Every weakly 1-generic set is hyperimmune.

Given a computable sequence of pairwise disjoint blocs $(B_n)_{n\in\mathbb{N}}$ the following set is dense:

$$\{\sigma: \exists n \mid \sigma| > \max B_n \land B_n \cap \sigma = \emptyset\}$$

l emma

Every hyperimmune function computes a weakly 1-generic set.

Given a hyperimmune function f, build an f-computable sequence $\sigma_0 \prec \sigma_1 \prec \ldots$ Having defined σ_n , wait until time $f(|\sigma_n|)$ to see if some W_e enumerates an extension

(I cheat, slightly more complicated)

Preservation of hyperimmunity

A Π_2^1 -problem P admits preservation of hyperimmunity if for every set Z, every Z-hyperimmune function f and every Z-computable P-instance X, there is a P-solution Y to X such that f is $Y \oplus Z$ -hyperimmune.

P admits preservation of Z-hyperimmunity \equiv P preserves $\mathcal{W}_f = \{Z : f \text{ is } Z\text{-hyperimmune } \}$ for every function f

Cohen forcing

$$(2^{<\omega}, \preceq)$$

 $2^{<\omega}$ is the set of all finite binary strings

 $\sigma \preceq \tau$ means σ is a prefix of τ

$$[\sigma] = \{ \mathbf{X} \in 2^{\omega} : \sigma \prec \mathbf{X} \}$$

Theorem (Folklore)

Let $f: \mathbb{N} \to \mathbb{N}$ be hyperimmune. For every sufficiently Cohen generic G, f is G-hyperimmune.

Lemma

For every hyperimmune function $f: \mathbb{N} \to \mathbb{N}$ and Turing functional Φ_e , the following set is dense in $(2^{<\omega}, \preceq)$.

$$\textit{D} = \{ \sigma \in 2^{<\omega} : \sigma \Vdash \exists x \; \Phi_{\textit{e}}^{\textit{G}}(x) \uparrow \lor \exists x \; \Phi_{\textit{e}}^{\textit{G}}(x) < \textit{f}(x) \}$$

Given $\sigma \in 2^{<\omega}$, define the partial computable function: h(x) = y for the least y such that

$$\exists \tau \succeq \sigma \; \Phi_{\mathbf{e}}^{\tau}(\mathbf{x}) \downarrow = \mathbf{y}$$

- ► Case 1: h(x) < f(x) for some $x \in \text{dom } h$. Then τ is an extension forcing $\Phi_e^G(x) < f(x)$
- ► Case 2: $x \notin \text{dom } h$ for some xThen σ forces $\Phi_e^G(x) \uparrow$
- ► Case 3: *h* is total and dominates *f*. Impossible, since *f* is hyperimmune

Fix a notion of forcing (\mathbb{P}, \leq) .

A forcing question is Γ -compact if for every $p \in \mathbb{P}$ and every Γ -formula $\varphi(G,x)$, if $p ? \vdash \exists x \ \varphi(G,x)$ then there is a finite set $F \subseteq \mathbb{N}$ such that $p ? \vdash \exists x \in F \ \varphi(G,x)$.

Lemma

Suppose ? \vdash is Σ^0_1 -preserving and Σ^0_1 -compact. For every hyperimmune function $f: \mathbb{N} \to \mathbb{N}$ and Turing functional Φ_e , the following set is dense in (\mathbb{P}, \leq) .

$$D = \{ p \in \mathbb{P} : p \Vdash \exists x \; \Phi_{\mathsf{e}}^{\mathsf{G}}(x) \uparrow \lor \exists x \; \Phi_{\mathsf{e}}^{\mathsf{G}}(x) < f(x) \}$$

Given $p \in \mathbb{P}$, define the partial computable function: $h(x) = 1 + \max F$ for the least F such that

$$p ? \vdash \exists y \in F \Phi_{e}^{G}(x) \downarrow = y$$

- ► Case 1: h(x) < f(x) for some $x \in \text{dom } h$. Then there is an extension forcing $\Phi_e^G(x) \le \max F < f(x)$
- ► Case 2: $x \notin \text{dom } h$ for some xThen $p ? \not\vdash \exists y \Phi_e^G(x) \downarrow = y$. There is an extension forcing $\Phi_e^G(x) \uparrow$
- ► Case 3: h is total and dominates f. Impossible, since f is hyperimmune

Theorem

A Π_2^1 -problem admits cone avoidance iff it admits preservation of hyperimmunity.

- ▶ If a problem admits cone avoidance, it can avoid ω cones simultaneously.
- ▶ There are problems which admit preservation of k hyperimmunities, but not k + 1 simultaneously.

What we know so far...

Forcing question ?⊢	Notion of forcing (\mathbb{P}, \leq)
Σ_1^0 -preserving	cone avoidance
Σ_1^0 -preserving and Σ_1^0 -compact	preservation of hyperimmunity

Compactness avoidance

WKL_0

Weak König's lemma

- Every infinite binary tree admits an infinite path
- Heine/Borel cover lemma: Every cover of the [0, 1] interval by a sequence of open sets admits a finite sub-cover.
- ► Every real-valued function over [0, 1] is bounded.
- ► Gödel's completeness theorem: every countable set of statements in predicate calculus admits a countable model.
- ▶ Every countable commutative ring admits a prime ideal.
- ▶ ...

A function $f: \mathbb{N} \to \mathbb{N}$ is diagonally non-computable (DNC) if

$$\forall e f(e) \neq \Phi_e(e)$$

Lemma

There exists a computable infinite binary tree $T \subseteq 2^{\leq \mathbb{N}}$ such that [T] are the $\{0,1\}$ -valued DNC functions.

 $T = \{ \sigma \in 2^{<\mathbb{N}} : \forall \mathbf{e} < |\sigma| \ \sigma(\mathbf{e}) \neq \Phi_{\mathbf{e}}(\mathbf{e})[|\sigma|] \}.$

Lemma

For every computable infinite binary tree T, every $\{0,1\}$ -valued DNC function computes a path.

