Reverse mathematics: Classifying principles by the no randomized algorithm property.

Laurent Bienvenu Ludovic Patey Paul Shafer

LIAFA, Université Paris 7

September 23, 2013
Summary

Introduction

NRA property

Classification

Conclusion
Plan

Introduction

NRA property

Classification

Conclusion
What is Reverse Mathematics?

Definition
Program in mathematical logic that seeks to determine which axioms are required to prove theorems of mathematics.

- Weak system (RCA_0)
- Prove equivalence of theorems and axioms over RCA_0
- Lattice of systems

Applications
- Soundness
- Heuristic for new proofs
Observation

Most theorems of “ordinary” mathematics

- live in weak systems.
- are equivalent to axioms over RCA₀

- Refine our structure of weak systems.
- Weaker than Ramsey theorem and König’s lemma.
Language of Second Order Arithmetic L_2

Numerical terms

\[t ::= 0 \mid 1 \mid x \mid t_1 + t_2 \mid t_1 \cdot t_2 \]

Formulas

\[f ::= \quad t_1 = t_2 \mid t_1 < t_2 \mid t_1 \in X \mid \forall x.f \]
\[\mid \exists x.f \mid \forall X.f \mid \exists X.f \mid \neg f \mid f_1 \lor f_2 \]
Axioms of Second Order Arithmetic \mathbb{Z}_2

Basic axioms

\[
\begin{align*}
 n + 1 & \neq 0 & m + 1 = n + 1 \implies m = n \\
 m + 0 & = m & m + (n + 1) = (m + n) + 1 \\
 m \cdot 0 & = 0 & m \cdot (n + 1) = (m \cdot n) + m \\
 \neg m < 0 & & m < n + 1 \iff (m < n \lor m = n)
\end{align*}
\]

Induction axiom

\[
(0 \in X \land \forall n. (n \in X \implies n + 1 \in X)) \implies \forall n. (n \in X)
\]

Comprehension scheme

\[
\exists X. \forall n. (n \in X \iff \varphi(n))
\]

where $\varphi(n)$ is any formula of L_2 in which X does not occur freely.
Subsystem of \mathbb{Z}_2

Definition (Subsystem of \mathbb{Z}_2)

System based of L_2 whose axioms are theorems of \mathbb{Z}_2
The system RCA_0

Basic axioms

Σ^0_1 Induction scheme

$$(\varphi(0) \land \forall n. (\varphi(n) \Rightarrow \varphi(n + 1))) \Rightarrow \forall n. \varphi(n)$$

where $\varphi(n)$ is any Σ^0_1 formula of L_2

Δ^0_1 Comprehension scheme

$$\forall n (\varphi(n) \iff \psi(n)) \Rightarrow \exists X. \forall n. (x \in X \iff \varphi(n))$$

where $\varphi(n)$ is any Σ^0_1 formula of L_2 in which X does not occur freely and $\psi(n)$ is any Π^0_1 formula of L_2.
The “Big Five” subsystems

\[\text{Pi11-CA} \]
\[\text{ATR} \]
\[\text{ACA} \]
\[\text{WKL} \]
\[\text{RCA} \]
Reverse mathematics zoo
\(\omega\)-structure

Definition (\(\omega\)-structure)

\[M_S = (\omega, S, +, \times, <) \]

Example (Minimal \(\omega\)-model of RCA_0)

\(COMP\) is the \(\omega\)-structure where

\[S = \{ X \in 2^\omega : X \text{ is computable} \} \]
Plan

Introduction

NRA property

Classification

Conclusion
No randomized algorithm property

Definition
Let \vec{X}_i be a sequence of sets. $COMP(\vec{X}_i)$ is the ω-structure where

$$S = \bigcup_{i \in \omega} \{ Y : Y \leq_T X_0 \oplus \cdots \oplus X_i \}.$$

Question

Fix a system P and pick a sequence \vec{X}_i at random. What is the probability that $COMP(\vec{X}_i) \models P$?
No randomized algorithm property

Definition
A system P has the no randomized algorithm property if when picking a sequence of sets \vec{X}_i, the probability that $COMP(\vec{X}_i) \models P$ is null.

Question
Which systems have the NRA property?
No randomized algorithm property

Why no randomized algorithm property?

• Consider a principle $P = \forall Y \exists Z \Phi(Y, Z)$.

• If P has the NRA property, then for almost every sequence \vec{X}_i there is a $Y \in COMP(\vec{X}_i)$ such that no probabilistic algorithm computes a Z such that $\Phi(Y, Z)$.
No randomized algorithm property

\(n\text{-RAN} \) (\(n\text{-randomness} \))

For every \(X \), there is a set \(Y \) which is \(n\text{-random} \) relative to \(X \).

