
2: Depending on the context, we may fur-
thermore assume that the programs are
{0, 1}-valued, or satisfy some additional de-
cidable structural properties.
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This textbook is not an introduction to computability theory or to reverse math-
ematics. The reader is assumed to have attended at least a first course in
computability theory, and have a general background in mathematical log-
ics, especially first-order logic and forcing. This chapter will recall basic facts
of common knowledge, for the sake of self-containment and mostly to fix
notation.

This book is a pedagogical resource to learn some specific techniques for
computability-theoretic analysis for combinatorial theorems. It tries to bridge
the gap between introductory textbooks in computability theory, and research
articles on the field. The emphasis is put on the intellectual process of research
rather than the actual theorems and end-results.

Where to learn computability theory? There are many books about com-
putability theory. Cooper [2] is probably the most accessible resource for a first
introduction to the subject. Soare [3] is a good alternative, although slightly
more technical. Monin and Patey [4] provides a general overview of both
computability theory and reverse mathematics.

Where to learn reverse mathematics? The field being younger, there are only
a few options to learn reverse mathematics. The historical book is Simpson [5],
is still a good reference, but its very formal style might be o!-putting. A first
reader might prefer Dzhafarov and Mummert [6] or Monin and Patey [4] as a
gentle introduction. Hirschfeldt [7] monograph is also a good starting point for
a reader familiar with computability theory.

2.1 Computability theory

Computability theory is essentially the study of mathematical objects or pro-
cesses from a computational perspective. It has a primary focus on the structure
of the degrees of computation, known as Turing degrees.

Definition 2.1.1. Fix a reasonable programming language. A set 𝐿 → ℕ

is computable1 1: Computability theory used to be called
Recursion theory. Some literature might use
recursive for computable and recursively
enumerable for computably enumerable.

if there is an algorithm which, on input 𝑀 ↑ ℕ, decides
whether 𝑀 belongs to 𝐿 or not. ↓

All mainstream programming languages are mutually interpretable, thus the
notion of computable set is robust. Moreover, by the Church-Turing thesis, this
captures the informal notion of e!ectively computable set. One of the main
features of models of computation is their relativization to oracles. A set 𝐿 is
𝑁-computable or Turing reducible to 𝑁 (written 𝐿 ↔𝑂 𝑁) if it is computable in
a programming language enriched with the characteristic function of 𝑁 as a
primitive.

We write ω𝑁

0 ,ω
𝑁

1 ,ω
𝑁

2 , . . . for an e!ective listing of all programs2 with oracle 𝑁.
The notation ω𝑁

𝑃
(𝑄)↗= 𝑅 means that the 𝑃th program with oracle 𝑁 halts

on input 𝑄 and outputs 𝑅. If the program does not halt, we write ω𝑁

𝑃
(𝑄) ↘.

Similarly, the notation ω𝑁

𝑃
(𝑄)[𝑆]↗= 𝑅 means that ω𝑁

𝑃
(𝑄)↗= 𝑅 in at most 𝑆 steps

of computation. By convention, if ω𝑁

𝑃
(𝑄)[𝑆]↗= 𝑅, then 𝑅 , 𝑄 < 𝑆. Otherwise,



10 2 Prerequisites

5: We write ↔𝑂 for the Turing reduction
over sets, and ↔ for the reduction over Tur-
ing degrees. We use small boldface letters
a, b, . . . to denote Turing degrees.

6: High degrees used to be defined as b ↔
0≃ and b≃ ⇐ 0≃≃. Indeed, 0≃ and 0≃≃ are re-
spectively the lowest and the highest value
that can take the jump of a degree d ↔ 0≃,
so low and high degrees where Turing de-
grees at these extremes.

ω𝑁

𝑃
(𝑄)[𝑆]↘. We may further abstract oracle programs, and consider them

as Turing functionals from 2ℕ to 2ℕ , defined by 𝑁 ⇒⇑ ω𝑁

𝑃
. We then use

ω0 ,ω1 ,ω2 , . . . as an e!ective listing of all Turing functionals.

