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SOME TERMINOLOGY

Definition

1. A literal is either x (positive literal) or ¬x (negative literal)
for a variable x.

2. A k-clause is a disjunction of k literals.

3. A finite set of clauses {ϕ1, . . . , ϕn} over a set of variables V
is satisfiable if there exists an assignment ρ : V → {T,F}
such that each clause is true under the assignment.
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SATISFIABILITY IN COMPLEXITY THEORY

Definition
ISAT : Given a finite set of clauses, is it satisfiable ?

Theorem (Cook (1971), Levin (1973))
ISAT is NP-complete
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SATISFIABILITY IN COMPLEXITY THEORY

Definition

1. A Boolean relation R is a subset of {T,F}n

2. Given a set S of Boolean relations, an S-formula is a
formula R(x0, . . . , xn) for some R ∈ S.

Definition
Fix a finite set S of Boolean relations. ISAT(S) : Given a finite
set of S-formulas, is it satisfiable ?
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SATISFIABILITY IN COMPLEXITY THEORY

Definition
A clause is

1. bijunctive if it contains at most 2 literals
2. horn if it contains at most one positive literal
3. co-horn if it contains at most one negative literal

Note:
(¬x0 ∨ . . .¬xn ∨ y) ≡ (x0 ∧ · · · ∧ xn → y)
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SATISFIABILITY IN COMPLEXITY THEORY

Definition
A formula ϕ is

1. 0-valid if ϕ(F, . . . ,F) is true.
2. 1-valid if ϕ(T, . . . ,T) is true.
3. bijunctive if it is a conjunction of bijunctive clauses.
4. horn if it is a conjunction of horn clauses.
5. co-horn if it is a conjunction of co-horn clauses.
6. affine if it is a conjunction of formulas of the form

x1 ⊕ · · · ⊕ xn = i for i ∈ {0, 1}where ⊕ is the exclusive or.
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SATISFIABILITY IN COMPLEXITY THEORY

Given a formula ϕ and a canonical ordering of the variables,
define [ϕ] to be the corresponding relation, i.e. the set of
assignments satisfying it.

Example
[(x ∨ y) ∧ x] = {10, 11}

Define in a natural way 0-valid, 1-valid, ... relations
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SATISFIABILITY IN COMPLEXITY THEORY

Theorem (Schaefer’s dichotomy (1978))
Let S be a finite set of Boolean relations. If S satisfies one of the
conditions (a)− (f ) below, then ISAT(S) is in P.
Otherwise, ISAT(S) is NP-complete.

(a) Every relation in S is 0-valid.
(b) Every relation in S is 1-valid.
(c) Every relation in S is horn
(d) Every relation in S is co-horn
(e) Every relation in S is affine.
(f) Every relation in S is bijunctive.
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WHAT IS REVERSE MATHEMATICS ?

Definition
Reverse mathematics is program in mathematical logic that
seeks to determine which axioms are required to prove
theorems of mathematics.

I Weak system (RCA0)
I Prove equivalence of theorems and axioms over RCA0

Applications

I Deeper undestanding
I Search for more elementary proofs
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REVERSE MATHEMATICS

I RCA0 contains
I basic Peano axioms
I the comprehension scheme restricted to ∆0

1 formulas
I the induction scheme restricted to Σ0

1 formulas

I RCA0 captures “computational mathematics”.
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REVERSE MATHEMATICS

Observation
Most theorems of “ordinary” mathematics

I live in weak systems.
I are equivalent to axioms over RCA0
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SATISFACTION IN REVERSE MATHEMATICS

Definition
An infinite set C of formulas is finitely satisfiable if every finite
subset of C has a satisfying assignment.

Definition
SAT : Every finitely satisfiable set C of formulas has a satisfying
assignment.
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SATISFACTION IN REVERSE MATHEMATICS

Definition
WKL: Every infinite binary tree has an infinite path.

