
Introduction 1
1.1 Mathematical problems . . . 2
1.2 Separation theory 3
1.3 Jump control 5
1.4 Audience 6
1.5 Book structure 6

The mathematical practice is full of meta-mathematical considerations, even at
the high school level. It is common to find in textbooks statements such as “the
intermediate value theorem is equivalent to the least upper bound property” or
“give an elementary proof of Euclid’s theorem”. Every mathematician will be
convinced that the use of Fermat’s last theorem to prove the irrationality of 21/𝐿

is overly sophisticated, and the very distinction between a theorem and a corol-
lary – which are both mathematically true and logically equivalent statements
– is purely meta-mathematical. What does it mean for one theorem to imply
another? What are the optimal axioms necessary to prove ordinary theorems?
These are all questions that reverse mathematics tries to answer. Reverse
mathematics is originally a meta-mathematical program started in 1972 by
Harvey Friedman, seeking for the optimal axioms to prove ordinary theorems,
using subsystems of second-order arithmetic. The appellation took over time a
broader meaning, encompassing all the sets of tools from proof theory and
computability theory to study theorems from a computational perspective.

Intuitively, a theorem 𝑀 implies a theorem 𝑁, or a statement 𝑁 is a corollary
of a theorem 𝑀 if one can prove 𝑁 with only elementary methods, using 𝑀 as
a blackbox. The whole di!culty is to find a robust, theory-agnostic notion of
“elementary methods”1 1: Beware, we make here an important dis-

tinction between “elementary proof” and
“simple proof”. The former concept should
be understood as “logically elementary”,
that is, involving only logically weak axioms,
while the latter is a more human concept
which seems harder to formalize. In particu-
lar, one can win a Fields medal by proving
theorems requiring only weak axioms.

to formalize this intuition. This is where computability
theory comes into play: Thanks to the Church-Turing thesis, there is a consen-
sual and robust formalization of the ontological concept of “e"ective process”.
Furthermore, with the popularization of computers and their integration in every-
day’s life, the notion of algorithm started to be part of the common knowledge.
Last, but not least, by a theorem of Gödel, there is a correspondence between
the computably enumerable sets, and the sets definably by aω1-formula in first-
order arithmetic, paving the way to a translation of the computability-theoretic
concepts to the proof-theoretic realm. All these considerations make the notion
of “computable” a good candidate for the definition of “elementary”.

The formal setting of reverse mathematics is therefore subsystems of second-
order arithmetic, that is, theories in a two-sorted language with a set of integers
and collection of sets of integers.2 2: Hilbert and Bernays used second-order

arithmetic as a foundational language to re-
prove ordinary mathematics. They showed
through their book Grundlagen der Mathe-
matik that a large part of classical mathemat-
ics could be casted in this setting and proven
using second-order Peano arithmetic (Z2).

The base theory, RCA0, captures “com-
putable mathematics”. Thanks to the correspondence between computability
and definability, proofs of implications are often witnessed by a computable pro-
cedure, and separation proofs mainly consist in constructing models of RCA0
satisfying some specific computability-theoretic weakness properties.

Since the start of reverse mathematics, many theorems have been studied
from the core areas of mathematics, including analysis, algebra, topology, and
highlighted two main empirical phenomena. First of all, mathematics seem
very structured, that is, most theorems from ordinary mathematics are either
computationally trivial, or computably equivalent to one of four subsystems of
second-order arithmetic, linearly ordered by the implication. Second, a large
part of ordinary mathematics requires very weak axiomatic and computability-
theoretic power. As mentioned, these phenomena are empirical observations,
and there exist two main areas of mathematics escaping these observations:
logics and Ramsey theory. Logics, by essence, is meta-mathematical and
contains constructions that are designed to outgrow the usual proof-theoretic
strengths. Ramsey theory, on the other hand, has no a priori reason to be a

2 1 Introduction

counter-example to these phenomena, and its study represents one of the
most active branches of modern reverse mathematics.

Beyond the comparison of theorems based on a formal notion of elementary
proof, reverse mathematics play an important foundational and philosophical
role in mathematics thanks to these empirical observations. Indeed, the second
observation yields that mathematics is somewhat robust, in the sense that if
some inconsistencies were to be discovered in ZFC, one could safely remove
many strong axioms while keeping a large part of mathematics. Moreover,
all the finitary consequences of RCA0 are already provable over primitive
recursive arithmetic (PRA), a very weak theory arguably capturing finitary
mathematics. From this perspective, reverse mathematics can be seen as a
partial realization of Hilbert’s program as an answer to the foundational crisis
of mathematics [1].

