Reverse Mathematics and a Weak Ramsey-Type König’s Lemma

Ludovic Patey
ludovic.patey@computability.fr

Laurent Bienvenu
laurent.bienvenu@computability.fr

LIAFA

September 4, 2012
Summary

1 Introduction
 - Subsystems of \mathbb{Z}_2
 - The system RCA_0
 - König’s Lemmas
 - Ramsey’s Theorems
 - Ramsey-Type Weak König’s Lemmas
 - Diagonally Non-Computable functions

2 The system WRKL

3 Conclusion
Plan

1. Introduction
 - Subsystems of \mathbb{Z}_2
 - The system RCA_0
 - König’s Lemmas
 - Ramsey’s Theorems
 - Ramsey-Type Weak König’s Lemmas
 - Diagonally Non-Computable functions

2. The system WRKL

3. Conclusion
What are Reverse Mathematics?

Definition
Program in mathematical logic that seeks to determine which axioms are required to prove theorems of mathematics.

- Weak system (RCA_0)
- Prove equivalence of theorems and axioms over RCA_0
- Lattice of systems

Applications
- Soundness
- Heuristic for new proofs
Observation

Most theorems of ”ordinary” mathematics

- live in weak systems.
- are equivalent to axioms over RCA_0

- Refine our structure of weak systems.
- Weaker than Ramsey theorem and König’s lemma.
Language of Second Order Arithmetic L_2

Numerical terms

$t ::= 0 | 1 | x | t_1 + t_2 | t_1 \cdot t_2$

Formulas

$f ::= t_1 = t_2 | t_1 < t_2 | t_1 \in X | \forall x. f \\
| \exists x. f | \forall X. f | \exists X. f | \neg f | f_1 \lor f_2$
Axioms of Second Order Arithmetic \mathbb{Z}_2

Basic axioms

- $n + 1 \neq 0$
- $m + 0 = m$
- $m \cdot 0 = 0$
- $\neg m < 0$
- $m + 1 = n + 1 \Rightarrow m = n$
- $m + (n + 1) = (m + n) + 1$
- $m \cdot (n + 1) = (m \cdot n) + m$
- $m < n + 1 \Leftrightarrow (m < n \lor m = n)$

Induction axiom

$$(0 \in X \land \forall n.(n \in X \Rightarrow n + 1 \in X)) \Rightarrow \forall n.(n \in X)$$

Comprehension scheme

$$\exists X. \forall n.(n \in X \Leftrightarrow \varphi(n))$$

where $\varphi(n)$ is any formula of L_2 in which X does not occur freely.
Subsystem of \mathbb{Z}_2

Definition (Subsystem of \mathbb{Z}_2)
System based of L_2 whose axioms are theorems of \mathbb{Z}_2
Definition (\(\Sigma^0_1\), \(\Pi^0_1\) and \(\Delta^0_1\) formulas)

- \(\Sigma^0_1\) : \(\exists n. \phi\)
- \(\Pi^0_1\) : \(\forall n. \phi\)
- \(\Delta^0_1\) : \(\Sigma^0_1\) and \(\Pi^0_1\)

where \(\phi\) is a \(L_2\)-formula containing only bounded quantifiers.

Theorem (Post’s theorem)

A set \(A\) is computably enumerable (resp. computable) in \(B_1, B_2, \ldots\) iff it is definable by a \(\Sigma^0_1\) formula (resp. \(\Delta^0_1\) formula) with parameters \(B_1, B_2, \ldots\).
The system \(\mathbf{RCA}_0 \)

Basic axioms

\(\Sigma^0_1 \) Induction axiom

\[
(\varphi(0) \land \forall n. (\varphi(n) \Rightarrow \varphi(n + 1))) \Rightarrow \forall n. \varphi(n)
\]

where \(\varphi(n) \) is any \(\Sigma^0_1 \) formula of \(L_2 \)