Whenever a program halts, it halts on finite time, and thus with finitely many
calls to its oracle. Thus, if ω𝑁

𝑃
(𝑄)↗, not only there is some 𝑆 ↑ ℕ such that

ω𝑁

𝑃
(𝑄)[𝑆]↗, but furthermore there is a shortest initial segment 𝜑 ⇓ 𝑁 such

ω𝑇

𝑃
(𝑄)[𝑆]↗= ω𝑁

𝑃
(𝑄) for every 𝑇 ⇔ 𝜑. This finite binary string3

3: We write 2<ℕ for the set of all finite binary
strings. Elements of 2<ℕ are written with
small greek letters 𝜑, 𝜒, 𝜓, . . . . We denote
by |𝜑| the length of the string 𝜑 and write
𝜑 ↖ 𝜒 if 𝜑 is a prefix of 𝜒.

𝜑 is called the
use of the computation. From a topological viewpoint, this means that Turing
functionals are partial continuous functions over the Cantor space4

4: We write 2ℕ for the class of all infinite
binary sequences, also known as Cantor
space. It is in one-to-one correspondence
with the class of sets of integers, seeing an
infinite binary sequence as the character-
istic function of a set of integers. We shall
therefore identify the two notions and write
indistinctly 𝐿 ↑ 2ℕ and 𝐿 → ℕ.

2ℕ . We
extend Turing functionals to partial oracles, and write ω𝜑

𝑃
(𝑄)↗= 𝑅 to say that

the 𝑃th program with oracle 𝜑 halts on input 𝑄 and outputs 𝑅 in less than |𝜑|
steps, whose only calls to the oracle are within its domain of definition.

2.1.1 Turing degree

Sets of integers are not the appropriate notion to capture the notion of com-
putational power. For instance, if 𝐿 equals 𝑁 up to finite changes, or if we
let 𝑁 = {2𝑀 : 𝑀 ↑ 𝐿}, then 𝐿 and 𝑁 are mutually computable. The Turing
reduction ↔𝑂 is a pre-order on 2ℕ . It induces an equivalence relation defined
by 𝐿 ↙𝑂 𝑁 i! 𝐿 ↔𝑂 𝑁 and 𝑁 ↔𝑂 𝐿.

Definition 2.1.2. A Turing degree is an equivalence class over 2ℕ/↙𝑂 . ↓

We write deg
𝑂
(𝐿) = {𝑁 ↑ 2ℕ : 𝐿 ↙𝑂 𝑁} for the Turing degree of 𝐿.

The Turing reduction naturally extends to the Turing degrees. The Turing
degrees5 (D,↔) form an upper semilattice, with join deg

𝑂
(𝐿) ∝ deg

𝑂
(𝑁) =

deg
𝑂
(𝐿 ′ 𝑁), where 𝐿 ′ 𝑁 = {2𝑀 : 𝑀 ↑ 𝐿} ∝ {2𝑀 + 1 : 𝑀 ↑ 𝑁}. The Turing

degree 0 of the computable sets is the smallest element of this semilattice.

The Turing jump of a set 𝐿 is the set 𝐿≃ = {𝑃 : ω𝐿

𝑃
(𝑃)↗}. The operator

𝐿 ⇒⇑ 𝐿
≃ is Turing-invariant, and therefore induces an operation a ⇒⇑ a≃ over

the Turing degrees. By the undecidability of the halting set, a < a≃ for every
Turing degree a. The Turing jump can be iterated as follows: a(0) = a, and
a(𝑀+1) = (a(𝑀))≃. Any Turing degree a such that a≃ = 0≃ is low, and the degrees
b such that b≃ ⇐ 0≃≃ are high.6

2.1.2 Arithmetic hierarchy

Arithmetically definable sets of integers can be classified based on alternations
of quantifiers.

Definition 2.1.3. For 𝑀 ⇐ 1, a set 𝐿 is ε0
𝑀

if it can be written of the form

{𝑄 ↑ ℕ : ∞𝑈1∈𝑈2 . . .𝑉𝑈𝑀 𝑊(𝑄 , 𝑈1 , . . . , 𝑈𝑀)}

where 𝑊 is a computable predicate, and 𝑉 = ∈ if 𝑀 even and 𝑉 = ∞ if 𝑀 is
odd. ϑ0

𝑀
sets are defined accordingly by starting with a universal quantifier.