- ▶ Given $\sigma \in T$ and $x \in \mathbb{N}$, let $\Phi_{e_{\sigma}}$ explore the branches below $\sigma \cdot 0$ and $\sigma \cdot 1$.
- ▶ If the branch below $\sigma \cdot i$ is the first to die, then halt and output i.
- ▶ For every σ extensible in T, $\sigma \cdot f(e_{\sigma})$ is extensible in T.

Cohen forcing

$$(2^{<\omega}, \preceq)$$

 $2^{<\omega}$ is the set of all finite binary strings

 $\sigma \preceq \tau$ means σ is a prefix of τ

$$[\sigma] = \{ \mathbf{X} \in 2^{\omega} : \sigma \prec \mathbf{X} \}$$

Theorem (Folklore)

Every sufficiently Cohen generic G computes no $\{0,1\}$ -valued DNC function.

Lemma

For every $\{0,1\}$ -valued Turing functional $\Phi_{\rm e}$, the following set is dense in $(2^{<\omega},\preceq)$.

$$D = \{ \sigma \in 2^{<\omega} : \sigma \Vdash \exists x \; \Phi_{\mathbf{e}}^{\mathbf{G}}(x) \uparrow \lor \exists x \; \Phi_{\mathbf{e}}^{\mathbf{G}}(x) \downarrow = \Phi_{\mathbf{x}}(x) \}$$

Given $\sigma \in 2^{<\omega}$, define the Σ_1^0 set

$$W = \{(x, v) : \exists \tau \succeq \sigma \ \Phi_{\mathbf{e}}^{\tau}(x) \downarrow = v\}$$

- ► Case 1: $(x, \Phi_X(x)) \in W$ for some x such that $\Phi_X(x) \downarrow$ Then τ is an extension forcing $\Phi_e^G(x) = \Phi_X(x)$
- ► Case 2: (x,0), $(x,1) \notin W$ for some xThen σ forces $\Phi_e^G(x) \uparrow$
- ► Case 3: W is a Σ_1^0 graph of a DNC function Impossible, since no DNC function is computable.

Fix a notion of forcing (\mathbb{P}, \leq) .

A forcing question is Π^0_n -merging if for every $p \in \mathbb{P}$ and every pair of Σ^0_n -formulas $\varphi(G), \psi(G)$ such that $p \not \cong \varphi(G)$ and $p \not \cong \varphi(G)$, there is an extension $q \leq p$ such that $q \Vdash \neg \varphi(G) \land \neg \psi(G)$.

Lemma

Suppose $?\vdash$ is Σ^0_1 -preserving and Π^0_1 -merging. For every $\{0,1\}$ -valued functional Φ_e , the following set is dense in (\mathbb{P},\leq) .

$$D = \{ p \in \mathbb{P} : p \Vdash \exists x \; \Phi_{e}^{G}(x) \uparrow \lor \exists x \; \Phi_{e}^{G}(x) \downarrow = \Phi_{x}(x) \}$$

Solovay forcing

$$(\mathcal{C},\subseteq)$$

 \mathcal{C} is the collection of closed classes of positive measure in $2^{\mathbb{N}}$

Theorem

For every sufficiently Solovay generic G, G computes no $\{0,1\}$ -valued DNC function.

Lemma

For every $\{0,1\}$ -valued Turing functional Φ_e , the following set is dense in C.

$$D = \{ \mathcal{P} \in \mathcal{C} : \mathcal{P} \Vdash \exists x \; \Phi_{e}^{G}(x) \uparrow \lor \exists x \; \Phi_{e}^{G}(x) \downarrow = \Phi_{x}(x) \}$$

Lebesgue density lemma

Lemma

For every closed class $\mathcal{P}\subseteq 2^{\mathbb{N}}$ of positive measure and every $\epsilon>0$, there is some $\sigma\in 2^{<\mathbb{N}}$ such that

$$\frac{\mu(\mathcal{P} \cap [\sigma])}{\mu([\sigma]) \ge 1 - \epsilon}$$

Given a closed class $\mathcal{P}\subseteq 2^{\mathbb{N}}$ and $\sigma\in 2^{<\mathbb{N}}$ such that $\mu(\mathcal{P})\cap[\sigma])>0.9\times\mu([\sigma])$, define the Σ^0_1 set

$$W = \{(x, v) : \mu(Z : \Phi_{\mathsf{e}}^{\sigma \cdot Z}(x) \downarrow = v) > 0.2\}$$

- ▶ Case 1: $(x, \Phi_X(x)) \in W$ for some x such that $\Phi_X(x) \downarrow$ Then pick $\tau \in 2^{<\mathbb{N}}$ such that $\mu(\mathcal{P} \cap [\tau]) > 0$ and $\Phi_e^\tau(x) \downarrow = \Phi_X(x)$. The class $\mathcal{P} \cap [\tau]$ is an extension forcing $\Phi_e^G(x) = \Phi_X(x)$
- ► Case 2: (x,0), $(x,1) \notin W$ for some xThen $\mathcal{P} \cap [\sigma] \cap \{Y : \Phi_e^Y(x) \uparrow\}$ forces $\Phi_e^G(x) \uparrow$
- ► Case 3: W is a Σ_1^0 graph of a DNC function Impossible, since no DNC function is computable.

DNC

Diagonal Non-Computability

- ▶ For every set *X*, there exists an *X*-DNC function *f*, that is, $\forall e, f(e) \neq \Phi_e^X(e)$.
- ▶ For every set X, there exists an X-fixpoint-free function f, that is, $\forall e, W_{f(e)}^X \neq W_e^X$.
- ▶ For every set *X*, there exists a function *f* such that $\forall n, C^X(f(n)) \ge n$.
- ▶ For every set X, there exists an infinite subset of an X-random set.
- ▶ RWWKL: For every binary tree of positive measure $T \subseteq 2^{<\mathbb{N}}$, there is an infinite homogeneous set.

▶ ..

Lemma

There is a probabilistic algorithm to compute a DNC function.

Algorithm	Probability of error
Pick $f(0)$ at random in $[0, 2^2]$	$\leq 2^{-2}$
Pick $f(1)$ at random in $[0, 2^3]$	$\leq 2^{-3}$
Pick $f(2)$ at random in $[0, 2^4]$	$\leq 2^{-4}$

Global probability of error: at most $\sum_{n} 2^{-n-2} = 0.5$.

