
Lowness 4

4.1 Motivation 31

4.2 Indices 33

4.3 Coding ideals 34

4.4 Basic constructions 37

4.5 Weak preservation 39

4.6 Beyond ;0 40

4.7 Ramsey’s theorem for pairs 42

Prerequisites: Chapters 2 and 3

Recall that a set - is low if -0) ;0. Constructing sets of low degree given a
notion of forcing with a ⌃0

1-preserving forcing question is not a huge conceptual
step from cone avoidance. It simply consists in e�ectivizing1

1: E�ectiveness is a concept more general
than computability. Any construction requir-
ing some amount of computability, such as
being c.e., or arithmetic, or even involving
some higher computational models, is con-
sidered as e�ective. On the other hand, a
forcing construction is not considered as ef-
fective, even if its forcing conditions are com-
putable, as the construction of the generic
filter does not have any computability restric-
tion.

the construction
of a generic set with an appropriate representation of forcing conditions and a
refined analysis of the properties of the forcing question.

E�ectivization of a forcing construction first requires to fix a coding of forcing
conditions. Whenever a condition is a finite object, any reasonable coding,
such as a Gödel numbering, is su�cient. For any such numbering, one can
switch from one representation to the other computably, and this does not
a�ect the complexity of the overall construction. In most cases however, forcing
conditions are naturally defined as infinitary mathematical objects, and one
must use an appropriate finitary representation of their e�ective version.

4.1 Motivation

One of the main motivation of the development of a framework of iterated jump
control is reverse mathematics. To prove the existence of an $-model of a
problem P which is not a model of Q, one needs to find an invariant property
preserved by P but not by Q. These invariant properties can be divided into
two big families: genericity properties, and e�ectiveness properties.

… A genericity property is a property which may locally involve some
computability-theoretic features, but does not require the overall con-
struction to be e�ective. Such properties can be satisfied by every su�-
ciently generic set for the appropriate notion of forcing. Cone avoidance,
preservation of hyperimmunity, or preservation of 1 non-⌃0

1 definition
are examples of such properties.

… An e�ectiveness property is a property which requires the overall con-
struction to satisfy some amount of computability. Being c.e., arithmetic,
or of low degree, are examples of such e�ectiveness properties. Usually,
only countably many sets satisfy these properties.

E�ectiveness properties are arguably more complex to satisfy than genericity
properties, as one usually needs to resort to coding to represent forcing condi-
tions, and the proofs of density require to satisfy some amount of uniformity.
This is why genericity properties are preferably used when one only cares about
proving a separation from a problem to another in reverse mathematics. On
the other hand, e�ectiveness properties are closer to the original motivation of
computability-theory in general, and of reverse mathematics in particular: iden-
tifying the right amount of computability needed to find a solution to a problem.
From this perspective, the existence of a low solution is very informative.

Definition 4.1.1. A problem P admits a low basis if for every set / and
every /-computable instance - of P, there is a solution . to - such that
(. � /)0) /

0. }

32 4 Lowness

2: A problem P admits a �0
2 basis if for

every set / and every /-computable in-
stance - of P, there is a �0

2(/) solution .

to -. The Turing jump problem, which to any
instance - associates a unique solution -

0,
admits a �0

2 basis, but one easily sees that
any $-model of it contains all the arithmetic
sets.

3: The Chain-AntiChain principle (CAC) is
the problem whose instances are infinite
partial orders, and whose solutions are ei-
ther infinite chains, or infinite antichains. By
Herrmann [18], there is a computable linear
order with no�0

2 infinite chains or antichains.
Thus, CAC does not admit a �0

2 basis.

The Ascending Descending Sequence prin-
ciple (ADS) is the problem whose instances
are infinite linear orders, and whose solu-
tions are either infinite ascending or de-
scending sequences. By Manaster (see
Downey [19]), ADS admits a �0

2 basis, but
by Hirschfeldt and Shore [20], there is a com-
putable infinite linear ordering with no low
infinite ascending or descending sequence.

It follows that if a ⇧1
2 problem admits a low

basis, then it implies neither CAC, nor ADS
over RCA0.

Besides the intrinsic interest of proving that a problem admits a low basis, such
a notion has two technical applications. First, lowness is a natural class of �0

2
sets which is closed under relativization:

Exercise 4.1.2. A set - is low over . if (- � .)0) .. Show that if - is low
over . and . is low, then - is low. 8

It follows that if a problem admits a low basis, then it admits a model with only
sets of low degree, and therefore a model with only �0

2 sets.2

Proposition 4.1.3. Let P be a ⇧1
2 problem which admits a low basis. There

exists an $-model of RCA0 + P with only low sets. 8

P����. Recall that an $-model is fully characterized by its second-order part,
and that it satisfies RCA0 i� its second-order part is a Turing ideal. Also recall
that h·, ·i : N2 ! N is Cantor’s pairing function.

We are going to define a sequence of sets /0) /1) . . . such that for
all = 2 N,

(1) if = = h4 , Bi and �/B

4
is a P-instance -, then /=+1 computes a solution

to -;
(2) /= is of low degree.

/0 = ;. Suppose we have defined /= and say = = h4 , Bi. If �/B

4
is not a

P-instance, then let /=+1 = /= . Otherwise, since P admits a low basis, there
is a solution . to �/B

4
such that (. � /=)0) /

0
=
) ;0. Let /=+1 = /= � ..

Let I= {- 2 2N : 9= -) /=}. By construction, the class I is a Turing
ideal. Moreover, by (1), every P-instance - 2 Iadmits a solution in I. Last,
by (2), every set in I is of low degree.

As an immediate consequence, if a ⇧1
2 problem admits a low basis, then it

does not imply ACA0 over RCA0. Indeed, every $-model of ACA0 contains
all arithmetic sets by the arithmetic comprehension axiom, thus the model
of Proposition 4.1.3 does not satisfy ACA0. However, as mentioned above,
e�ectiveness properties are harder to satisfy than genericity properties, so
since cone avoidance is enough to prove a separation from ACA0, one usually
prefers to prove the latter.

Some other problems, such as Ramsey’s theorem for pairs, admit cone avoid-
ance, but not a low basis.3

Exercise 4.1.4 (Jockusch [13]). Construct a computable coloring 5 : [N]2 !
2 with no �0

2 infinite homogeneous set. 8

Thus, proving that a ⇧1
2 problem admits a low basis is a way to separating it

from Ramsey’s theorem for pairs.

The second technical advantage of the low basis theorem concerns iterated
jump control. As we shall see in Chapter 8, iterated jump is much more di�cult
to control than first jump. On the other hand, if a set ⌧ is of low degree, then by
Post’s theorem, every ⌃0

2(⌧) property is ⌃0
1(⌧0), so by lowness is ⌃0

1(;0), and
again by Post’s theorem is ⌃0

2. Thus, if a problem admits a low basis, it satisfies
every weakness property at the second jump and higher jump levels.