1.1 Mathematical problems

Many theorems from ordinary mathematics can be seen as mathematical prob-
lems, formulated in terms of instances and solutions. Consider for example the
intermediate value theorem (IVT), which states, for every continuous function
𝑂 : [0, 1] → ℝ with 𝑂 (0) < 0 < 𝑂 (1) or 𝑂 (1) < 0 < 𝑂 (0), the existence of a
real number 𝑃 ↑ [0, 1] such that 𝑂 (𝑃) = 0. An instance of IVT is a continuous
function 𝑂 : [0, 1] → ℝ changing its sign over the interval, and a solution to 𝑂

is a real number 𝑃 ↑ [0, 1] such that 𝑂 (𝑃) = 0. What is the axiomatic power
needed to prove the intermediate value theorem?

First of all, one needs to cast this theorem in the setting of second-order
arithmetic, with an appropriate coding. A real number can be represented as
a fast-converging Cauchy sequence of rational numbers, hence as a set of
integers. At first sight, a continuous function from ℝ to [0, 1] is a third-order
object, but since it is fully specified by its values on the rationals, one can also
represent a continuous function in second-order arithmetic. Having fixed the
representation, both the frameworks of subsystems of second-order arithmetic
and computability theory can be applied to the intermediate value theorem.

Thanks to the choice of the base theory, RCA0, the proof-theoretic analysis
of the intermediate value theorem translates to the following computability-
theoretic question: Given a computable instance of the intermediate value
theorem, what is the computational content of a solution? The classical proof
of the intermediate value theorem provides an algorithm to find the solution:
a dichotomic search. Following the proof, given a computable instance 𝑂 :
[0, 1] → ℝ, one can define a computable fast-converging Cauchy sequence
whose limit is a real number 𝑃 such that 𝑂 (𝑃) = 0, with one subtlety: the
natural order between Cauchy sequences is not decidable. Thankfully, one
can circumvent this issue using a case analysis, and show the existence of a
computable solution. On the other hand, there is provably no single algorithm
which takes a code of such a continuous function as an input, and outputs
a solution. From a proof-theoretic perspective, the dichotomic search can
be formalized with weak induction assumptions, and the intermediate value
theorem is provable over RCA0.

More generally, the reverse mathematical analysis of a theorem, seen as a
mathematical problem, answers two families of problematics:

1.2 Separation theory 3

⊋ The strength of the theorem as an individual. What axioms are neces-
sary and su!cient to prove a theorem? Based on the correspondence
between definability and computability, these questions are reformulated
in the computability-theoretic language as “What is the computational
strength of a theorem?” One proves lower bounds by constructing in-
stances such that every solution is computationally strong, and upper
bounds by proving that every instance admits some computationally
weak solution. Consider for example König’s lemma (KL), which states
that every infinite, finitely branching tree admits an infinite path. By a
classical result in computability theory, every computable infinite, finitely
branching tree admits an infinite ↓↔↔-computable path, while there exists
a computable infinite, finitely branching tree such that every infinite path
computes ↓↔. In the reverse mathematical formalism, this translates into
an equivalence between KL and ACA0 over RCA0, where ACA0 is a
system capturing the arithmetic hierarchy.

⊋ The comparison of two theorems. Does theorem 𝑀 imply theorem 𝑁

over RCA0? Let us compare for example König’s lemma, and Ramsey’s
theorem for pairs and two colors (RT2

2). The latter theorem states the
existence, for every graph with infinitely many vertices, of an infinite
subset of vertices such that the induced sub-graph is either a clique, or
an anti-clique. Given an infinite graph (𝑄 , 𝑅), one can easily compute
an infinite, finitely branching tree such that every infinite path codes for
a clique or an anti-clique. Intuitively, König’s lemma, seen as a math-
ematical problem, is at least as hard to solve as Ramsey’s theorem
for pairs. In reverse mathematics, this construction yields a proof that
KL implies RT2

2 over RCA0. On the other hand, the reverse implication
does not hold: a famous theorem from Seetapun states that Ramsey’s
theorem for pairs and two colors has no coding power, in the sense
that for every computable instance of RT2

2, if every solution computes a
fixed set of integers 𝑀, then 𝑀 is computable. From this, one can build
a model of RCA0 + RT2

2 which does not contain the halting set, and
therefore is not a model of KL, thus RT2

2 does not imply KL over RCA0.
Note that, while the implication from KL to RT2

2 is elementary, the proof of
Seetapun’s theorem involves some very clever techniques from e"ective
forcing.