Cohen forcing

$$(2^{<\omega}, \preceq)$$

 $2^{<\omega}$ is the set of all finite binary strings

 $\sigma \preceq \tau$ means σ is a prefix of τ

$$[\sigma] = \{ \mathbf{X} \in 2^{\omega} : \sigma \prec \mathbf{X} \}$$

Theorem (Folklore)

Every sufficiently Cohen generic *G* computes no DNC function.

Lemma

For every Turing functional Φ_e , the following set is dense in $(2^{<\omega},\preceq)$.

$$D = \{ \sigma \in 2^{<\omega} : \sigma \Vdash \exists x \; \Phi_{\mathsf{e}}^{\mathsf{G}}(x) \uparrow \lor \exists x \; \Phi_{\mathsf{e}}^{\mathsf{G}}(x) \downarrow = \Phi_{\mathsf{x}}(x) \}$$

Given $\sigma \in 2^{<\omega}$, define the Σ_1^0 set

$$W = \{(x, v) : \exists \tau \succeq \sigma \ \Phi_{\mathbf{e}}^{\tau}(x) \downarrow = v\}$$

- ► Case 1: $(x, \Phi_X(x)) \in W$ for some x such that $\Phi_X(x) \downarrow$ Then τ is an extension forcing $\Phi_e^G(x) = \Phi_X(x)$
- ► Case 2: $\exists x \ \forall y \ (x,y) \not\in W$ Then σ forces $\Phi_e^G(x) \uparrow$
- ► Case 3: W is a Σ_1^0 graph of a DNC function Impossible, since no DNC function is computable.

Fix a notion of forcing (\mathbb{P}, \leq) .

A forcing question is countably Π_n^0 -merging if for every $p \in \mathbb{P}$ and every countable sequence of Σ_n^0 -formulas $(\varphi_n(G))_{n \in \mathbb{N}}$ such that for every $n, p \not \Vdash \varphi_n(G)$, there is an extension $q \leq p$ such that for every $n, q \Vdash \neg \varphi_n(G)$.

Lemma

Suppose $?\vdash$ is Σ^0_1 -preserving and countably Π^0_1 -merging. For every Turing functional Φ_e , the following set is dense in (\mathbb{P}, \leq) .

$$D = \{ p \in \mathbb{P} : p \Vdash \exists x \; \Phi_{e}^{G}(x) \uparrow \lor \exists x \; \Phi_{e}^{G}(x) \downarrow = \Phi_{x}(x) \}$$

What we know so far...

Forcing question ?⊢	Notion of forcing (\mathbb{P}, \leq)
Σ_1^0 -preserving	cone avoidance
Σ_1^0 -preserving and Σ_1^0 -compact	preservation of hyperimmunity
Σ_1^0 -preserving and Π_1^0 -merging	PA avoidance
$\Sigma_1^0\text{-preserving}$ and $\omega\text{-}\Pi_1^0\text{-merging}$	DNC avoidance

Lecture 3

Forcing question

$$p ? \vdash \varphi(G)$$

where $p \in \mathbb{P}$ and $\varphi(G)$ is Σ^0_1

Specification

Let $p \in \mathbb{P}$ and $\varphi(G)$ be a Σ^0_1 formula.

- (a) If $p ? \vdash \varphi(G)$, then $q \Vdash \varphi(G)$ for some $q \leq p$;
- (b) If $p \not \cong \varphi(G)$, then $q \Vdash \neg \varphi(G)$ for some $q \leq p$.

Conservation theorems

Infinitary mathematics

Fix a family of formulas Γ .

A theory T_1 is Γ -conservative over T_0 if every Γ -sentence provable over T_1 is provable over T_0 .

If T_1 is an \mathcal{L}_1 -conservative extension of T_0 , then they have the same first-order part.

A second-order structure $\mathcal{N}=(N,T)$ is an ω -extension of $\mathcal{M}=(M,S)$ if $N=M,\,T\supseteq S,\,+^{\mathcal{N}}=+^{\mathcal{M}},\,\times^{\mathcal{N}}=\times^{\mathcal{M}}$ and $<^{\mathcal{N}}=<^{\mathcal{M}}.$

Theorem

If every countable model of $\mathcal{M} \models T_0$ admits an ω -extension $\mathcal{N} \models T_1$, then T_1 is \mathcal{L}_1 -conservative over T_0 .

- ▶ Suppose $T_0 \nvdash \phi$. Let $\mathcal{M} \models T_0 \land \neg \phi$.
- ▶ Let $\mathcal{N} \models T_1$ be an ω -extension of \mathcal{M} .
- ▶ Then $\mathcal{N} \models T_1 \land \neg \phi$. So $T_1 \nvdash \phi$.

A second-order structure $\mathcal{N}=(N,T)$ is an ω -extension of $\mathcal{M}=(M,S)$ if $N=M,\,T\supseteq S,\,+^{\mathcal{N}}=+^{\mathcal{M}},\,\times^{\mathcal{N}}=\times^{\mathcal{M}}$ and $<^{\mathcal{N}}=<^{\mathcal{M}}.$

Theorem

If every countable model of $\mathcal{M} \models T_0$ admits an ω -extension $\mathcal{N} \models T_1$, then T_1 is Π_1^1 -conservative over T_0 .

- ▶ Suppose $T_0 \nvdash \forall X \phi(X)$. Let $\mathcal{M} \models T_0 \land \exists X \neg \phi(X)$.
- ▶ Let $\mathcal{N} \models T_1$ be an ω -extension of \mathcal{M} .
- ▶ Then $\mathcal{N} \models T_1 \land \exists X \neg \phi(X)$. So $T_1 \nvdash \forall X \phi(X)$.