4.2 Indices 33

Exercise 4.1.5. Suppose that a problem P admits a low basis. Let ⇠ be a non-
�0

2 set, and - be a computable instance of P. Show that there is a solution .

to - such that ⇠ is not �0
2(.). 8

One will therefore rather prove the existence of a low basis than control higher
jump if possible.

4.2 Indices

Consider a finite set � ✓ N. There exists multiple unequivalent ways to
represent it by an integer, depending on whether it is considered as finite,
computable, c.e., among others. Depending on the representation, some
functions such as the cardinality, or the maximum, are not uniformly computable.
We explore some natural representations and their limitations.

Definition 4.2.1. The canonical index of a finite set � ✓ N is the integerP
G2� 2G . }

The canonical index of a finite set keeps the full information about it. One can
list all its elements, compute the size of the set, and decide whether an element
belongs to it or not.

Definition 4.2.2. A �0
1-index4 4: One could as well have considered to

code computable sets - by pairs h4 , 8i such
that 4 and 8 are ⌃0

1-indices of - and -,
respectively. However, one can switch from
one representation to the other computably.

of a computable set - ✓ N is an integer 4 2
N such that �4 is the characteristic function of -. }

Given a �0
1-index 4 of a computable set - ✓ N, one can decide uniformly

whether an element belongs to it or not. However, one cannot uniformly find a
canonical index of a finite set from a �0

1-index:

Lemma 4.2.3 (Soare [2]). There is no partial computable function �4 such
that for every = 2 N, if �= is the characteristic function of a finite set �, then
�4(=)# and equals the canonical index of �. 8

P����. Suppose �4 exists. Using Kleene’s fixpoint theorem, define the follow-
ing total computable function �= , knowing = in advance. �=(G)#= 1 if G is the
least stage such that �4(=)[G]#, and �=(G)#= 0 otherwise. By construction,
�= is the characteristic function of either the empty set, or a singleton G, thus
�4(=)# and G is defined. By convention, if �4(=)[G]#, then �4(=)[G] < G, so
�4(=) is not the canonical index of {G}.

Using a�0
1-index of a finite set � and its cardinality, one can compute the canon-

ical index of �. Therefore, the cardinality function is not uniformly computable
from a �0

1-index.

Definition 4.2.4. A ⌃0
1-index of a c.e. set - ✓ N is an integer 4 2 N such

that ,4 = -. }

From a ⌃0
1-index of a c.e. set -, one can list exhaustively all its elements over

time, but not in order. Furthermore, if - is computable, one cannot uniformly
compute a �0

1-index of -.

34 4 Lowness

5: The class of all the computable sets,
and the class of all the arithmetic sets are
two basic examples of Turing ideals. More
generally, given a set -, the class of all
--computable sets is a Turing ideal. On
the other hand, the class of all low sets is
downward-closed under the Turing reduc-
tion, but not closed under the e�ective join:
There exist two low c.e. sets � and ⌫ such
that � [⌫ = ;0.

Lemma 4.2.5 (Soare [2]). There is no partial computable function �4 such
that for every = 2 N, if ,= is computable, then �4(=)# and equals a �0

1-index
of ,= . 8

P����. Suppose �4 exists. Using Kleene’s fixpoint theorem, define the fol-
lowing partial computable function �= , knowing = in advance. Let �=(0)# if
�4(=)#= H and �H(0)#= 0. For every G > 0, �=(G)". Thus, ,= is either
empty, or the singleton 0, so �4(=)#= H for some H 2 N such that �H is total.
By construction of �= , �H(0)#= 0, i� 0 2 ,= , so �H is not the characteristic
function of ,= .

One can generalize the previous definitions to every level of the arithmetic
hierarchy, either using the representation of sets by formulas, or using Post’s
theorem, by iterations of the Turing jump. Both representations are equivalent,
as one can switch from one to another computably.

As we have seen, when using a representation of a mathematical object as part
of a larger family of objects, one might loose some information. It is therefore
important to choose the most precise representation as possible, given the
provided information. For instance, consider a low set -. It is in particular
�0

2, so one could use a �0
2-index, that is, an integer 4 such that �;0

4
is the

characteristic function of -. However, this would loose the lowness information
of -. It is therefore preferable to represent it by a �0

2-index of -0, that is, an
integer 4 such that �;0

4
is the characteristic function of -0.

Definition 4.2.6. A lowness index of a low set - ✓ N is an integer 4 2 N

such that �;0
4

is the characteristic function of -0. }

Exercise 4.2.7. Show that is no partial computable function �4 such that for
every = 2 N, if �;0

=
is the characteristic function of a low set -, then �4(=)#

and is a lowness index of -. 8

4.3 Coding ideals

Recall that a Turing ideal is a class of sets M✓ 2N closed under the e�ective
join, and downward-closed under the Turing reduction. Turing ideals are exactly
the second-order parts of $-models of RCA0.5

Coding Turing ideals plays an important role in e�ectivization of forcing con-
structions, as some combinatorial notions of forcing such as Mathias forcing
can be e�ectivized by restricting their conditions to $-models of some appro-
priate theory. For example, solutions to COH can be produced using Mathias
forcing over $-models of RCA0, in other words, over Turing ideals. Solutions
to arbitrary instances of RT1

2 or computable instances of RT2
2 can be obtained

using a variant of Mathias forcing over $-models of WKL0. The second-order
part of $-models of WKL0 are precisely Scott ideals, that is, Turing ideals
which are closed under the existence of PA degrees.

There exist multiple natural ways to code members of countable Turing ideals.
The infinite e�ective join of an infinite sequence /0 , /1 , . . . is the set

L
8
/8 =

{h8 , Gi : G 2 /8}.

4.3 Coding ideals 35

6: Such an enumeration exists, as given a
primitive recursive tree functional (4 , one
can define a primitive recursive tree func-
tional)4 which, if at some level, sees all the
nodes of (4 die, keeps in)4 the last node
alive. Thus, given - 2 2N , if (-

4
is infinite,

then)
-

4
= (

-

4
, and otherwise,)-

4
is any

infinite binary tree.

9: By an immediate relativization, for every
set -, there exists an --computable infinite
binary tree such that every path codes a
Scott ideal containing -.

Definition 4.3.1. A set " codes a family M= {/0 , /1 , . . . } if " =
L

8
/8 .

An "-index of a set - 2 M is an integer 8 2 N such that - = /8 . }

By an immediate diagonalization argument, no Turing ideal contains its own
code. Therefore, it requires more computational power to compute the code of
a Turing ideal than to compute its members. On the other hand, Scott ideals
are particularly interesting, as any PA degree computes the code of a Scott
ideal. In other words, it does not require more computational power to compute
the code of a Scott ideal than to compute its members. Fix an enumeration of
all the primitive recursive functionals)0 ,)1 , . . . such that for every - 2 2N ,
)
-

4
is an infinite binary tree.6

Theorem 4.3.2 (Scott [21])

The following class is ⇧0
1 and non-empty:

C=

(M
8

/8 : 808182 /h0 ,1 ,2i 2 [)/0�/1

2
]
)

Moreover, every member of C codes a Scott ideal.7 7: Note that with an appropriate number-
ing of the listing)0 ,)1 , . . . , the resulting
code " admits some stronger properties:
one can computably obtain "-indices of
sets witnessing downward-closure, e�ective
join and PA closure. For example, there ex-
ists a total computable function which, given
an "-index 0 and a Turing index 4 such that
�/0

4
is total, outputs an "-index 1 such that

/
1
= �/0

4
.