A set is ϖ0
𝑀

if it is both ε0
𝑀

and ϑ0
𝑀
. ↓

By Post theorem, there is a correspondence between definability and com-
putability. The ϖ0

1 sets are precisely the computable sets, and the ε0
1 sets are

the computably enumerable (c.e.) ones, that is, sets of the form 𝑋𝑃 = domω𝑃



2.1 Computability theory 11

for some 𝑃 ↑ ℕ. We write 𝑋0 ,𝑋1 , . . . for an e!ective enumeration of the c.e.
sets. More generally, the hierarchy can be relativized to any oracle 𝑁 by con-
sidering 𝑁-computable predicates 𝑊. A set is ϖ0

𝑀
(𝑁) i! it is 𝑁(𝑀∋1)-computable,

and ε0
𝑀
(𝑁) if it is 𝑁(𝑀∋1)-c.e.7

7: There are three important families of
sets:

Computable sets: Given 𝑀, it is possible to
know whether it belongs to 𝐿 or not, after a
finite amount of time.

C.e. sets: If 𝑀 ↑ 𝐿, then it will be enumer-
ated in 𝐿 after some point, but if 𝑀 ϱ 𝐿, we
might never known whether it belongs to 𝐿

or not.

ϖ0
2 sets: These are the △≃-computable sets.

Given some 𝑀, our belief of ownership to 𝐿

might change finitely often over time, and
then stabilize. However, we never know
whether we have reached our limit or not.

A c.e. set 𝐿 can be approximated by an uniformly computable sequence of
increasing sets 𝐿0 → 𝐿1 → 𝐿2 → . . . with 𝐿 =

⋃
𝑆
𝐿𝑆 . Such a sequence

is a called a c.e. approximation of 𝐿. Indeed, if 𝐿 = domω𝑃 , one can let
𝐿𝑆 = {𝑄 : ω𝑃(𝑄)[𝑆] ↗}. By Shoenfield’s limit lemma, a ϖ0

2 set 𝐿 can be
approximated by a uniformly computable sequence of sets 𝐿0 ,𝐿1 ,𝐿2 , . . .

such that for every 𝑀 ↑ ℕ, lim𝑆 𝐿𝑆(𝑀) exists and equals 𝐿(𝑀). Such an
approximation is called a ϖ0

2 approximation of 𝐿.8

8: Formally, a ϖ0
2 approximation of 𝐿 is

nothing but a computable function 𝑌 :
ℕ2 ⇑ 2 such that for every 𝑀, lim𝑆 𝑌 (𝑀 , 𝑆)
exists an equals 𝐿(𝑀).

2.1.3 Function growth

There is a duality between function growth and computational power. For
example, any function dominating the halting time of programs computes
the halting set. A function 𝑌 : ℕ ⇑ ℕ dominates a function 𝑍 : ℕ ⇑ ℕ

if 𝑌 (𝑄) ⇐ 𝑍(𝑄) for every 𝑄 ↑ ℕ. The principal function 𝑎𝐿 of an infinite
set 𝐿 = {𝑄0 < 𝑄1 < . . . } is defined by 𝑎𝐿(𝑀) = 𝑄𝑀 .

Definition 2.1.4. A function 𝑌 is hyperimmune if it is not dominated by any
computable function. An infinite set 𝐿 is hyperimmune it its principal function
is hyperimmune.9

9: Equivalently, an infinite set 𝐿 is hyperim-
mune if for every c.e. array {𝑏𝑀 : 𝑀 ↑ ℕ},
there is some 𝑀 ↑ ℕ such that 𝐿 ▽ 𝑏𝑀 = △.
A c.e. array is a c.e. sequence of finite coded
non-empty sets which are pairwise disjoint.

↓

A Turing degree d is hyperimmune if it computes (or equivalently contains) a hy-
perimmune function. Otherwise, d is computably dominated or hyperimmune-
free. Every non-computable ϖ0

2 set is of hyperimmune degree, but there exists
non-zero computably dominated degrees.