As it happens, when a problem P implies another problem Q from a proof-
theoretic or computability-theoretic viewpoint, the reduction is most of the
time rather short, if not straightforward, while the proofs of separations usu-
ally involve elaborate forcing arguments to preserve a computability-theoretic
weakness property. Separating problems in reverse mathematics and proving
upper bounds was at the origin of many developments in e"ective forcing, with
the design of new notions of forcing and preservations properties, tailored to
witness subtle combinatorial di"erences between problems. This resulted into
a coherent whole of what could be now called a separation theory.

1.2 Separation theory

In classical reverse mathematics, proving that a problem P does not imply
another problem Q over RCA0 requires to construct a model of RCA0+P which
is not a model of Q. Furthermore, one usually wants to build counter-examples

4 1 Introduction

which are as close to the intended model a possible. In the case of second-
order arithmetic, structures are of the form M= (𝑆 , 𝑇, <,+,↗, 0, 1) where
𝑆 denotes the integers of the model (the first-order part) and 𝑇 ↘ P(𝑆)
represents the sets of integers (the second-order part). Almost all the proofs of
separations in reverse mathematics involve models Mwhere the set 𝑆 is the
true set of integers 𝜑, equipped with the standard operations. These models
are called 𝜑-models, and are fully specified by their second-order part 𝑇. It is
convenient to identify an 𝜑-model Mwith the set 𝑇. To summarize, the goal is
to obtain an 𝜑-model of RCA0 + P which is not a model of Q.

Models of RCA0 are well-understood and easy to construct, thank to the clear
computability-theoretic interpretation of the axioms of RCA0. An 𝜑-model M
with second-order part 𝑇 satisfies RCA0 if and only if 𝑇 is a Turing ideal, that
is, 𝑇 is a collection of sets satisfying the following two closure properties: First,
if 𝑈 ↑ 𝑇 and 𝑈 computes a set 𝑉, then 𝑉 ↑ 𝑇. Second, if 𝑈 and 𝑉 belong
to 𝑇, then their e"ective union 𝑈 ≃ 𝑉 = {2𝐿 : 𝐿 ↑ 𝑈} ⇐ {2𝐿 + 1 : 𝐿 ↑ 𝑉}
also belongs to 𝑇. For instance, the collection of all the computable sets
forms a Turing ideal, and more generally, given any fixed set 𝑈, the collection
{𝑉 : 𝑉 ⇒𝑊 𝑈} is a Turing ideal. Last, a union of an increasing sequence of
Turing ideals is again a Turing ideal.

The idea to construct an 𝜑-model of RCA0 + P which is not a model of Q goes
as follows: First, construct a computable instance 𝑈Q of Q with no computable
solution. The solutions of this instance should be as hard to compute as
possible, to simplify the construction of the model M. Let M0 be the 𝜑-model
whose second-order part consists of the computable sets. In particular, M0 |=
RCA0 but M0 does not satisfy Q, as the instance 𝑈Q belongs to M0, but has
no solution in M0. The problem is that M0 will usually not satisfy P either.

Given an instance 𝑈0 ↑ M0 of P with no solution in M0, we shall construct a
solution 𝑉0, and and extend M0 into another model M1 of RCA0 containing 𝑉0.
In order to obtain a model of RCA0, the second-order part M1 must not only
contain 𝑉0, but all the 𝑉0-computable sets. The initial model M0 might contain
infinitely many P-instances with no solution in M0, and when extending M0
into M1, one might add even more P-instances. We shall therefore carefully list
all these instances, and build an increasing sequence M0 ⫅̸ M1 ⫅̸ M2 ⫅̸ . . .

of 𝜑-models of RCA0, such that every P-instance 𝑈 ↑ M𝐿 has a solution
in M𝑋 for some 𝑋 ⇑ 𝐿. Then, letting M=

⋃
𝐿
M𝐿 , the second-order part is

again a Turing ideal, so M |= RCA0, and by construction, M |= P.

There is an important issue in the previous construction: when extending a
model M𝐿 into a larger model M𝐿+1 containing a solution𝑉𝐿 to a P-instance 𝑈𝐿 ,
one adds many sets, including the 𝑉𝐿-computable ones, but also the 𝑉𝐿 ≃ 𝑌-
computable ones for any 𝑌 ↑ M𝐿 . During this extension process, one might
inadvertently add a solution to the Q-instance 𝑈Q, loosing our witness of failure
of Q. If one is not careful, the final model Mwill also satisfy Q. Thankfully, there
is some degree of freedom in the choice of a solution 𝑉𝐿 to a P-instance 𝑈𝐿 .
With an appropriate construction, if M𝐿 does not contain any Q-solution to 𝑈Q,
one might build a P-solution 𝑉𝐿 to 𝑈𝐿 such that M𝐿+1 still does not contain
any Q-solution to 𝑈Q.