P����. The class C is clearly ⇧0
1 and non-empty by choice of)0 ,)1 , . . .

Let
L

8
/8 2 C and say M= {/0 , /1 , . . . }. We claim that M is a Scott ideal.

… Downward-closure: Suppose that /0 2 M and .) /0 . Say �/0

4
= .

for some 4 2 N. Then, the primitive recursive tree functional)1 defined
by8

8: By “compatible”, we mean that for ev-
ery G < |�| , if ��

4
(G)[|�|]#, then the value

equals �(G).

)
��⌫
2

= {� 2 2<N : � and ��

4
[|�|] are compatible }

is such that [)/0�/1

2
] = {.}, so /h0 ,1 ,2i = . 2 M.

… E�ective join: Suppose that /0 , /1 2 M. Then the primitive recursive
tree functional)2 defined by

)
�

2
= {� 2 2<N : � � �}

is such that [)/0�/1

2
] = {/0 � /1}, so /h0 ,1 ,2i = /0 � /1 2 M.

… PA closure: Suppose that /0 2 M. Then the primitive recursive tree
functional)2 defined by

)
��⌫
2

= {� 2 2<N : 84 < |�| ��

4
(4)[|�|]" _#< �(4)}

is such that [)/0�/1

2
] is the class of all {0, 1}-valued DNC functions

relative to /0 . Thus /h0 ,1 ,2i is PA over /0 and in M.

In particular, there exists a computable infinite binary tree such that every path
codes a Scott ideal.9

Exercise 4.3.3. Let) be a computable tree functional such that for every
- 2 2N , [)-] is the class of all {0, 1}-valued DNC functions relative to -.

1. Show that the class {- � . : - 2)
; ^. 2)

-} is ⇧0
1 and non-empty.

2. Deduce that for every PA degree a, there is a PA degree b < a such
that a is PA over b. 8

Given a Turing ideal M, a set � M-computes ⌫ if there is some - 2 M such
that ⌫) ��-. A Turing ideal M is topped by - if M= {/ 2 2N : /) -}.

36 4 Lowness

12: More formally, ⌧8 2 2N , and we let
|⌧8 | 2 N [{N} be the length of this se-
quence.

Computation over Turing ideals can be seen as a generalization of regular
computation. Indeed, computation over a topped Turing ideal is nothing but
relativized computation. Interesting behaviors happen when working with non-
topped Turing ideals, such as Scott ideals. By definition, when a Turing ideal
is not topped, it cannot be represented as the collection of sets computable by
a single set -. However, Spector [22] proved that every countable Turing ideal
can be represented by two sets � and ⌫.

Definition 4.3.4. A pair of sets �, ⌫ forms an exact pair for a countable
Turing ideal M if M= {/ 2 2N : /) � ^ /) ⌫}. }

Theorem 4.3.5 (Spector [22])

Every countable Turing ideal M admits an exact pair.

P����. Say M = {/0 , /1 , . . . }. The idea is to construct two sets ⌧0 =L
=
-

0
=

and ⌧1 =
L

=
-

1
=

such that each column -
8

=
for 8 2 {0, 1} is equal

to the set /= , except for a finite number of bits. It is then clear that every set
in M is computable both by ⌧0 and ⌧1. However, one must build the sets ⌧0
and ⌧1 so that they satisfy the following requirements:10

10: There are three ways to satisfy this re-
quirement: either force partiality of �⌧

8

4
8

for
some 8 < 2, or force �⌧0

40 and �⌧1
41 to both

halt on a same value and disagree, or force
�⌧0
40 2 M. R40 ,41 : �⌧0

40 = �⌧1
41 ! �⌧0

40 2 M

Consider the notion of forcing whose conditions are 3-tuples (�0 , �1 , =) where
�0 , �1 2 2<N and = 2 N. The parameter = is used to “lock” the = first columns
of ⌧0 and ⌧1, meaning that from now on, these columns will coincide with the
= first sets of M. 11

11: This notion of forcing has a similar fla-
vor as the one used in Theorem 3.2.4. In
particular, both have a lock playing the same
role.

The interpretation of a condition (�0 , �1 , =) is the class of
all pairs of finite or infinite sequences12 (⌧0 ,⌧1) such that

… �8 � ⌧8 ;
… for every : < = and every h: , 0i such that |�8 | h: , 0i < |⌧8 | ,

⌧8(h: , 0i) = /:(0).

A condition (�0 , �1 ,<) extends (�0 , �1 , =) if = < and (�0 , �1) 2 [�0 , �1 , =].
Any filter F induces two sets ⌧F,0 and ⌧F,1, defined by ⌧F,8 =

S{�8 :
(�0 , �1 , =) 2 F}. Note that (⌧F,0 ,⌧F,1) 2

T{[�0 , �1 , =] : (�0 , �1 , =) 2 F}.
We now prove the core lemma:

Lemma 4.3.6. Let ? = (�0 , �1 , =) be a condition and 40 , 41 2 N. There is an
extension (�0 , �1 , =) of ? forcing R40 ,41 . 8

P����. There are three cases:

… Case 1: there is some G 2 N and some finite pair (�0 , �1) 2 [�0 , �1 , =]
such that ��0

40 (G) #< ��1
41 (G) #. Then (�0 , �1 , =) is an extension of ?

forcing R40 ,41 .
… Case 2: there is some G 2 N and some 8 < 2 such that for every

finite pair (�0 , �1) 2 [�0 , �1 , =], ��8
48
(G)". Then the condition ? already

forces R40 ,41 .
… Case 3: none of Case 1 and Case 2 holds. We claim that ? forces �⌧0

40
to be either partial, or /0 � · · · � /=�1-computable, hence to be in M.
Indeed, define the partial /0 � · · · � /=�1-computable function ⌘ by
searching on every input G 2 N for some finite pair (�0 , �1) 2 [�0 , �1 , =]
such that ��1

41 (G)#, and return the output. By negation of Case 2, the
function ⌘ is total. Moreover, by negation of Case 1, ? forces �⌧0

40 to be
either partial, or equal to ⌘.

4.4 Basic constructions 37

14: Cohen conditions are finite objects, and
therefore don’t need any specific coding.