Induction scheme

$$\varphi(0) \land \forall x (\varphi(x) \to \varphi(x+1)) \to \forall y \varphi(y)$$

for every formula $\varphi(x)$

Collection scheme

$$(\forall x < a)(\exists y)\varphi(x,y) \to (\exists b)(\forall x < a)(\exists y < b)\varphi(x,y)$$

for every $a \in \mathbb{N}$ and every formula $\varphi(x, y)$

Over
$$\mathbf{Q} + \mathbf{I}\Delta_0^0 + \mathbf{exp}$$

Induction	Collection	Least principle	Regularity
:	:	:	:
$I\Sigma_2^0 \equiv I\Pi_2^0$		$L\Pi_2^0 \equiv L\Sigma_2^0$	Σ_2^0 -regularity
$I\Delta^0_2$	$B\Sigma_2^0 \equiv B\Pi_1^0$	$L\Delta^0_2$	Δ_2^0 -regularity
$\mathrm{I}\Sigma_1^0 \equiv \mathrm{I}\Pi_1^0$		$L\Pi^0_1 \equiv L\Sigma^0_1$	Σ_1^0 -regularity
$I\Delta^0_1$	$B\Sigma^0_1 \equiv B\Pi^0_0$	$L\Delta_1^0$	Δ_1^0 -regularity

- ► exp: totality of the exponential
- ► A set X is M-regular if every initial segment of X is M-coded
- ► Least principle: every non-empty set admits a minimum element

Over
$$\mathbf{Q} + \mathbf{I} \Delta_0^0 + \mathbf{exp}$$

Induction	Collection	Least principle	Regularity
:	:	:	
$I\Sigma_2^0 \equiv I\Pi_2^0$		$L\Pi_2^0 \equiv L\Sigma_2^0$	Σ_2^0 -regularity
$I\Delta_2^0$	$\mathrm{B}\Sigma_2^0 \equiv \mathrm{B}\Pi_1^0$	$L\Delta^0_2$	Δ_2^0 -regularity
$\mathrm{I}\Sigma_1^0 \equiv \mathrm{I}\Pi_1^0$		$L\Pi^0_1 \equiv L\Sigma^0_1$	Σ_1^0 -regularity
$I\Delta^0_1$	$B\Sigma^0_1 \equiv B\Pi^0_0$	$L\Delta_1^0$	Δ_1^0 -regularity

$$RCA_0 \equiv Q + \Delta_1^0$$
-comprehension + $I\Sigma_1^0$

First-order part of *T*:

set of its first-order sentences

Induction	System	First-order part	
:	:	:	
$\mathrm{I}\Sigma_2^0 \equiv \mathrm{I}\Pi_2^0$	$RCA_0 + I\Sigma^0_2$	$Q + I\Sigma_2$	
$I\Delta^0_2$	$RCA_0 + B\Sigma_2^0$	$Q + I\Delta_2$	
$\mathrm{I}\Sigma_1^0 \equiv \mathrm{I}\Pi_1^0$	RCA_0	$Q + I\Sigma_1$	
$I\Delta_1^0 + exp$	RCA^*_0	$Q + I\Delta_1 + exp$	

Goal

Given a Π_2^1 -problem P, show that

 $RCA_0 + P$ is a Π_1^1 -conservative extension of RCA_0 .

Then the first-order part of RCA₀ + P is Q + I Σ_1 .

Approach

(Version 1)

Given a Π_2^1 -problem P, show that

Every countable model of RCA₀ is ω -extended into a model of RCA₀ + P.

Then the first-order part of RCA₀ + P is Q + I Σ_1 .

Let $\mathcal{M}=(\textit{M},\textit{S})$ be a second-order structure, and $\textit{G}\subseteq\textit{M}$. $\mathcal{M}[\textit{G}]$ is the smallest ω -extension containing the $\Delta^0_1(\mathcal{M}\cup\{\textit{G}\})$ sets.

Lemma (Friedman)

Let $\mathcal{M}=(\textit{M},\textit{S})\models \mathsf{RCA}_0$ and $\textit{G}\subseteq \textit{M}$ be such that $\mathcal{M}\cup\{\textit{G}\}\models \mathsf{I}\Sigma^0_1$. Then $\mathcal{M}[\textit{G}]\models \mathsf{RCA}_0$.

Start with a countable model $\mathcal{M}_0 \models \mathsf{RCA}_0$

Given a countable model $\mathcal{M}_n \models \mathsf{RCA}_0$,

Start with a countable model $\mathcal{M}_0 \models \mathsf{RCA}_0$

Given a countable model $\mathcal{M}_n \models RCA_0$,

1. pick an instance $X \in \mathcal{M}_n$ of P

Start with a countable model $\mathcal{M}_0 \models \mathsf{RCA}_0$

Given a countable model $\mathcal{M}_n \models RCA_0$,

- 1. pick an instance $X \in \mathcal{M}_n$ of P
- 2. choose a solution G to X such that $\mathcal{M}_n \cup \{G\} \models \mathsf{I}\Sigma^0_1$

Start with a countable model $\mathcal{M}_0 \models \mathsf{RCA}_0$

Given a countable model $\mathcal{M}_n \models RCA_0$,

- 1. pick an instance $X \in \mathcal{M}_n$ of P
- 2. choose a solution G to X such that $\mathcal{M}_n \cup \{G\} \models \mathsf{I}\Sigma^0_1$
- 3. define $\mathcal{M}_{n+1} = \mathcal{M}_n[G]$

Start with a countable model $\mathcal{M}_0 \models \mathsf{RCA}_0$

Given a countable model $\mathcal{M}_n \models RCA_0$,

- 1. pick an instance $X \in \mathcal{M}_n$ of P
- 2. choose a solution G to X such that $\mathcal{M}_n \cup \{G\} \models \mathsf{I}\Sigma^0_1$
- 3. define $\mathcal{M}_{n+1} = \mathcal{M}_n[G]$

Let
$$\mathcal{M} = \bigcup_n \mathcal{M}_n$$
. Then $\mathcal{M} \models \mathsf{RCA}_0 + \mathsf{P}$

Approach

(Version 2)

Given a Π_2^1 -problem P, show that

For every countable model \mathcal{M} of RCA₀ and every P-instance $X \in \mathcal{M}$, there is a solution G such that $\mathcal{M} \cup \{G\} \models \mathsf{I}\Sigma^0_1$.

Then the first-order part of RCA₀ + P is Q + I Σ_1 .