Definition 2.1.5. A function 𝑌 is dominating if it eventually dominates every
computable function. ↓

By Martin’s domination theorem, a function is dominating i! it is of high degree.
These degrees are precisely those able to uniformly list the computable sets,
with repetitions.

2.1.4 DNC and PA degrees

By Kleene’s recursion theorem, there is no total computable function 𝑌 : ℕ ⇑
ℕ such that ω

𝑌 (𝑃) ς ω𝑃 for every 𝑃 ↑ ℕ. The Turing degrees of fixpoint-free
functions are those of diagonally non-computable functions.

Definition 2.1.6. A function 𝑌 is diagonally non-computable10 10: A DNC function must always give a
value, even if ω𝑃 (𝑃)↘. An immediate diago-
nal argument shows that no such function
is computable.

(DNC) if for
every 𝑃, 𝑌 (𝑃) ς ω𝑃(𝑃). ↓

It might be useful to think of a DNC degree as the power, given a finite c.e.
set 𝑋𝑃 and a bound 𝑐 > card𝑋𝑃 , to find a value outside of 𝑋𝑃 . A degree is
DNC or high i! it contains a function which is almost-everywhere di!erent from
every total computable function.

A binary tree is a set 𝑂 → 2<ℕ closed under prefix. A path through 𝑂 is an
infinite binary sequence 𝑊 ↑ 𝑑𝑆 such that every initial segment belongs to 𝑂.
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12: By “ordinary”, we mean theorem which
belong to the core of mathematics, outside
logics. Indeed, constructions in logics are
metamathematical, and thus are often de-
signed to escape the axiomatic strength of
the standard mathematical practice.

13: There exists variants of reverse math-
ematics using the higher-order setting, or
intuitionistic logic.

14: Robinson arithmetic is Peano arithmetic
without the induction scheme.

We write [𝑂] for the class of all paths through 𝑂. A class P → 2ℕ is ϑ0
1 if

it is for the form [𝑂] for some computable (or equivalently for some co-c.e.)
tree 𝑂 → 2<ℕ . The ϑ0

1 classes are the e!ectively closed classes in Cantor
space.

Definition 2.1.7. A degree d is PA1111: Historically, a degree is PA if it contains
a completion of Peano Arithmetic. The new
definition is more useful in practice.

if for every infinite computable binary
tree 𝑂 → 2<ℕ , d computes an infinite path. ↓

The PA degrees are precisely those which compute (or equivalently contain) a
{0, 1}-valued DNC function. The class of such functions is ϑ0

1, hence there
exists a universal computable tree. By the low basis theorem and the com-
putably dominated basis theorem, there are low and computably dominated
PA degrees, respectively. A degree is PA or high i! it codes a uniform list of
sets which contain, among others, all the computable sets.

2.2 Reverse mathematics

Reverse mathematics is a foundational program at the intersection of com-
putability theory and proof theory, whose goal is to find optimal axioms to prove
ordinary theorems.12 The general idea consists in fixing a very weak base the-
ory capturing computable mathematics, and given a theorem 𝑂, finding a set of
axioms provably equivalent to 𝑂 over this base theory. More recently, the term
“reverse mathematics” took the broader meaning of studying mathematical
theorems from the viewpoint of computability theory and proof theory.

Traditional reverse mathematics13 use the language of second-order arith-
metic, that is, a two-sorted language with integers and sets of integers. In
this language, every infinite mathematical object is represented by a set of
integers. This enables to apply the framework of computability theory thanks to
the correspondence between computability and definability. There are however
two drawbacks: First, this restricts the scope to countable mathematics, or at
least to mathematics which can be approximated through countable objects.
Second, one must define an appropriate coding for every mathematical object.
Thankfully, in many cases, the various natural representations of the same
mathematical object are computably equivalent.