We are now ready to prove Theorem 4.3.5. Let Fbe a su�ciently generic filter
for this notion for forcing. For each 8 < 2, let ⌧8 = ⌧F,8 . For every : 2 N, the
set of conditions (�0 , �1 , =) such that min(|�0| , |�1| , =) � : is dense, so if F
is su�ciently generic, then (⌧F,0 ,⌧F,1) is a pair of infinite sequences and
the set {= 2 N : (�0 , �1 , =) 2 F} is infinite. It follows that eventually, the :th
column of ⌧F,0 will be equal to /: , except for a finite number of bits. Thus,
every set in M is both ⌧0 and ⌧1-computable. Moreover, by Lemma 4.3.6, if
⌧0 �) - and ⌧1 �) -, then - 2 M. Thus, ⌧0 ,⌧1 is an exact pair for M.
This completes the proof of Theorem 4.3.5.

This notion was introduced by Spector to give an alternative proof that the
Turing degrees do not form a lattice.

Exercise 4.3.7 (Kleene and Post [23]). Show that for every ascending se-
quence of sets -0 <) -1 <) . . . , the family M= {/ 2 2N : 9= /) -=}
is a countable Turing ideal. Deduce from Theorem 4.3.5 that there exists two
Turing degrees with no greatest lower bound. 8

4.4 Basic constructions

As mentioned, low sets are typically obtained by e�ectivizing the construction
of a generic set for a notion of forcing with a ⌃0

1-preserving forcing question.
For any reasonable notion of forcing, and any fixed set �, the set of conditions
forcing ⌧ < � is dense. Hence, for any su�ciently generic filter F, the set ⌧F

will not belong to the arithmetic hierarchy or more generally to any fixed count-
able collection of sets. Thus, e�ectivizing the construction of a filter restricts its
amount of genericity. In particular, for the construction of low sets, 1-genericity
is the appropriate amount of genericity.

Definition 4.4.1. A condition ? decides a formula !(⌧) if ? forces !(⌧) or
its negation. A filter Fdecides a formula if it contains a condition deciding it.
A filter F is =-generic13 13: The definition is slightly di�erent for Co-

hen forcing, but they coincide if one consid-
ers an appropriate forcing relation.

if it decides every ⌃0
=

formula. }

When e�ectivizing forcing constructions, we shall work with infinite decreasing
sequences of conditions rather than with actual filters. Recall that any decreas-
ing sequence of conditions ?0 � ?1 � . . . induces a filter F = {@ 2 P :
9= ?= @}. By extension, we call such a decreasing sequence =-generic if
its induced filter is =-generic. In many situations, the partial order will not be
computable, and therefore the induced filter will be less computable than the
decreasing sequence.

The most basic example of e�ectivization of a forcing construction is the proof
of the existence of a non-computable set of low degree using Cohen forcing.

Theorem 4.4.2

There exists a non-computable set of low degree.

P����. We shall construct a 1-generic decreasing sequence of Cohen con-
ditions14 computably in ;0. As a byproduct of our decision procedure for
1-genericity, the resulting set ⌧ will not be computable. However, for the
sake of simplicity, we shall explicitly satisfy the non-computability require-
ments. We therefore prove two lemmas which will ensure 1-genericity and
non-computability, respectively.

38 4 Lowness

15: Recall that for a ⌃0
1 formula !(⌧),

� ?`!(⌧) is defined as 9� ⌫ � !(�).
Since this is a ⌃0

1-preserving forcing ques-
tion, ;0 can decide whether it holds or not.
Furthermore, in either case, the extension
witnessing it can be found ;0-computably.

17: Here again, recall that for a ⌃0
1 for-

mula !(⌧),) ?`!(⌧) is defined as 8% 2
[)] !(%), or equivalently by compactness
(9✓)(8� 2) \ 2✓)!(�). Since this is a ⌃0

1-
preserving forcing question, ;0 can decide
whether it holds or not. This lemma shows
that in either case, the witnessing extension
can be found ;0-computably.

Lemma 4.4.3. For every condition � 2 2<N and every Turing index 4 2 N,
there is an extension � ⌫ � deciding �⌧

4
(4)#. Furthermore, the extension �

and the decision can be obtained ;0-computably uniformly in � and 4. 8

P����. The oracle ;0 can decide whether there is some � ⌫ � such that
��

4
(4)#.15 In the former case, such a � can be found computably in � and 4

while in the latter case, � already forces �⌧

4
(4)".

Lemma 4.4.4. For every condition � 2 2<N and every Turing index 4 2 N,
there is an extension � ⌫ � forcing ⌧ < �4 .16

16: Here, ⌧ < �4 is a notation for

9G�4 (G)" _9G�4 (G)#< ⌧(G)

Furthermore, the extension �
can be obtained ;0-computably uniformly in � and 4. 8

P����. Letting G = |�| , the oracle ;0 can decide whether �4(G)# or not. In
the former case, let � = � · (1 ��4(G)), so that � forces ⌧ < �4 . In the latter
case, � already forces ⌧ < �4 , so let � = �. In either case, � can be found
;0-computably uniformly in � and 4.

We are now ready to prove Theorem 4.4.2. Thanks to Lemma 4.4.3 and
Lemma 4.4.4, define a ;0-computable infinite decreasing sequence of Cohen
conditions �0 � �1 � . . . such that for every 4 2 N, �24+1 decides �⌧

4
(4)#

and �24+2 forces ⌧ < �4 . Moreover, for every 4, we can ensure that |�4 | � 4,
so that

T
4
[�4] is a singleton ⌧. Note that ⌧ = ⌧F where F is the induced

filter for this sequence. By construction, ⌧0) ;0 and ⌧ is not computable.
This completes the proof of Theorem 4.4.2.

Exercise 4.4.5. Every non-computable set of low degree is of hyperimmune
degree, so Theorem 4.4.2 implies the existence of a hyperimmune set of low
degree. Adapt the proof of Theorem 4.4.2 to directly construct such a set. 8

The next example is known as the low basis theorem, and is arguably one of
the most useful theorems of computability theory.

Theorem 4.4.6 (Jockusch and Soare [24])

Fix a non-empty ⇧0
1 class P ✓ 2N . There exists a member ⌧ 2 P of low

degree.

P����. Consider the Jockusch-Soare forcing defined in Theorem 3.2.6, that
is, the notion of forcing whose conditions are computable infinite binary trees,
partially ordered by the inclusion relation. A condition) ✓ 2<N can be coded
by a �0

1-index, that is, some Turing index 1 such that �1 =). We shall
construct an infinite ;0-computable sequence of �0

1-indices 10 , 11 , . . . of a
1-generic decreasing sequence of conditions)0 ◆)1 ◆ . . . The following
lemma ensures that 1-genericity can be obtained ;0-uniformly.

Lemma 4.4.7. For every condition) ✓ 2<N and every Turing index 4 2 N,
there is an extension (✓) deciding �⌧

4
(4)#. Furthermore, a �0

1-index of (
and the decision can be obtained ;0-computably uniformly in 4 and a �0

1-index
of). 8

P����. The oracle ;0 can decide whether there exists a level ✓ 2 N in the
tree such that for every � 2) of length ✓ , ��

4
(4)#.17 In the former case,)

already forces �⌧

4
(4)#. In the latter case, the tree (= {� 2) : ��

4
(4)"} is

an extension of) forcing �⌧

4
(4)". In both cases, the witness can be found

;0-computably.