WKL_0

Weak König's lemma

Every infinite binary tree admits an infinite path

Theorem (Harrington)

 WKL_0 is $\Pi^1_1\text{-conservative over }\mathsf{RCA}_0$

Theorem (Harrington)

Let $\mathcal{M}=(M,S)\models \mathsf{RCA}_0$ be a countable model and $\mathcal{T}\subseteq 2^{< M}$ be an infinite tree in S. There is a path $G\in [\mathcal{T}]$ such that $\mathcal{M}[G]\models \mathsf{RCA}_0$.

$$(\mathbb{P}, \leq)$$

The set of all infinite binary trees in *S* ordered by inclusion

$$T ?\vdash \varphi(G)$$

there is some $\ell \in M$ such that for every $\sigma \in T$ of length ℓ , $\varphi(\sigma)$.

$$T ?\vdash \varphi(G)$$

there is some $\ell \in M$ such that for every $\sigma \in T$ of length ℓ , $\varphi(\sigma)$.

Lemma

Let T be a condition and $\varphi(G)$ be a $\Sigma_1^0(\mathcal{M})$ -formula.

- 1. If T? $\vdash \varphi(G)$ then T forces $\varphi(G)$
- 2. If $T \not \cong \varphi(G)$ then there is an extension $T_1 \subseteq T$ forcing $\neg \varphi(G)$

Lemma

Let T be a condition and $\varphi(x,X)$ be a $\Sigma^0_1(\mathcal{M})$ -formula such that T forces $\neg \varphi(b,G)$ for some $b \in M$. Then there is an extension $T_1 \subseteq T$ such that

- ▶ Either T_1 forces $\neg \varphi(0, G)$
- ▶ Or T_1 forces $\varphi(a, G)$ and $\neg \varphi(a+1, G)$ for some $a \in M$

Given $T \in \mathbb{P}$, define the $\Sigma_1^0(\mathcal{M})$ set

$$W = \{x \in M : T? \vdash \varphi(x, G)\}$$

- ► Case 1: $0 \notin W$. Then there is an extension forcing $\neg \varphi(0, G)$
- ► Case 2: $a \in W$ and $a + 1 \notin W$ for some $a \in M$ Then there is an extension forcing $\varphi(a, G)$ and $\neg \varphi(a + 1, G)$
- ► Case 3: $0 \in W$ and $\forall a \in M \ (a \in W \rightarrow a + 1 \in W)$ Impossible, since $\mathcal{M} \models \mathsf{I}\Sigma_1^0$ but $b \notin W$.

Every set can be Δ_2^0 from the viewpoint of RCA₀.

Theorem (Towsner

Let $\mathcal{M}=(M,S)\models \mathsf{RCA}_0$ be a countable model and $A\subseteq M$ be an arbitrary set. There is a set $G\subseteq M$ such that A is $\Delta^0_2(G)$ and $\mathcal{M}[G]\models \mathsf{RCA}_0$.

Towsner forcing

 \mathbb{P} : set of pairs (g, I) in \mathcal{M} such that

- ▶ $g \subseteq M^2 \rightarrow 2$ is a finite partial function;
- ▶ $I \subset M$ is a finite set of "locked" columns.

[g, I]: class of all partial functions $h \subseteq M^2 \to 2$ such that

- ▶ $g \subseteq h$;
- ▶ for all $(x,y) \in \text{dom } h \setminus \text{dom } g$, if $x \in I$ then h(x,y) = A(x).

$$(h,J) \leq (g,I)$$
 if $J \supseteq I$ and $h \in [g,I]$

$$(g,I) ?\vdash \varphi(G)$$

there is some $h \in [g, I]$ such that $\varphi(h)$.

Lemma

Let (g, I) be a condition and $\varphi(G)$ be a $\Sigma^0_1(\mathcal{M})$ -formula.

- 1. If $(g, I) ? \vdash \varphi(G)$ then there is an extension forcing $\varphi(G)$
- 2. If $(g, I) ? \not\vdash \varphi(G)$ then (g, I) forces $\neg \varphi(G)$

Lemma (Friedman)

Let $\mathcal{M} = (M, S) \models \mathsf{RCA}_0$ and $G \subseteq M$ be such that $\mathcal{M} \cup \{G\} \models \mathsf{I}\Sigma^0_1$. Then $\mathcal{M}[G] \models \mathsf{RCA}_0$.

Lemma

Let (g,I) be a condition and $\varphi(x,X)$ be a $\Sigma^0_1(\mathcal{M})$ -formula such that (g,I) forces $\neg \varphi(b,G)$ for some $b \in M$. Then there is an extension $(h,J) \leq (g,I)$ such that

- ▶ Either (h, J) forces $\neg \varphi(0, G)$
- ▶ Or (h, J) forces $\varphi(a, G)$ and $\neg \varphi(a + 1, G)$ for some $a \in M$

Given $(g, I) \in \mathbb{P}$, define the $\Sigma^0_1(\mathcal{M})$ set

$$W = \{x \in M : (g, I) ? \vdash \varphi(x, G)\}$$

- ► Case 1: $0 \notin W$. Then there is an extension forcing $\neg \varphi(0, G)$
- ► Case 2: $a \in W$ and $a + 1 \notin W$ for some $a \in M$ Then there is an extension forcing $\varphi(a, G)$ and $\neg \varphi(a + 1, G)$
- ► Case 3: $0 \in W$ and $\forall a \in M \ (a \in W \rightarrow a + 1 \in W)$ Impossible, since $\mathcal{M} \models \mathsf{I}\Sigma_1^0$ but $b \notin W$.

Fix a notion of forcing (\mathbb{P}, \leq) .

A forcing question is (Σ_n^0, Π_n^0) -merging if for every $p \in \mathbb{P}$ and every pair of Σ_n^0 -formulas $\varphi(G), \psi(G)$ such that $p \not \vdash \varphi(G)$ and $p \not \vdash \psi(G)$, there is an extension $q \leq p$ such that $q \vdash \varphi(G) \land \neg \psi(G)$..