2.2.1 Base theory

The base theory RCA0, standing for Recursive Comprehension Axiom, consists
of Robinson arithmetic Q, together with the ε0

1-induction scheme and the ϖ0
1-

comprehension scheme. More precisely, Robinson arithmetic14 is the universal
closure of the following axioms:

(1) 𝑄 + 1 ς 0
(2) 𝑄 = 0̸∞𝑈 (𝑄 = 𝑈+ 1)
(3) 𝑄+1 = 𝑈+1 ⇑ 𝑄 = 𝑈

(4) 𝑄 + 0 = 𝑄

(5) 𝑄 + (𝑈 + 1) = (𝑄 + 𝑈) + 1
(6) 𝑄 ↦ 0 = 0
(7) 𝑄 ↦ (𝑈 + 1) = (𝑄 ↦ 𝑈) + 𝑄

(8) 𝑄 < 𝑈 ∀ ∞𝑒 (𝑒 ς 0 ∃ 𝑄 + 𝑒 = 𝑈)

A formula is arithmetic if it does not contain any second-order quantifier, but
may contain second-order parameters. One can define a syntactic hierarchy
of arithmetic formulas similar to the arithmetic hierarchy, by replacing the
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16: Being ϖ0
1 is not a syntactic notion.

One therefore uses the trick of adding
∈𝑄(𝜔(𝑄) ∀ 𝜕(𝑄)) as a premise, to ensure
that the predicate is ϖ0

1.

computable predicate with a ϖ0
0 formula.15

15: Note that some computable sets (and
even some primitive recursive sets) are not
definable by ϖ0

0 formulas, but every c.e. set
is definable by a ε0

1 formula, so the hierar-
chies coincide.

A ϖ0
0 formula contains only bounded

first-order quantifiers, that is, quantifiers of the form ∈𝑄 < 𝑈 and ∞𝑄 < 𝑈.

The ε0
1-induction scheme says, for every ε0

1 formula 𝜔(𝑄),

𝜔(0) ∃ ∈𝑄(𝜔(𝑄) ⇑ 𝜔(𝑄 + 1)) ⇑ ∈𝑄 𝜔(𝑄)

Restricting the induction scheme to capture computable mathematics might
seem strange at first sight, as this scheme seems talk only about integers.
An integer is a finite object, hence is computable. However, in non-standard
models, a bounded set is considered as finite from inside the model, but if the
bound is non-standard, it is actually infinite from an external viewpoint, and
might be non-computable. Restricting induction restricts the complexity of the
finite sets in the model.

The ϖ0
1-comprehension scheme16 says, for every ε0

1 formula 𝜔(𝑄) and ϑ0
1

formula 𝜕(𝑄),

∈𝑄(𝜔(𝑄) ∀ 𝜕(𝑄)) ⇑ ∞𝐿∈𝑈(𝜔(𝑈) ∀ 𝑈 ↑ 𝐿)

By relativization of Post’s theorem, 𝐿 ↔𝑂 𝑁 i! 𝐿 is ϖ0
1(𝑁). Therefore, the

ϖ0
1-comprehension scheme ensures that the second-order part is downward-

closed under the Turing reduction.

2.2.2 Models of RCA0

A model in second-order arithmetic is of the form

M= (𝑓 , 𝑔,+,↦, <, 0, 1)

where 𝑔 → P(𝑓). The first-order part 𝑓 constitutes the integers, and
the second-order part 𝑔 are the sets of integers. An 𝜖-model is a model
whose first-order part is the set of standard integers 𝜖, together with the usual
operations +,↦, <. An 𝜖-model is therefore fully specified by its second-order
part, and is often identified with it. The 𝜖-models of RCA0 are precisely those
whose second-order part is a Turing ideal.