4.5 Weak preservation 39

18: As mentioned in Section 3.5, ⌃0
=

sets
are arguably more natural than �0

=
sets, as

the former class is syntactic, while the lat-
ter is semantic. As a consequence, when
proving a theorem with a purely combina-
torial hypothesis through forcing, the forc-
ing question for ⌃0

1 formulas will naturally
be either ⌃0

1-preserving, or not even �0
2. In

other words, all constructions in this section
will exploit some computational distorsion of
the combinatorics. In Theorem 4.5.2, the co-
hyperimmunity hypothesis is computability-
theoretic and is responsible of this distor-
sion.

19: One could have defined [�] as

{/ 2 2N : � � / ^ / ✓ �}

We are now ready to prove Theorem 4.4.6. Thanks to Lemma 4.4.7, define
a ;0-computable infinite sequence of �0

1-indices 10 , 11 , . . . of a decreasing
sequence of conditions)0 ◆)1 ◆ . . . starting with [)0] = P and such that
for every 4 2 N,)4+1 decides �⌧

4
(4)#. Note that

T
4
[)4] is a singleton ⌧, as

for every = 2 N, there is a Turing functional �4 such that �⌧

4
(4)# i� ⌧(=) = 1.

Note again that ⌧ = ⌧F where F is the induced filter for this sequence. By
definition of a condition, ⌧ 2 [)0] = P, and by construction ⌧

0) ;0. This
completes the proof of Theorem 4.4.6.

In summary, both constructions were obtained by constructing an infinite ;0-
computable sequence of codes of a 1-generic decreasing sequence of condi-
tions. For Cohen forcing, the situation was slightly simpler as conditions were
identified with their own code. In any case, such a sequence was obtained by
proving the existence of a ⌃0

1-preserving forcing question such that the codes
of their witnessing extensions were obtained ;0-computably uniformly in codes
of the conditions.

4.5 Weak preservation

Contrary to cone avoidance, it is not necessary to have a ⌃0
1-preserving forcing

question to produce a set of low degree. It is su�cient to have a �0
2 forcing

question for ⌃0
1 formulas18, uniformly in its parameters (including the condition,

under the appropriate coding). This is in particular the case of the following
theorem, stating the existence of an infinite subset of low degree.

What is a su�cient largeness condition for a ⌃0
2 set to have an infinite subset of

low degree? Being infinite is not su�cient, as there exists infinite �0
2 sets such

that every infinite subset computes ;0: consider the set of all initial segments
of the halting set � = {� 2 2<N : � � ;0}. Recall that an array is a sequence
of pairwise disjoint finite sets {�=}=2N . An array {�=}=2N is c.e. if there is a
total computable function 5 : N ! N such that 5 (=) is the canonical code
of �= . Last, an infinite set � is hyperimmune if for every c.e. array {�=}=2N ,
there is some = 2 N such that � \ �= = ;.

Exercise 4.5.1. Recall that a function 5 : N ! N is hyperimmune if it is not
dominated by any computable function. The principal function of an infinite
set � = {G0 < G1 < . . . } is the function ?� : N ! N defined by ?�(=) =
G= . Show that an infinite set � is hyperimmune i� its principal function is
hyperimmune. 8

Informally, if � is hyperimmune, then � contains a lot of elements. Therefore,
co-hyperimmunity is a notion of largeness.

Theorem 4.5.2

For every ⌃0
2 co-hyperimmune set �, there is an infinite set � ✓ � of low

degree.

P����. Consider a variant of Cohen forcing where conditions � 2 2<N are
subsets of �, that is, 8G < |�| �(G) = 1 ! G 2 �. To avoid confusion, we
shall write � � for condition extension and keep � for the usual strings
extension. Therefore, � � i� � � � and � ✓ �. The interpretation19 of
a condition � is [�] = {/ 2 2N : � � /}. We shall construct a 1-generic

40 4 Lowness

decreasing sequence of conditions computably in ;0. The core of the argument
lies in the following lemma.

Lemma 4.5.3. For every condition � 2 2<N and every Turing index 4 2 N,
there is an extension � � � deciding �⌧

4
(4)#. Furthermore, the extension �

and the decision can be obtained ;0-computably uniformly in � and 4. 8

P����. Let 0= denote the string of length = with only 0’s. Given a condition �,
we claim that at least one of the following two ⌃0

2 statements is true:

(1) There is some � ⌫ � with � ✓ � such that ��
4
(4)#.

(2) There is some = 2 N such that, letting � = � · 0= , for every ⇠ ⌫ �,
�⇠

4
(4)".

Suppose not. Then, by negation of (2) for every = 2 N, there is some ⇠= ⌫
� · 0= such that �⇠=

4
(4)#. For every = 2 N, let �= = {G > |�| + = : ⇠=(G) =

1}. By negation of (1), �= \ � < ; for every =. By considering a pairwise
disjoint computable sub-collection of sets to obtain a c.e. array, we contradict
hypermmunity of �.

Thus, since both statements are ⌃0
2, search ;0-computably for some � witness-

ing either case.20

20: Because of the combinatorial distorsion
induced by the co-hyperimmunity assump-
tion, the statement of the forcing question
is not natural: Given a ⌃0

1 formula !(⌧), let
� ?`!(⌧) hold if the first witness found in
the ;0-computable search belongs to the
first case.

We are now ready to prove Theorem 4.5.2. Thanks to Lemma 4.5.3, define
a ;0-computable infinite decreasing sequence of conditions �0 � �1 � . . .

such that for every 4 2 N, �4+1 decides �⌧

4
(4)#. Moreover, since � is co-

hyperimmune, it is infinite, so for every 4, we can ensure that card �4 = {= :
�4(=) = 1} � 4 by waiting ;0-computably for some new elements of � to be
enumerated. As a consequence,

T
4
[�4] is a singleton ⌧. Note that ⌧ = ⌧F

where F is the induced filter for this sequence. By construction, ⌧0) ;0 and
⌧ is an infinite subset of �. This completes the proof of Theorem 4.5.2.

Theorem 4.5.2 has some interesting consequences for the computable analysis
of partial and linear orders. Let $ be the order type of (N, <). Given two
order types �, �, let �⇤ be the reverse order, and � + � be the order type
such that every element of � is smaller than every element of �. A linear
order L = (N, <L) is stable if it is of order type $ + $⇤, that is, for every
element G 2 N, either 81H(G <L H) or 81H(G >L H). Here, the notation 81
means “for all but finitely many”.

Exercise 4.5.4 (Hirschfeldt and Shore [20]). Let L = (N, <L) be a com-
putable stable linear order. Let � = {G : 81H (G <L H} and �

⇤ = {G :
81H (H <L G}.

1. Show that � t �
⇤ = N and � is �0

2.
2. Show that � and �

⇤ are immune i� they are hyperimmune.21
21: An infinite set � is immune if it has no
infinite computable subset, or equivalently
no infinite c.e. subset.