Lemma

Suppose $?\vdash$ is Σ^0_1 -preserving and (Σ^0_1,Π^0_1) -merging. For every Σ^0_1 formula $\varphi(\mathbf{x},\mathbf{G})$, the following set is dense in (\mathbb{P},\leq) .

$$D = \{ p \in \mathbb{P} : p \Vdash [\varphi(0, \mathbf{G}) \land \forall x (\varphi(x, \mathbf{G}) \to \varphi(x + 1, \mathbf{G}))] \to \forall x \varphi(x, \mathbf{G}) \}$$

What we know so far...

Forcing question ?-	Notion of forcing (\mathbb{P}, \leq)
Σ_1^0 -preserving	cone avoidance
Σ_1^0 -pres. and Σ_1^0 -compact	pres. of hyperimmunity
Σ_1^0 -pres. and Π_1^0 -merging	PA avoidance
Σ_1^0 -pres. and ω - Π_1^0 -merging	DNC avoidance
Σ_1^0 -pres. and (Σ_1^0,Π_1^0) -merging	$I\Sigma^0_1$ preservation
	•••

Higher jump control

Fix a notion of forcing (\mathbb{P}, \leq) .

A forcing question is Γ -preserving if for every $p \in \mathbb{P}$ and every Γ -formula $\varphi(G, x)$, the relation $p ? \vdash \varphi(G, x)$ is in Γ uniformly in x.

Lemma

Suppose $?\vdash$ is Σ_n^0 -preserving. For every non- $\emptyset^{(n-1)}$ -computable set C and Turing functional Φ_e , the following set is dense in (\mathbb{P}, \leq) .

$$D = \{ p \in \mathbb{P} : p \Vdash \Phi_{\mathsf{e}}^{\mathsf{G}^{(n-1)}} \neq C \}$$

Given $p \in \mathbb{P}$, define the Σ_n^0 set

$$W = \{(x, v) : \rho ? \vdash \Phi_{\mathsf{e}}^{\mathsf{G}^{(n-1)}}(x) \downarrow = v\}$$

- ▶ Case 1: $(x, 1 C(x)) \in W$ for some xThen there is an extension forcing $\Phi_e^{G^{(n-1)}} \neq C$
- ► Case 2: $(x, C(x)) \notin W$ for some xThen there is an extension forcing $\Phi_e^{G^{(n-1)}} \neq C$
- ► Case 3: *W* is a Σ_n^0 graph of *C* Impossible, since $C \not\subset_T \emptyset^{(n-1)}$

Cohen forcing

$$(2^{<\omega}, \preceq)$$

 $2^{<\omega}$ is the set of all finite binary strings

 $\sigma \preceq \tau$ means σ is a prefix of τ

$$[\sigma] = \{ \mathbf{X} \in 2^{\omega} : \sigma \prec \mathbf{X} \}$$

Let $\sigma \in 2^{<\mathbb{N}}$ and $\varphi(G) \equiv \exists x \psi(G, x)$ be a Σ_n^0 formula for $n \ge 1$.

$$\sigma ? \vdash \varphi(\mathbf{G}) \equiv \begin{cases} \exists \mathbf{x} \ \exists \tau \succeq \sigma \ \psi(\tau, \mathbf{x}) & \text{for } n = 1 \\ \exists \mathbf{x} \ \exists \tau \succeq \sigma \ \tau \ ? \nvdash \neg \psi(\mathbf{G}, \mathbf{x}) & \text{for } n > 1 \end{cases}$$

Lemma

The forcing question for Σ_n^0 -formulas is Σ_n^0 -preserving

▶ And Σ_n^0 -compact, ω - Π_n^0 -merging, (Σ_n^0, Π_n^0) -merging

A set *X* is high if $X' \geq_T \emptyset''$

Theorem

For every sufficiently Cohen generic G, $G^{(n)} \not\geq_T \emptyset^{(n+1)}$.

Corollary

No sufficiently Cohen generic is high.

Cohen forcing question for Σ_n^0 Forcing Σ_n^0 Forcing Π_n^0

Jockusch-Soare forcing

$$(\mathcal{T},\subseteq)$$

 \mathcal{T} is the collection of infinite primitive recursive binary trees

$$[T] = \{ X \in 2^{\omega} : \forall \sigma \prec X \ \sigma \in T \}$$

Let $T \in \mathcal{T}$ and $\varphi(G) \equiv \exists x \psi(G, x)$ be a Σ_n^0 formula for $n \geq 1$.

$$T? \vdash \varphi(G)$$

$$\equiv$$

$$\begin{cases} \exists \ell, x \in \mathbb{N} \ \forall \sigma \in 2^{\ell} \cap T \ \psi(\sigma, x) & \text{for } n = 1 \\ \exists S \in \mathcal{T}, \ S \subseteq T \land S? \not\vdash \neg \psi(G, x) & \text{for } n > 1 \end{cases}$$

Lemma

The forcing question for Σ_n^0 -formulas is Σ_n^0 -preserving

- ▶ And Σ_1^0 -compact, (Σ_1^0, Π_1^0) -merging for n=1
- ▶ And Σ_n^0 -compact, ω - Π_n^0 -merging, (Σ_n^0, Π_n^0) -merging for $n \ge 2$

An infinite set C is cohesive for a sequence R_0, R_1, \ldots if for every $i, C \subseteq^* R_i$ or $C \subseteq^* \overline{R_i}$

COH

Cohesiveness principle
Every sequence of sets admits a cohesive set

Cohesiveness is about jump computation

Mathias condition

F is finite, X is infinite, $\max F < \min X$

Mathias extension

$$(E, Y) \le (F, X)$$

 $F \subseteq E, Y \subseteq X, E \setminus F \subseteq X$

Cylinder

$$[F,X]=\{G:F\subseteq G\subseteq F\cup X\}$$

Lemma

Let R_0, R_1, \ldots be computable sets. Every sufficiently generic set G for computable Mathias forcing is \vec{R} -cohesive

▶ Given (F,X) and R_n , either $(F,X \cap R_n)$ or $(F,X \cap \overline{R}_n)$ is valid

$$\sigma?\vdash\varphi(\mathbf{G})\equiv\exists\mathbf{E}\subseteq\mathbf{X}\;\varphi(\mathbf{F}\cup\mathbf{E})$$

Lemma

The forcing question for Σ_1^0 -formulas is Σ_1^0 -preserving

▶ And Σ_1^0 -compact, ω - Π_1^0 -merging, (Σ_1^0, Π_1^0) -merging

A function $g : \mathbb{N} \to \mathbb{N}$ dominates $f : \mathbb{N} \to \mathbb{N}$ if $\forall^{\infty} x \ g(x) \ge f(x)$.