\(n\text{-WWKL} \) (\(n\text{-weak weak König’s lemma} \))

Every subtree of \(2^{<\omega} \) of positive measure computable in \(\emptyset^{(n-1)} \) has an infinite path.

Theorem (Avigdod, Dean & Rute)

For every standard \(n \),

\[
\text{RCA}_0 + B\Sigma_n \vdash n\text{-RAN} \iff n\text{-WWKL}
\]
Theorem

If a system S has the NRA property

$$\forall n \quad \text{RCA}_0 \not\vdash n\text{-WWKL} \rightarrow S$$

Proof.

Pick the \vec{X}_i at random. With probability 1, for all i, X_{i+1} is n-random relative to the join of the X_k, $k < i$. Therefore, with probability 1, $COMP(\vec{X}_i)$ is a model of n-WWKL. \qed
Plan

Introduction

NRA property

Classification

Conclusion
No randomized algorithm property

Which systems have the NRA property?
We can take the zoo ...
... and classify it
A remark

A lot of (weak) principles have the NRA property

...
SADS (Stable ascending descending sequence)
Every linear order of order type $\omega + \omega^*$ has an infinite suborder of order type ω or ω^*.

Theorem (Csima & Mileti)
SADS has the NRA property

Proof.
There is a computable linear order of order type $\omega + \omega^*$ such that the measure of oracles computing an infinite suborder of order type ω or ω^* is null.
Ordering

CADS *(Cohesive ascending descending sequence)*

Every linear order has a suborder of order type $\omega + \omega^*$ or ω or ω^*.

Theorem (Bienvenu, Patey & Shafer)

CADS has the NRA property

Proof.

There is a computable linear order such that the measure of oracles computing an infinite suborder of order type $\omega + \omega^*$ or ω or ω^* is null.
\(\Pi^0_1 G \) (\(\Pi^0_1 \) genericity)

Any uniformly \(\Pi^0_1 \) collection of dense sets \(D_i \subseteq 2^{<\omega} \) has a \(G \) such that \(\forall i \exists s (G \upharpoonright s \in D_i) \).

Theorem (Kurtz)

The upward closure of the weakly 2-generic degrees has measure 0.

Theorem (Bienvenu, Patey & Shafer)

\(\Pi^0_1 G \) *has the NRA property*
First remark

... but there are non-trivial problems solved by randomness.
Genericity

1-GEN (1-genericity)
For any set X, there exists a set 1-generic relative to X.

Theorem (Kurtz)
Almost every set computes a 1-generic set.

Corollary
1-GEN does not have the NRA property.
Rainbow Ramsey Theorem

Definition (k-bounded function)
A coloring function $\mathbb{N}^n \to \mathbb{N}$ is k-bounded if
$\text{card}\{x \in \mathbb{N}^n : f(x) = c\} \leq k$ for every color c.

RRT_k^n (Rainbow Ramsey Theorem)
For every k-bounded coloring function $f : \mathbb{N}^n \to \mathbb{N}$ there is an
infinite set H such that $f \upharpoonright H^n$ is injective.
Rainbow Ramsey Theorem

Theorem (Csima & Mileti)
\[\text{RCA}_0 \vdash 2\text{-RAN} \rightarrow \text{RRT}_2^2 \]

Theorem (Bienvenu, Patey & Shafer)
\[\text{RRT}_2^3 \text{ has the NRA property.} \]

Proof.
There is a computable 2-bounded coloring \(c : [\mathbb{N}]^3 \rightarrow \mathbb{N} \) such that the measure of oracles computing an infinite rainbow for \(c \) is null.
Plan

Introduction

NRA property

Classification

Conclusion
Conclusion

- The following principles have the NRA property: \(\Pi^0_1 G, \text{CADS}, \text{SEM}, \text{RRT}_2^3, \text{POS}, \text{STS}(2) \text{ RCOLOR}_2 \).

- Any principle below \(n\text{-WWKL} \) for some \(n \) does not have the NRA property.

- This suffices to classify the whole zoo.
Further research

- The NRA property: computing or not a solution with
 - randomness

- What about the ability to compute a solution with
 - randomness
 - other oracles (eg. 0′)
References

Comparing DNR and WWKL.

Jeremy Avigad, Edward T Dean, and Jason Rute.
Algorithmic randomness, reverse mathematics, and the dominated convergence theorem.

CT Chong, Theodore A Slaman, and Yue Yang.
The metamathematics of stable Ramsey’s theorem for pairs.
To appear.

Stephen Flood.
Reverse mathematics and a ramsey-type könig’s lemma.

Jiayi Liu.
RT22 does not imply WKL0.

Henry Towsner Manuel Lerman, Reed Solomon.
Separating principles below Ramsey’s Theorem for Pairs.
2013.

Stephen G Simpson.
Subsystems of second order arithmetic, volume 42.
Questions

Thank you for listening!