Not containing a solution to 𝑈Q is usually not the good invariant, and part
of the di!culty of a proof of separation consists in finding the appropriate
computability-theoretic notion of weakness, such that

⊋ There exists a computable instance 𝑈Q of Q with no weak solution.
⊋ For every weak instance 𝑈 of P, there exists a weak solution.

1.3 Jump control 5

Thus, a proof of separation of a problem P from a problem Q in reverse
mathematics reduces to proving lower bounds to Q and upper bounds to P for
an appropriate computability-theoretic notion specific for P and Q.

1.3 Jump control

There are two main families of constructions of solutions to an instance of a
problem P: e"ective constructions and forcing constructions, the former being
often an e"ectivization of the latter. Forcing therefore plays a central role in
reverse mathematics, and in computability theory in general.

Forcing was originally introduced by Paul Cohen to answer open problems in
set theory. The main idea is to start with a ground model M, and construct
a new mathematical object 𝑍 by approximating it with a set ℙ of conditions.
These conditions are partially ordered by a relation ⇒, intuitively meaning that
𝑎 ⇒ 𝑏 if 𝑎 is a more precise approximation of 𝑍 than 𝑏. The resulting object 𝑍,
combined with the model M, defines an extended model M[𝑍], which may not
satisfy the same properties. Surprisingly, complex properties of the extended
model can already be decided by conditions, in the sense that there exists a
forcing relation ⫆̸ between conditions and properties such that, if 𝑏 ⫆̸ 𝜒(𝑍),
then the property 𝜒(𝑍) will hold for every appropriate construction containing 𝑏.
Moreover, the forcing relation is definable with only parameters in the ground
model, and because of this, many properties of the extended model M[𝑍] are
inherited from the ground model M. Indeed, thanks to the forcing relation, a
formula with parameters in the extended model can be translated into another
formula in the ground model.

The forcing technique in the computability-theoretic setting shares many fea-
tures with the set-theoretic setting, with some notable di"erences: The compre-
hension scheme in set theory being over all definable formulas, it is su!cient
for the forcing relation to be definable in the ground model, to propagate many
properties from the ground model to the extended model. In computability the-
ory, on the other hand, the computational content of definable sets is sensitive
to the complexity of the defining formula, and one needs to have a forcing
relation which is not only definable, but also preserves the complexity of the
formulas it forces, in order to propagate computability-theoretic properties. Un-
fortunately, except for some simple cases such as Cohen forcing, the notions
of forcing considered in computability theory do not admit a forcing relation
with the desired definitional properties.

The novelty of this book is the emphasis of a related concept, called forcing
question, which usually admits better definitional features that the associated
forcing relation, and is su!cient to propagate computability-theoretic properties
from the ground model to the extended model. This notion is not relevant in
set theory, as the axioms are coarse enough to define a trivial forcing question
from the forcing relation, but are of central interest in computability theory. We
call “forcing question” any relation ?⇓ between a condition 𝑏 and a formula
𝜒(𝑍), such that if 𝑏 ?⇓𝜒(𝑍) holds, then there is an extension 𝑎 ⇒ 𝑏 forcing
𝜒(𝑍), and it not, then there is an extension 𝑎 ⇒ 𝑏 forcing ¬𝜒(𝑍). A forcing
question can be thought of as a completion of the forcing relation, dividing the
set of conditions into two categories. Contrary to the forcing relation, there is
no canonical forcing question, as any condition which forces neither a formula
nor its negation can be put in either category. The whole di!culty is to design

6 1 Introduction

a forcing question with the appropriate definitional complexity. As we shall see
throughout the book, beyond the definitional complexity of the forcing question,
its combinatorial properties have a strong impact on the computability-theoretic
features of the constructed object. The 𝐿th-fold Turing jump of 𝑍 being ω0

𝐿
(𝑍)-

complete, the set of techniques for deciding ω0
𝐿
-formulas is known as 𝐿th jump

control, and essentially consists in designing a forcing question forω0
𝐿
-formulas

with the appropriate definitional and combinatorial properties.

Although our main motivation is reverse mathematics, the techniques of iterated
jump control have applications in many domains of computability theory and
weak arithmetic.