3. Use Theorem 4.5.2 to prove that L admits an infinite ascending or
descending sequence of low degree. 8

4.6 Beyond ;0

Some problems do not admit a low basis, but always have a solution which is
close to being low, in the sense that every PA degree over ;0 computes the jump

4.6 Beyond ;0 41

22: In the sense that a non-decreasing hy-
perimmune function is growing so fast that
no computable function dominates it.

of a solution. The various basis theorems for ⇧0
1 classes show that PA degrees

share many features of the 0 degree: the computably dominated and the cone
avoidance basis theorems say that the existence of a PA degree does not help
computing fast-growing functions22, or computing fixed non-computable sets.
By relativization over ;0, having the jump of a solution computed by any PA
degree over 0’ is close to having a the jump of a solution computed by ;0, in
other words to having a solution of low degree.

Definition 4.6.1. A problem P admits a weakly low basis if for every set /
and every PA degree % over /0, every /-computable instance - of P admits
a solution . such that (. � /)0) %. }

At first sight, Definition 4.6.1 does not yield an invariant property, as one would
require % to be PA over (.� /)0 instead of only computing (.� /)0. However,
based on the density properties of PA degrees, Definition 4.6.1 is actually
equivalent to the stronger statement.

Exercise 4.6.2. Use Exercise 4.3.3 to prove that if a problem P admits a
weakly low basis, then for every set / and every PA degree % over /0, every
/-computable instance - of P admits a solution . such that % is of PA degree
over (. � /)0. 8

A set - is of low2 degree if -00) ;00. If a problem admits a weakly low basis,
then it always admits solutions of low2 degree, by choosing an appropriate PA
degree.

Exercise 4.6.3. A problem P admits a low2 basis if for every set / and every
/-computable instance - of P, there is a solution. to - such that (.�/)00)

/
00. Use the low basis theorem for ⇧0

1 classes (Theorem 4.4.6) to show that if
P admits a weakly low basis, then it admits a low2 basis. 8

As for sets of low degree, if a set ⌧ is of low2 degree, then by Post’s theorem,
every ⌃0

3(⌧) property is ⌃0
3. Thus, if a problem admits a low2 basis, then it

satisfies every weakness property at the third and higher jump levels. Some
weakness properties at the second jump level are also preserved, depending
on the existence of the appropriate basis theorem for ⇧0

1 classes.

Exercise 4.6.4. Suppose that a problem P admits a weakly low basis. Let ⇠
be a non-�0

2 set, and - be a computable instance of P. Use the cone avoidance
basis theorem for ⇧0

1 classes (Theorem 3.2.6) to show that there is a solution.
to - such that ⇠ is not �0

2(.). 8

There is a well-known correspondence between computability and definability.
By Post’s theorem,�0

=
sets are exactly the ;(=�1)-computable ones. Historically,

the Turing jump of a set - is defined as -
0 = {4 : �-

4
(4)#}, but it could be

equivalently defined as the set of codes of true ⌃0
1(-) formulas. PA degrees

also admit a characterization in terms of decidability of formulas:

Exercise 4.6.5. Let !0 , !1 , . . . be an e�ective enumeration of all ⇧0
1(-)

sentences. Show that any PA degree over - computes a total function 5 :
N2 ! 2 such that for every (0 , 1) 2 N2 for which at least one of !0 , !1 is
true, if 5 (0 , 1) = 0 then !0 is true, and if �(=) = 1 then !1 is true.23

23: If !0 and !
1

have the same truth value,
then 5 (0 , 1) can be either 0 or 1 but must
output a value anyway. The careful reader
will have recognized the behavior of {0, 1}-
valued DNC functions.

8

42 4 Lowness

24: The notion of jump of a problem comes
from Weihrauch complexity.

25: The problem RT1
2
0 is also known as D2

2
in the literature. More generally, D=

:
is the

statement “For every �0
=
:-partition �0 t

· · · t �
:�1 = N, there is some 8 < : and

an infinite set � ✓ �8 ”. The practice shows
that it is more convenient to think of it as the
jump of the pigeonhole principle.

26: This proof, due to Cholak, Jockusch and
Slaman [25], is actually very close to the
original proof of Jockusch and Stephan [11],
except we decide the jump of an Æ'-cohesive
set ⇠ in a set % of PA degree over ;0, while
the original proof used a �0

2 approximation
of % to construct ⇠. In both proofs, there is
a “delay” in the satisfaction of cohesiveness:
in our case, this is due to the genericity re-
quirements, while in the original proof, the
�0

2 approximation of % may take some time
to converge to a right answer.

By Post’s theorem, any PA degree over ;0 is able to choose, given a sequence
of pairs of ⇧0

2 formulas such that for every pair at least one is true, a sequence
of true formulas. Among the natural ⇧0

2 formulas, we shall be particularly
interested in infinity of a computable set.

Exercise 4.6.6. Let -0 ,-1 , . . . a uniformly computable sequence of sets.
Use Exercise 4.6.5 to show that any PA degree over ;0 computes a sequence
� 2 2N such that for every =, if �(=) = 0 then -= is infinite, and if �(=) = 1,
then -= is infinite. 8

4.7 Ramsey’s theorem for pairs

The main application of the previous section will be the proof by Cholak,
Jockusch and Slaman [25] that Ramsey’s theorem for pairs admits a weakly
low basis. The jump24 of a problem P is the problem P0 whose instances are
�0

2 approximations of an instance - of P, in other words, stable functions
5 : N2 ! 2 whose limit is -, and whose solutions are P-solutions to -.
Following Theorem 3.4.1, RT2

2 can be obtained by applying the cohesiveness
principle (COH), and then the pigeonhole principle for �0

2 instances (RT1
2
0).25

Thanks to Exercise 4.6.2, it su�ces to independently prove that COH and RT1
2
0

admit a weakly low basis to obtain the same conclusion for RT2
2.

Recall that by Exercise 3.4.3, for every uniformly computable sequence of
sets Æ' = '0 , '1 , . . . , there is a non-empty ⇧0

1(;0) class P ✓ 2N such that the
degrees computing an Æ'-cohesive set are exactly those whose jump compute
a member of P.

Exercise 4.7.1. Use Exercise 3.4.3 to prove that COH admits a weakly low
basis, but does not admit a low basis. 8

We will now give an alternative direct proof that COH admits a weakly low
basis using an e�ectivization of computable Mathias genericity. This will serve
as a warm-up to the proof that RT1

2
0 admit a weakly low basis.26

Theorem 4.7.2 (Jockusch and Stephan [11])

Let Æ' = '0 , '1 , . . . be an infinite uniformly computable sequence of sets
and let % be of PA degree over ;0. There exists an infinite Æ'-cohesive set ⇠
such that ⇠0) %.