The principal function of an infinite set $X = \{x_0 < x_1 < \dots\}$ is the function $p_X : n \mapsto x_n$.

A Turing degree **d** is high if $\mathbf{d}' \geq \mathbf{0}''$.

Theorem (Martin domination)

A degree is high iff it computes a function dominating every computable function

Lemma

If G is sufficiently Mathias generic, then p_G dominates every computable function

- ▶ Let $f : \mathbb{N} \to \mathbb{N}$ be a total computable function and (F, X) be a Mathias condition
- ▶ Let $Y \subseteq X$ be such that $p_{F \cup Y}$ dominates f
- ▶ The extension (F, Y) forces p_G to dominate f

Mathias forcing produces sparse sets which computes fast-growing functions even when using computable reservoirs

Solution: restrict reservoirs

Let R_0, R_1, \ldots be an infinite sequence of sets

Given $\sigma \in 2^{<\mathbb{N}}$, let

$$\vec{R}_{\sigma} = \bigcap_{\sigma(i)=0} \overline{R}_i \bigcap_{\sigma(i)=1} R_i$$

Let $\mathcal{T}(\vec{R})$ be the Σ^0_1 tree of all σ such that $\mathrm{card}\,\vec{R}_\sigma>|\sigma|$

$$(F, \sigma)$$
 denotes $(F, R_{\sigma} \setminus [0, max(F)])$

 (F, σ) denotes a Mathias condition iff σ is extensible in $\mathcal{T}(\vec{R})$

Cohesiveness

A condition is a tuple (F, σ, T) such that

- (a) F is a finite set
- (b) T is an infinite, \emptyset' -p.r. subtree of $\mathcal{T}(\vec{R})$
- (c) $\sigma \in 2^{<\omega}$ is a stem of T

A condition (E, τ, S) extends (F, σ, T) iff

- (i) $F \subseteq E, E \setminus F \subseteq R_{\sigma} \setminus [0, max(F)]$
- (ii) $\sigma \leq \tau$
- (iii) $S \subseteq T$

Σ_1^0 case

$$(F, \sigma) ? \vdash \varphi(G)$$

$$\equiv$$

$$\exists E \subseteq R_{\sigma} \setminus [0, \max F] \varphi(F \cup E)$$

I emma

The forcing question for Σ^0_1 -formulas is Σ^0_1 -preserving

▶ And Σ^0_1 -compact, ω - Π^0_1 -merging, (Σ^0_1,Π^0_1) -merging

Σ_2^0 case

$$(F, \sigma) ? \vdash \exists x \varphi(G, x)$$

$$\exists E \subseteq R_{\sigma} \setminus [0, \max F] \ \exists \ell, x \in \mathbb{N} \ \forall \tau \in 2^{\ell} \cap T \ (F \cup E, \tau) \ ? \not\vdash \neg \varphi(G, x)$$

Lemma

The forcing question for Σ^0_2 -formulas is Σ^0_2 -preserving

▶ And Σ_2^0 -compact, (Σ_2^0, Π_2^0) -merging

Σ_n^0 case, $n \geq 3$

$$(\mathbf{F}, \sigma) ? \vdash \varphi(\mathbf{G})$$

$$\equiv$$

$$\exists (\mathbf{E}, \tau, \mathbf{S}) \leq (\mathbf{F}, \sigma, T) \exists \mathbf{x} \in \mathbb{N} (\mathbf{E}, \tau, \mathbf{S}) ? \nvdash \neg \varphi(\mathbf{G}, \mathbf{x})$$

Lemma

The forcing question for Σ_n^0 -formulas is Σ_n^0 -preserving

▶ And Σ_n^0 -compact, ω - Π_n^0 -merging, (Σ_n^0, Π_n^0) -merging

Pigeonhole principle

$$\mathsf{RT}^1_{k}$$
 Every k -partition of $\mathbb N$ admits an infinite subset of a part.

Theorem (Dzhafarov and Jockusch)

For every set $C \not\leq_{\mathcal{T}} \emptyset$ and every 2-partition $A_0 \sqcup A_1 = \mathbb{N}$, there is some i < 2 and an infinite set $G \subseteq A_i$ such that $C \not\leq_{\mathcal{T}} G$.

Theorem (Monin and Patey)

For every set $C \not\leq_{\mathcal{T}} \emptyset^{(n)}$ and every 2-partition $A_0 \sqcup A_1 = \mathbb{N}$, there is some i < 2 and an infinite set $G \subseteq A_i$ such that $C \not\leq_{\mathcal{T}} G^{(n)}$.

$$(F_0,F_1,X)$$
Initial segment Reservoir

- $ightharpoonup F_i$ is finite, X is infinite, $\max F_i < \min X$
- $ightharpoonup C \not\leq_T X$
- $ightharpoonup F_i \subseteq A_i$

(Mathias condition)

(Weakness property)

(Combinatorics)

Extension

$$(E_0, E_1, Y) \leq (F_0, F_1, X)$$

- ▶ $F_i \subseteq E_i$
- $ightharpoonup Y \subseteq X$
- $ightharpoonup E_i \setminus F_i \subseteq X$

Denotation

$$\langle \textbf{G}_0, \textbf{G}_1 \rangle \in [\textbf{\textit{F}}_0, \textbf{\textit{F}}_1, \textbf{\textit{X}}]$$

- $ightharpoonup F_i \subseteq G_i$
- $ightharpoonup G_i \setminus F_i \subseteq X$

$$[\textbf{\textit{E}}_0,\textbf{\textit{E}}_1,\textbf{\textit{Y}}]\subseteq[\textbf{\textit{F}}_0,\textbf{\textit{F}}_1,\textbf{\textit{X}}]$$

COH avoidance

or jump PA avavoidance

Lemma

Let \vec{R} be a uniformly computable sequence of sets. A set computes an infinite \vec{R} -cohesive set iff its jump computes a path through $\mathcal{T}(\vec{R})$.