\(\Delta^0_1 \) Comprehension axiom

\[
\forall n (\varphi(n) \Leftrightarrow \psi(n)) \Rightarrow \exists X. \forall n. (x \in X \Leftrightarrow \varphi(n))
\]

where \(\varphi(n) \) is any \(\Sigma^0_1 \) formula of \(L_2 \) in which \(X \) does not occur freely and \(\psi(n) \) is any \(\Pi^0_1 \) formula of \(L_2 \).
Definition (Tree)

A set T is a tree iff it is closed under prefixes:

$$\forall \sigma \in T, \tau < \sigma \Rightarrow \tau \in T$$

Definition (Path)

P is a path in a tree T iff all prefixes of P are in T.

$$\forall \sigma \in P, \sigma \in T$$

Definition (Measure of a tree)

$$\mu(T) \overset{def}{=} \lim_{n \to \infty} \frac{\text{card} \{ \sigma \in T : |\sigma| = n \}}{2^n}$$
König’s Lemmas

König’s lemma
Every finitely branching infinite tree has a path.

Definition (ACA_0)
$\text{RCA}_0 +$ König’s lemma

Definition (WKL_0)
$\text{RCA}_0 +$ Every infinite subtree of $2^{<\omega}$ has a path.

Definition (WWKL_0)
$\text{RCA}_0 +$ Every subtree of $2^{<\omega}$ of positive measure has a path.
König’s Lemmas

Theorem (Simpson et al.)

\(\text{RCA}_0 \subsetneq \text{WWKL}_0 \subsetneq \text{WKL}_0 \subsetneq \text{ACA}_0 \)
Notation

\([\mathbb{N}]^n\) is the collection of subsets of \(\omega\) of size \(n\)

Definition (System \(\text{RT}\))

\(\text{RCA}_0 + \) “given \(n\) and \(k \in \omega\), for every function (called a coloring) \(f \in \{0, \ldots, k - 1\}^{[\mathbb{N}]^n}\), there is an infinite set \(H \subseteq \omega\) which is given one color by \(f\)”.

Definition (System \(\text{RT}^n_k\))

Restriction of \(\text{RT}\) to a fixed \(n\) and \(k\).
Theorem (Simpson)

(i) For each \(n \geq 3 \) and \(k \geq 2 \), \(\text{RCA}_0 \vdash \text{RT}^n_k \iff \text{ACA}_0 \).

(ii) \(\text{RT} \) is not provable in \(\text{ACA}_0 \).

Theorem

- \(\text{RCA}_0 \vdash \text{RT}^2_1 \)
- \(\text{RCA}_0 \vdash \text{RT}^2_2 \subset \text{ACA}_0 \) \((1995) \)
- \(\text{RT}^2_2 \not\subseteq \text{WKL}_0 \) \((2001) \)
- \(\text{RT}^2_2 \not\supset \text{WKL}_0 \) \((2011) \)
Definition (Homogeneous set)

A set H is *homogeneous for $\sigma \in 2^{<\omega}$ with color $c \in \{0, 1\}$* if $\sigma(x) = c$ for each $x \in H$ s.t. $x < |\sigma|$. H is *homogeneous for a path trough T* if $\exists c \in \{0, 1\}$ s.t. H is homogeneous for σ with color c for arbitrarily long $c \in T$.

Definition (System RKL)

$\text{RCA}_0 + \text{“each binary tree } T \text{ has an infinite set which is homogeneous for a path through } T.\text{”}$
Theorem (Flood)

(i) $\text{RKL} < \text{RT}_2^2$
(ii) $\text{RKL} < \text{WKL}_0$
(iii) $\text{DNC} \leq \text{RKL}$

Definition (System \text{WRKL})

\text{WRKL} is obtained from \text{RKL} by considering only trees of positive measure.
Diagonally Non-Computable functions

What is it?
Function which gives non-trivial meta-informations about functions.

Advantages
- Uniform framework
- Easier separation between principles
- Better understanding
Diagonally Non-Computable functions

X is a set, f a computable function and e a Turing index.

DNC

$\forall X, \exists f \in \omega^\omega$ such that $\forall e, f(e) \neq \Phi^X_e(e)$.