P����. Recall that a computable Mathias condition is a Mathias condition
(�,-) whose reservoir - is computable. Any computable Mathias condi-
tion (�,-) can therefore be coded by a pair h�, 1i such that 1 is a �0

1-
index of -. We shall construct an infinite %-computable sequence of codes
h�0 , 10i, h�1 , 11i, . . . representing a 1-generic decreasing sequence of com-
putable Mathias conditions (�0 ,-0) � (�1 ,-1) � The following lemma
shows that such a sequence can be obtained ;0-computably:

Lemma 4.7.3. For every condition (�,-) and every Turing index 4 2 N, there
is an extension (�,.) deciding �⌧

4
(4)#. Furthermore, a code for (�,.) and

the decision can be obtained ;0-computably uniformly in a code for (�,-)
and 4. 8

4.7 Ramsey’s theorem for pairs 43

P����. The oracle ;0 can decide whether there exists a finite string ⌧ ✓ -

such that ��[⌧
4

(4)#. If so, then (�[⌧,- \{0, . . . , |⌧|}) is an extension forcing
�⌧

4
(4)#. Otherwise, (�,-) already forces �⌧

4
(4)". Note that a �0

1-index of
- \{0, . . . , |⌧|} can be computably found in a �0

1-index of - and ⌧. Therefore,
a code for the extension can be obtained ;0-computably uniformly in a code
for (�,-) and 4.

Lemma 4.7.3 only requires ;0 instead of a PA degree over ;0. Therefore, one
can obtain a ;0-computable 1-generic decreasing sequence of computable
Mathias conditions. However, the resulting set will not be Æ'-cohesive. We need
to interleave steps to satisfy cohesiveness for more and more sets. This is the
purpose of the following lemma:

Lemma 4.7.4. For every condition (�,-) and every computable set ', there
is an extension (�,.) such that . ✓ ' or . ✓ '. Furthermore, a code
for (�,.) and the decision can be obtained %-computably uniformly in a code
for (�,-) and a �0

1-index of '. 8

P����. Fix an e�ective enumeration of all ⇧0
2 sentences !0 , !1 , . . . Let 5 :

N2 ! 2 be the %-computable function satisfying Exercise 4.6.5. From �0
1-

indices of - and ', one can compute codes 0 , 1 2 N such that !0 ⌘
8G9H(H > G ^ H 2 - \ ') and !1 ⌘ 8G9H(H > G ^ H 2 - \ '). Note that
at least one of !0 and !1 is true. Thus, if 5 (0 , 1) = 0, (�,- \ ') is a valid
extension, and if 5 (0 , 1) = 1, (�,- \ ') is a valid extension. In both cases,
�0

1-indices of - \ ' and - \ ' can be obtained computably from �0
1-indices

of - and ', so a code for the extension can be obtained %-computably in a
code for (�,-) and a �0

1-index of '.

We are now ready to prove Theorem 4.7.2. Thanks to Lemma 4.7.3 and
Lemma 4.7.4, define a %-computable infinite sequence of codes

h�0 , 10i, h�1 , 11i, . . .

representing a decreasing sequence of computable Mathias conditions

(�0 ,-0) � (�1 ,-1) � . . .

such that for every 4 2 N, (�24+1 ,-24+1) decides �⌧

4
(4)# and either -24+2 ✓

'4 , or -24+2 ✓ '4 . Moreover, for every 4, we can ensure that card �4 � 4,
so that ⌧ =

S
4
�4 is an infinite set. By construction, ⌧0) % and ⌧ is

Æ'-cohesive. This completes the proof of Theorem 4.7.2.

The previous example involved a ⌃0
1-preserving forcing question with the

appropriate uniformity properties to build a set of low degree, but the additional
requirements to produce a cohesive set used a PA degree over ;0. In the
following example, the ⌃0

1-preserving forcing question itself will require a PA
degree over ;0 to produce a code of an extension.

Theorem 4.7.5 (Cholak, Jockusch and Slaman [25])

Let � be a �0
2 set and let % be of PA degree over ;0. There exists an infinite

set ⌧ ✓ � or ⌧ ✓ � such that ⌧0) %.

44 4 Lowness

27: This interpretation of a condition is dif-
ferent from the one in the proof of Theo-
rem 3.4.5, where we considered a class of
pairs of sets.

28: The careful reader will have recognized
the disjunctive forcing question of Exer-
cise 3.4.9.

P����. By the low basis theorem for ⇧0
1 classes (Theorem 4.4.6) and The-

orem 4.3.2, there exists a set " =
L

=
/= of low degree coding for a Scott

ideal M= {/0 , /1 , . . . }. For simplicity, let �0 = � and �1 = �.

As in the proof of Theorem 3.4.5, consider a variant of Mathias forcing, whose
conditions are triples (�0 , �1 ,-) where

1. (�8 ,-) is a Mathias condition for each 8 < 2 ;
2. �8 ✓ �8 ;
3. - 2 M.

A condition (�0 , �1 ,.) extends (�0 , �1 ,-) if (�8 ,.) Mathias extends (�8 ,-).
Recall that an "-code of a set - 2 M is an integer 0 2 N such that - = /0 .
A code for a condition (�0 , �1 ,-) is therefore a 3-tuple h�0 , �1 , 0i where 0 is
an "-code for -.

Following the proof of Theorem 3.4.5, we shall make the following assumption
to ensure that both sets ⌧0 and ⌧1 will be infinite:

There is no infinite set � ✓ � or � ✓ � such that � 2 M. (H1)

Since M contains only sets of low degree, if the assumption is false, then the
statement of the theorem holds, so suppose it is true.

Lemma 4.7.6. Suppose (H1). Let ? = (�0 , �1 ,-) be a condition and 8 < 2.
There is an extension (�0 , �1 ,.) of ? and some = > |�8 | such that = 2 �8 .
Furthermore, a code for (�0 , �1 ,.) can be found ;0-computably uniformly in a
code for ? and 8. 8

P����. If - \ �
8 is empty, then - ✓ �

1�8 , but - 2 M, which contradicts
(H1). Thus, there is some = 2 - \ �

8 . Let �8 = �8 [{=}, and �1�8 = �1�8 .
Then, (�0 , �1 ,- \ {0, . . . , =}) is an extension of ? such that = 2 �8 . Moreover,
since � is �0

2, and "
0) ;0, the oracle ;0 can find such an = from an "-code

of - and 8 < 2. An "-code of - \ {0, . . . , =} can be found computably from
an "-code of - and =, so a code for (�0 , �1 ,.) can be found ;0-computably
uniformly in a code for ? and 8.

Due to the disjunctive nature of the notion of forcing, we need to redefine what
it means for a filter to be 1-generic. Recall that the interpretation of a Mathias
condition (�,-) is the class [�,-] of all sets ⌧ such that � ✓ ⌧ ✓ �[-. Each
condition (�0 , �1 ,-) has two interpretations, namely, [�0 ,-] and [�1 ,-],
depending on the side.27 A condition (�0 , �1 ,-) decides (!0(⌧0), !1(⌧1))
if there is some 8 < 2 such that (�8 ,-) decides !8(⌧). A filter F decides
(!0(⌧0), !1(⌧1)) if there is a condition ? 2 Fdeciding (!0(⌧0), !1(⌧1)). A
filter F is 1-generic if it decides every pair of ⌃0

1 formulas.