Definition 2.2.1. A Turing ideal17 17: Natural classes of Turing ideals are rare
in computability theory. Besides topped Tur-
ing ideals of the form {𝑇 ↑ 2ℕ : 𝑇 ↔𝑂 𝐿}
for a fixed set 𝐿, the most notable ideal is
the K-trivials, used in algorithmic random-
ness. The low degrees do not form a Turing
ideal: there exists two low degrees joining
to 0≃.

is a class I → 2ℕ closed under the
following two operations:

(1) Turing reduction: ∈𝐿 ↑ I∈𝑁 ↔𝑂 𝐿 𝑁 ↑ I;
(2) E!ective join: ∈𝐿 ↑ I∈𝑁 ↑ I𝐿 ′ 𝑁 ↑ I. ↓

The class of all computable sets is the smallest Turing ideal for inclusion. Thus,
RCA0 admits a least 𝜖-model, consisting of only computable sets. It follows
that if a theorem implies the existence of a non-computable object, then it is not
provable over RCA0. In this sense, RCA0 captures computable mathematics.

2.2.3 Big Five

The early study of reverse mathematics witnessed the emergence of four
main systems of axioms, linearly ordered by logical strength, such that most
of mathematics is either provable in RCA0, or provably equivalent to one of
the four systems over RCA0. These systems, together with RCA0, are known
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18: For instance, König’s lemma is the prob-
lem whose instances are infinite, finitely
branching trees, and a solution to a tree
is an infinite path.

20: The term “extension” suggests that 𝑎
carries more information than 𝑕, thus the de-
creasing order might be confusing. It might
be helpful to think of 𝑎 and 𝑕 in terms of
interpretation. Then the decreasing order
represents the decreasing in candidates.

as the Big Five. We shall focus on the first two systems, namely, WKL0 and
ACA0.

⊋ WKL0, standing for Weak König’s lemma, is RCA0 augmented with the
statement “Every infinite binary tree admits an infinite path”. This system
informally captures compactness arguments. It is equivalent to the Borel-
Lebesgue compactness theorem and Gödel’s completeness theorem,
among others. Contrary to RCA0, WKL0 does not admit a least 𝜖-model.
The second-order parts of its 𝜖-models are closed under PA degrees,
and are called Scott ideals.

⊋ ACA0, standing for Arithmetic Comprehension Axiom, is RCA0 with the
comprehension scheme for every arithmetic formula. Many important
theorems, such as the Bolzano-Weierstrass theorem, are equivalent
to ACA0. Since the halting set is ε0

1-definable, the second-order parts of
its 𝜖-models are closed under the Turing jump, and called jump ideals.
ACA0 admits a least 𝜖-model, whose second-order part corresponds to
the arithmetic sets.

2.2.4 Computable reductions

More recently, the reverse mathematical framework was enriched with new
reductions belonging to the computability-theoretic realm. A problem18 is a
relation P → 2ℕ ↦ 2ℕ . An instance of P is an element of dom P = {𝐿 ↑
2ℕ : ∞𝑁 (𝐿 ,𝑁) ↑ P}. Given an instance 𝐿 of P, we denote by P(𝐿) = {𝑁 :
(𝐿 ,𝑁) ↑ P} the class of solutions to 𝐿.

Definition 2.2.2. A problem P is computably reducible to Q (denoted P ↔𝑑

Q) if for any instance 𝐿 of P, there exists an instance 𝐿̃ of Q computable
in 𝐿, such that for any Q-solution 𝑁̃ to 𝐿̃, 𝐿 ′ 𝑁̃ computes a P-solution
to 𝐿.1919: One can see a computable reduction

as the construction of a P-solver using a Q-
solver, with only computable manipulations.
Note that the original instance 𝐿 of P can
be used in the computation of the solution.

↓

When the problems P and Q can be formulated as a second-order sentences,
a reduction P ↔𝑑 Q can be seen as an implication Q ⇑ P over 𝜖-models, in
which only one application of Q is allowed.

2.3 E!ective forcing

The framework of forcing was originally introduced by Paul Cohen to prove
independence results in set theory. It is a central tool in computability theory
to build sets of integers with specific computational properties, and can be
seen as an elaboration of the finite extension method. The simplicity of its
use in computability theory makes the setting ideal for a gentle introduction to
forcing.