Theorem (Simpson)
RCA0 ` SAT↔WKL
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A FEW DEFINITIONS

Definition
Let S be a finite set of relations. SAT(S) : Every finitely
satisfiable set C of S-formulas has a satisfying assignment.

Is there a similar dichotomy theorem ?
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A FEW DEFINITIONS

Definition
A relation R is i-default for i = 0, 1 if for every assignment~r ∈ R
and every position j < |~r|, the assignemnt

~s(k) =

{
i if k = j
~r(k) otherwise

is also in R.

Example: If 01101 ∈ R for a 0-default relation R, then
01100, 01001, 00101, 01000, 00100, 00001, 00000 ∈ R.

In particular every i-default relation is i-valid.
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A FIRST DICHOTOMY THEOREM

Theorem
If S satisfies one of the conditions (a)− (d) below,
then SAT(S) is provable in RCA0.
Otherwise SAT(S) is equivalent to WKL0 over RCA0.

(a) Every relation in S is 0-valid.
(b) Every relation in S is 1-valid.
(c) If R ∈ S is not 0-default then R = [x](= {1}).
(d) If R ∈ S is not 1-default then R = [¬x](= {0}).
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RAMSEY-TYPE VERSION OF SATISFACTION

Question
What if we only ask for an assignment of infinitely many variables ?
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RAMSEY-TYPE VERSION OF SATISFACTION

Definition
A set H ⊆ N× {T,F} is homogeneous for a set of formulas C if
every finite subset of C has a satisfying assignment ν such that
ν(i) = t for each (i, t) ∈ H.

Definition

1. LRSAT : For every infinite set X and every finitely
satisfiable set of formulas, there exists an infinite
homogeneous subset of X × {T,F}.

2. Fix a finite set S of Boolean relations.
LRSAT(S) : For every infinite set X and every finitely
satisfiable set of S-formulas, there exists an infinite
homogeneous subset of X × {T,F}.
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A DICHOTOMY THEOREM

Theorem
Either RCA0 ` LRSAT(S) or LRSAT(S) is equivalent to one of the
following principles over RCA0:

1. LRSAT
2. LRSAT([x 6= y])

3. LRSAT(Affine)
4. LRSAT(Bijunctive)
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THE PROOF

How to prove dichotomy theorems
on Boolean satisfaction problems ?

... use universal algebra
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A FIRST GAP

Theorem
If S satisfies one of (a)-(d) below then RCA0 ` LRSAT(S).
Otherwise RCA0 ` LRSAT(S)→ LRSAT([x 6= y]).

(a) Every relation in S is 0-valid.
(b) Every relation in S is 1-valid.
(c) Every relation in S is horn.
(d) Every relation in S is co-horn.
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THE CO-CLONES COWARDS

Definition
For any set S of relations, the co-clone of S is the closure of S by
existential quantification, equality and conjunction. We denote
it by 〈S〉.

Lemma
If RCA0 ` LRSAT(S)→ LRSAT([x 6= y]) then
RCA0 ` LRSAT(S)↔ LRSAT(〈S〉)
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CO-CLONES, POLYMORPHISMS AND CLONES

Definition
An m-ary function f is a polymorphism of a relation R ⊆ {0, 1}n if
for every m-tuple 〈v1, . . . , vm〉 of vectors of R,~f (v1, . . . , vm) ∈ R
where~f is the coordinate-wise application of the function f .

Co-clones are characterized by their polymorphisms.
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POST’S LATTICE AND DICHOTOMIES

All remains is making a case analysis over Post’s lattice.



INTRODUCTION Dichotomy for satisfaction Dichotomy for Ramsey-type satisfaction Conclusion

CONCLUSION

I Full and Ramsey-type satisfaction principles admit
dichotomy theorems

I The dichotomy differs from complexity theory

I It is unknown whether the systems LRSAT,
LRSAT([x 6= y]), LRSAT(Affine) and LRSAT(Bijunctive) are
strictly different over RCA0.
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QUESTIONS

Thank you for listening !
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