Lemma 4.7.7. For every condition ? = (�0 , �1 ,-) and every pair of Turing
indices 40 , 41 2 N, there is an extension @ = (�0 , �1 ,.) deciding (�⌧0

40 (40)#
,�⌧1

41 (41) #). Furthermore, a code for @ and the decision can be obtained
%-computably uniformly in a code for ? and 40 , 41. 8

P����. Let P be the ⇧0
1(-) class of all ⌫ 2 2N such that, letting ⌫0 = ⌫ and

⌫1 = ⌫, for every 8 < 2 and every ⌧ ✓ - \ ⌫8 , �
�8[⌧
48

(48)". The oracle ;0 can
decide whether P is empty or not from an "-code of -, since " is of low
degree.28

4.7 Ramsey’s theorem for pairs 45

… Suppose P = ;. Then, by compactness, there is a level ✓ 2 N such
that for every set � 2 2✓ , letting �0 = � and �1 be the bitwise negation
of �, there is some 8 < 2 and some ⌧ ✓ - \ �8 such that ��8[⌧

48
(48)#.

Such an ✓ 2 N can be found "-computably from an "-code of - and
40 , 41. Since � is �0

2, the oracle ;0 can find � = �ñ
✓
, and the associated

8 < 2 and ⌧. Let �8 = �8 [⌧ and �1�8 = �1�8 . Then @ = (�0 , �1 ,- \
{0, . . . , |⌧|}) is an extension of ? such that (�8 ,- \{0, . . . , |⌧|}) forces
�⌧

48
(48)#, hence @ decides (�⌧0

40 (40)#,�⌧1
41 (41)#). Moreover, an "-code

for - \ {0, . . . , |⌧|} can be computed from an "-code for - and ⌧, so
a code for @ can be obtained ;0-computably from a code for ?.

… Suppose P < ;. Then one can obtain an "-code for some ⌫ 2 P\M

computably from an "-code for -. Using Exercise 4.6.5, since % is
of PA degre over "

0, % can find some 8 < 2 such that - \ ⌫8 is
infinite, and an "-code of - \ ⌫8 . The condition @ = (�0 , �1 ,- \ ⌫8)
is an extension of ? such that (�8 ,- \ ⌫8) forces �⌧

48
(48)", hence @

decides (�⌧0
40 (40)#,�⌧1

41 (41)#). Moreover, a code for @ can be obtained
%-computably from a code for ?.29

29: Note that in this lemma, a PA degree
over ;0 is only used in the second case, to
find a side of ⌫ whose intersection with -

is infinite.

We are now ready to prove Theorem 4.7.5. As usual, thanks to Lemma 4.7.6
and Lemma 4.7.7 and we shall construct an infinite %-computable sequence
of codes

h�0,0 , �1,0 , 10i, h�0,1 , �1,1 , 11i, . . . , h�0,B , �1,B , 1Bi, . . .

for a 1-generic decreasing sequence of conditions

(�0,0 , �1,0 ,-0) � (�0,1 , �1,1 ,-1) � · · · � (�0,B , �1,B ,-B) � . . .

such that for every B 2 N, letting B = h40 , 41i, (�0,B , �1,B ,-B) decides
(�⌧0

40 (40)#,�⌧1
41 (41)#), and there is some =0 , =1 > B such that =8 2 �8 ,B .

Moreover, % computes the side deciding each formula, and the decision. More
precisely, % computes two functions 5 , 6 : N2 ! 2 such that for every
40 , 41 2 N, letting B = h40 , 41i and 8 = 5 (40 , 41), if 6(40 , 41) = 0 then
(�8 ,B ,-B) forces �⌧

48
(48)", and if 6(40 , 41) = 1, then (�8 ,B ,-B) forces �⌧

48
(48)#.

By the pigeonhole principle, there is a side 8 < 2 such that for every 48 2 N,
there is some 41�8 2 N such that 5 (40 , 41) = 8. Let ⌧8 =

S
B
�8 ,B . By definition

of a condition, ⌧8 ✓ �8 , and by construction, ⌧8 is infinite. Last, given 48 2
N, to decide 48 2 ⌧

0
8
, search %-computably for some 41�8 2 N such that

5 (40 , 41) = 8, and output 6(40 , 41). Thus, ⌧0
8
) %. This completes the proof

of Theorem 4.7.5.

By Exercise 4.7.1, COH admits a weakly low basis, but not low basis. Actually,
every computable instance of COH with no computable solution admits no low
solution. What about RT1

2
0? Downey, Hirschfeldt, Lempp and Solomon [26]

proved that RT1
2
0 admits no low basis.

Theorem 4.7.8 (Downey et al [26])

There exists a �0
2 set � with no low infinite subset � ✓ � or � ✓ �.

First, notice that by Theorem 4.5.2, such an � can be neither hyperimmune or
co-hyperimmune, as every ⌃0

2 co-hyperimmune set admits an infinite subset

46 4 Lowness

of low degree. The proof of Theorem 4.7.8 involves an infinite injury priority
construction and is outside the scope of this book.30

30: Note that the proof of Theorem 4.7.8 is
intrinsically complicated, as Chong, Slaman
and Yang [27] constructed a non-standard
model of WKL0 + RT1

2
0 with only low sets.

They exploited a failure of ⌃0
2-induction. One can put together Theorem 4.7.2 and Theorem 4.7.5 to prove that Ramsey’s

theorem for pairs admits a weakly low basis.

Theorem 4.7.9 (Cholak, Jockusch and Slaman [25])

Let 5 : [N]2 ! 2 be a computable coloring and let % be of PA degree
over ;0. There exists an infinite 5 -homogeneous set ⌧ such that ⌧0) %.

P����. The proof follows the one of Theorem 3.4.1. Fix 5 and %. Let Æ' =
'0 , '1 , . . . be the computable sequence of sets defined for every G 2 N by
'G = {H 2 N : 5 (G , H) = 1}. By Theorem 4.7.2 and Exercise 4.6.2, there
is an infinite Æ'-cohesive set - ✓ N such that % is PA over -0. In particular,
for every G 2 -, limH2- 5 (G , H) exists. Let 5̂ : - ! 2 be the limit coloring
of 5 , that is, 5̂ (G) = limH2- 5 (G , H). By Theorem 4.7.5, there is an infinite
5̂ -homogeneous set . ✓ - for some color 8 < 2 such that (. � -)0) %.
Since for every G 2 ., limH2. 5 (G , H) = 8, one can .-computably thin out
the set . to obtain an infinite 5 -homogeneous subset � ✓ .. Since �) .,
�

0) %.

Recall that Seetapun’s theorem states that Ramsey’s theorem for pairs admits
cone avoidance. The modern proof goes through the decomposition into cohe-
siveness and the pigeonhole principle, but the original proof was direct and
left as an exercise (Exercise 3.4.11).

Exercise 4.7.10. Adapt Exercise 3.4.11 to give a direct proof that Ramsey’s
theorem for pairs admits a weakly low basis. 8