Lemma

For every \emptyset' -computable infinite binary tree $S\subseteq 2^{<\mathbb{N}}$, there is a uniformly computable sequence of sets \vec{R} such that $[\mathcal{T}(\vec{R})]=[S].$

A function $f: \mathbb{N} \to \mathbb{N}$ is diagonally non-X-computable (X-DNC) if

$$\forall e f(e) \neq \Phi_e^{X}(e)$$

Lemma

There exists an X-computable infinite binary tree $T \subseteq 2^{<\mathbb{N}}$ such that [T] are the $\{0,1\}$ -valued X-DNC functions.

 $T = \{ \sigma \in 2^{\leq \mathbb{N}} : \forall \mathbf{e} < |\sigma| \ \sigma(\mathbf{e}) \neq \Phi_{\mathbf{e}}^{\mathbf{X}}(\mathbf{e})[|\sigma|] \}.$

Lemma

For every X-computable infinite binary tree T, every $\{0,1\}$ -valued X-DNC function computes a path.

- ▶ Given $\sigma \in T$ and $x \in \mathbb{N}$, let $\Phi_{\mathbf{e}_{\sigma}}^{\mathbf{X}}$ explore the branches below $\sigma \cdot 0$ and $\sigma \cdot 1$.
- ▶ If the branch below $\sigma \cdot i$ is the first to die, then halt and output i.
- ▶ For every σ extensible in T, $\sigma \cdot f(e_{\sigma})$ is extensible in T.

Lemma

Let \vec{R} be a uniformly computable sequence of sets. Every set whose jump computes a $\{0,1\}$ -valued \emptyset' -DNC function computes an infinite \vec{R} -cohesive set.

Lemma

There is a uniformly computable sequence of sets \vec{R} such that for every \vec{R} -cohesive set, its jump computes a $\{0,1\}$ -valued \emptyset' -DNC function.

Fix a notion of forcing (\mathbb{P}, \leq) .

A forcing question is Π^0_n -merging if for every $p \in \mathbb{P}$ and every pair of Σ^0_n -formulas $\varphi(G), \psi(G)$ such that $p \not \cong \varphi(G)$ and $p \not \cong \varphi(G)$, there is an extension $q \leq p$ such that $q \Vdash \neg \varphi(G) \land \neg \psi(G)$.

Lemma

Suppose $?\vdash$ is Σ^0_n -preserving and Π^0_n -merging. For every $\{0,1\}$ -valued functional Φ_e , the following set is dense in (\mathbb{P},\leq) .

$$D = \{ p \in \mathbb{P} : p \Vdash \exists x \; \Phi_{\mathsf{e}}^{\mathsf{G}^{(n-1)}}(x) \uparrow \lor \exists x \; \Phi_{\mathsf{e}}^{\mathsf{G}^{(n-1)}}(x) \downarrow = \Phi_{\mathsf{x}}^{\emptyset^{(n-1)}}(x) \}$$

Given $p \in \mathbb{P}$, define the Σ_n^0 set

$$W = \{(x, v) : p ? \vdash \Phi_{\mathsf{e}}^{\mathsf{G}^{(n-1)}}(x) \downarrow = v\}$$

- ► Case 1: $(x, \Phi_{x}^{\emptyset^{(n-1)}}(x)) \in W$ for some x such that $\Phi_{x}^{\emptyset^{(n-1)}}(x) \downarrow$ Then τ is an extension forcing $\Phi_{e}^{G^{(n-1)}}(x) = \Phi_{x}^{\emptyset^{(n-1)}}(x)$
- ► Case 2: (x,0), $(x,1) \not\in W$ for some xThen σ forces $\Phi_e^{G^{(n-1)}}(x) \uparrow$
- ► Case 3: W is a Σ_n^0 graph of a $\emptyset^{(n-1)}$ -DNC function Impossible, since no $\emptyset^{(n-1)}$ -DNC function is $\emptyset^{(n-1)}$ -computable.

Cohen forcing

$$(2^{<\omega}, \preceq)$$

 $2^{<\omega}$ is the set of all finite binary strings

 $\sigma \preceq \tau$ means σ is a prefix of τ

$$[\sigma] = \{ \mathbf{X} \in 2^{\omega} : \sigma \prec \mathbf{X} \}$$

Theorem (Folklore)

Every sufficiently Cohen generic G computes no $\{0,1\}$ -valued DNC function.

Lemma

For every $\{0,1\}$ -valued Turing functional $\Phi_{\rm e}$, the following set is dense in $(2^{<\omega},\preceq)$.

$$D = \{ \sigma \in 2^{<\omega} : \sigma \Vdash \exists x \; \Phi_{\mathbf{e}}^{\mathbf{G}}(x) \uparrow \lor \exists x \; \Phi_{\mathbf{e}}^{\mathbf{G}}(x) \downarrow = \Phi_{\mathbf{x}}(x) \}$$

Let $\sigma \in 2^{<\mathbb{N}}$ and $\varphi(G) \equiv \exists x \psi(G, x)$ be a Σ_n^0 formula for $n \ge 1$.

$$\sigma ? \vdash \varphi(\mathbf{G}) \equiv \begin{cases} \exists \mathbf{x} \ \exists \tau \succeq \sigma \ \psi(\tau, \mathbf{x}) & \text{for } n = 1 \\ \exists \mathbf{x} \ \exists \tau \succeq \sigma \ \tau \ ? \nvdash \neg \psi(\mathbf{G}, \mathbf{x}) & \text{for } n > 1 \end{cases}$$

Lemma

The forcing question for Σ_n^0 -formulas is Σ_n^0 -preserving

Conclusion

The computability-theoretic properties of forcing notions are consequences of combinatorial and definitional features of their forcing questions

Subsystems of second-order arithmetic, 2010

Slicing the truth, 2014

Reverse Mathematics, 2022

Lowness and avoidance, 2025