1.4 Audience

This book aims at bridging the gap between the general introductory textbooks
on computability theory and reverse mathematics on one hand, and the state-
of-the-art research articles in reverse mathematics on the other hand. It is
therefore not meant to be read as first intention, and assumes a prior knowledge
of computability theory. Some familiarities with reverse mathematics would
also be beneficial to the reader to give some motivation, although the basic
concepts are re-introduced in Chapter 2.

The primary audience is graduate students in computability theory and re-
searcher from other fields wanting to get familiar with the techniques used in
reverse mathematics, but I believe it could also be of interest to some other
well-established researchers in computability theory, given the recent identifica-
tion of the forcing question as a central tool to study the computability-theoretic
weakness of a forcing notion.

1.5 Book structure

This monograph is not meant to be read linearly, but each chapter forms almost
a monolithic block focusing on one aspect of iterated jump control. Because of
this, each chapter starts with a list of dependencies.

⊋ Chapter 2: Prerequisites presents computability theory, reverse mathe-
matics and forcing in a nutshell. It should not be considered as a proper
introduction to these theories, and mostly fixes notation. This chapter
can be safely skipped by any researcher familiar with them.

⊋ Chapter 3: Cone avoidance introduces the core idea of forcing ques-
tion through the simplest notion of avoidance, namely, cone avoidance.
Although not technically di!cult, this is a conceptually important chap-
ter, as it contains many of the important concepts which will be used
throughout the book. The highlight application is Seetapun’s theorem,
stating that Ramsey’s theorem for pairs admits cone avoidance.

⊋ Chapter 4: Lowness presents an e"ective version of first-jump control,
enabling to construct sets belonging to the arithmetic hierarchy. Be-
sides the intrinsic interest of classifying sets thanks to their definitional
complexity, this chapter contains a proof of the low basis theorem for
ε0

1 classes and defines coded Turing ideals, both important notions for

1.5 Book structure 7

higher jump control. It also contains a proof of a theorem by Cholak, Jock-
such and Slaman, stating that every computable instance of Ramsey’s
theorem for pairs admits solutions of low2 degree.

⊋ Chapter 5: Compactness avoidance summarizes the interrelationship
between the use of compactness argument in theorems and structural
properties of the forcing question. It contains, among others, a proof
of Liu’s theorem, which says that Ramsey’s theorem for pairs does not
imply weak König’s lemma.

⊋ Chapter 6: Custom properties gives some examples of separations
between combinatorial theorems with custom preservation properties,
when the classical computability-theoretic notions fail to separate them.
These separations involve the Erd#s-Moser theorem, the ascending
descending sequence and the chain anti-chain principles.

⊋ Chapter 7: Conservation theorems applies a formalized version of the
first-jump control techniques to prove conservation theorems over weak
theories of second-order arithmetic. It contains a proof of the isomor-
phism theorem for weak König’s lemma by Fiori-Carones, Ko$odziejczyk,
Wong and Yokoyama. This chapter can be skipped by anyone interested
in purely computability-theoretic results.

⊋ Chapter 8: Forcing design is the missing link in the thought process lead-
ing to a separation between two combinatorial theorems. It rationalizes
the steps to design a notion of forcing with a good first-jump control,
through the examples of the Erd#s-Moser and the free set theorems.
This is an independent chapter which, although quite short, I believe is
of great importance for the researcher in reverse mathematics. It can
be read after Chapter 3.

⊋ Chapter 9: Jump cone avoidance studies the relationships between the
forcing question and second-jump control through jump cone avoidance.
The non-continuous nature of jump functionals raise many new chal-
lenges, and the core concepts introduced are of central importance for
the remaining chapters. It contains a proof by Monin and Patey that
every instance of the pigeonhole principle admits a solution of non-high
degree.

⊋ Chapter 10: Jump compactness avoidance is probably the most technical
chapter of this book, as it combines the complexity of second-jump
control with the techniques of compactness avoidance, which happens
to raise many issues. The main theorem of this chapter is a theorem by
Monin and Patey that every ϑ0

2 set admits an infinite subset in its or its
complement whose jump is not of PA degree over ↓↔.

⊋ Chapter 11: Higher jump cone avoidance generalizes first and second
jump control to higher levels of the arithmetic and the hyperarithmetic
hierarchy. The conceptual di!culty mainly comes from the generalization
of computability theory to the transfinite realm, known as higher recursion
theory.

2: Prerequisites

3: Cone
avoidance

4: Lowness

5: Compactness
avoidance

6: Custom
properties

7: Conservation
theorems

8: Forcing
design

9: Jump cone
avoidance

10: Jump compact-
ness avoidance

11: Higher jump
cone avoidance

Figure 1.1: Dependencies between the
chapters