DNC$_k$

$\forall X, \exists f \in k^\omega$ such that $\forall e, f(e) \neq \Phi^X_e(e)$.

DNC$_h$ (where h is a computable function)

$\forall X$, there exists a h-bounded total function $f \in \omega^\omega$ such that for $\forall e$, $f(e) \neq \Phi^X_e(e)$.

FPF

$\forall X, \exists f \in \omega^\omega$ such that $\forall e, \Phi^X_{f(e)} \neq \Phi^X_e$.
Diagonally Non-Computable functions

Theorem (Jockusch, Lerman, Soare & Solovay)

\[
\text{RCA}_0 \vdash \text{DNC} = \text{FPF}
\]

Theorem (Jockusch)

For all \(k \geq 2 \) and \(f \in \text{DNC}_{k+1} \), there exists a functionnal \(\Gamma \) such that \(\Gamma^f \in \text{DNC}_k \). However the reduction is not uniform.

Theorem (Jockusch)

\[
\text{RCA}_0 \vdash \text{WKL}_0 = \text{DNC}_2
\]
Plan

1. Introduction
 - Subsystems of \mathbb{Z}_2
 - The system RCA_0
 - König’s Lemmas
 - Ramsey’s Theorems
 - Ramsey-Type Weak König’s Lemmas
 - Diagonally Non-Computable functions

2. The system WRKL

3. Conclusion
The system **WRKL**

Theorem

\[\text{RCA}_0 \vdash \text{DNC} = \text{WRKL} \]

Intuition

- **WWKL}_0 \iff \text{existence of a Martin-Löf Random}
- **WRKL \iff \text{existence of an infinite subset of a Martin-Löf Random}

Theorem (Kjos-Hanssen, Greenberg & Miller)

The following are equivalent:

(i) \(A\) computes a DNC function.

(ii) \(A\) computes an infinite subset of a Martin L"of random.
The system WRKL

- Flood proved $\text{DNC} \leq \text{WRKL}$.
- We proved that $\text{DNC} \geq \text{WRKL}$.

Lemma

Let S be a c.e. set of cardinality at most n. Using a DNC function we can uniformly compute a value outside S.

Lemma

There are computable functions g and $h \in \omega^\omega$ such that for each binary tree T of measure $\mu(T) > 2^{-m}$,

$$\text{card} \left\{ n \in \omega : \mu(T \cap \Gamma^0_n) \leq 2^{-g(m)} \right\} < h(m)$$
Plan

1. Introduction
 - Subsystems of \mathbb{Z}_2
 - The system RCA$_0$
 - König’s Lemmas
 - Ramsey’s Theorems
 - Ramsey-Type Weak König’s Lemmas
 - Diagonally Non-Computable functions

2. The system WRKL

3. Conclusion
Summary

<table>
<thead>
<tr>
<th>Tree</th>
<th>fin. branch.</th>
<th>bounded</th>
<th>h-bounded</th>
</tr>
</thead>
<tbody>
<tr>
<td>Path</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hom. set h-bounded</td>
<td>ACA_0</td>
<td>WKL_0</td>
<td>WKL_0</td>
</tr>
<tr>
<td>Hom. set with color 0</td>
<td>WRKL_h</td>
<td>DNC</td>
<td>WRKL_h</td>
</tr>
<tr>
<td>Hom. set</td>
<td>RKL</td>
<td>DNC</td>
<td>DNC</td>
</tr>
</tbody>
</table>

Table: Paths and homogeneous sets existence for classes of trees
Figure: Summary of classes considered

- ACA_0
- DNC_2
- RKL
- $WWKL_0$
- $WRKL$
- $WRKL^+$
- RCA_0
- WKL_0
Further research

Separation questions
- DNC \(\neq \) RKL ?
- WWKL\(_0\) \(\neq \) RKL ?

Characterization questions
- RKL
- WRKL\(_h\)

More natural proof
- RKL \(\neq \) WKŁ\(_0\)
References

Stephen Flood. Reverse mathematics and a ramsey-type könig’s lemma. 2011.

Questions

Thank you for listening!