Definition 2.3.1. A notion of forcing is a partial order (ℙ,↔) together with an
interpretation function [·] : ℙ ⇑ P(2ℕ) such that if 𝑎 ↔ 𝑕, then [𝑎] → [𝑕].↓

Elements of ℙ are called conditions. If 𝑎 ↔ 𝑕, then 𝑎 is an extension20 of 𝑕.
Informally, a condition 𝑎 is a partial approximation of the constructed object 𝑖,
and [𝑎] is the class of all “candidate” objects. If 𝑕 ↔ 𝑎, then the approximation 𝑕

is “more precise” than 𝑎, hence has less candidates.
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21: The distinction between the two notions
is not relevant in computability theory, and
one might think of a filter as an infinite de-
creasing sequence of conditions.

22: The concept of “su"cient genericity”
alone does not exist, and always depends
on a property 𝜔(𝑖). We shall however
sometimes say “Let F be a su"ciently
generic filter” to mean that its level of gener-
icity will be determined by the future proper-
ties we want 𝑖F to satisfy.

Example 2.3.2. The following are notions of forcing

⊋ Cohen forcing: 2<ℕ with 𝜒 ↔ 𝜑 if 𝜑 is a prefix of 𝜒. The interpretation
of 𝜑 is [𝜑] = {𝐿 ↑ 2ℕ : 𝜑 ⇓ 𝐿}.

⊋ Jockusch-Soare forcing: ℙ is the partial order of computable infinite
binary trees, ordered by inclusion. The interpretation of 𝑂 is the class
of its paths [𝑂].

2.3.1 Filter and genericity

Infinite objects are usually constructed by successive refinement of approxi-
mations. In the forcing setting, this would correspond to the construction of an
infinite, decreasing sequence of conditions.

Definition 2.3.3. A filter on (ℙ,↔) is a non-empty class F→ ℙ satisfying:

1. upward-closure: ∈𝑎 ↑ F∈𝑕 ↑ ℙ (𝑎 ↔ 𝑕 ⇑ 𝑕 ↑ F)
2. compatibility: ∈𝑎 , 𝑕 ↑ F∞𝑗 ↑ F(𝑗 ↔ 𝑎 , 𝑕). ↓

Filters are a generalization of decreasing sequences of conditions21, in that
every sequence 𝑎0 ⇐ 𝑎1 ⇐ . . . induces a filter F= {𝑕 ↑ ℙ : ∞𝑀 𝑎𝑀 ↔ 𝑕}.
When the filter is appropriately chosen, there is a unique element 𝑖F ↑⋂

𝑎↑F[𝑎], which is the object constructed by the filter.

Definition 2.3.4. A class D → ℙ is dense if for every 𝑎 ↑ ℙ, there is
some 𝑕 ↔ 𝑎 in D. ↓

Intuitively, a class is dense if, when defining an infinite decreasing sequence
of conditions, it is never too late to intersect D. Indeed, at any point 𝑎𝑀 of the
construction, there exists an extension 𝑎𝑀+1 ↔ 𝑎𝑀 in D.

Definition 2.3.5. A filter F is generic for a family of classes {D𝑘} 𝑘↑𝑙 if F▽
D𝑘 ς △ for every 𝑘 ↑ 𝑙. ↓

One can easily see by a greedy construction of an infinite decreasing sequence
of conditions that every countable family of dense classes admits a generic filter.
Given a notion of forcing (ℙ,↔) and a property 𝜔(𝑖), the statement “Every
su"ciently generic22 set satisfies 𝜔(𝑖)” means that there exists a countable
sequence of dense classes {𝑚𝑀}𝑀↑ℕ such that, for every {𝑚𝑀}𝑀↑ℕ-generic
filter F, 𝜔(𝑖F) holds.

All the notions of forcing we shall consider satisfy the following property:

(†) For every 𝑀 ↑ ℕ, the following class is dense:

D𝑀 = {𝑎 ↑ ℙ : ∞𝜑 ↑ 2𝑀 [𝑎] → [𝜑]}

In particular, for every {𝑚𝑀}𝑀↑ℕ-generic filter F, the intersection
⋂

𝑎↑F[𝑎] will
be a singleton.
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2.3.2 Forcing relation

The core feature of forcing is the ability, given only an approximation 𝑎 ↑ ℙ of
the object under construction, to already determine some properties the set
will satisfy, no matter the remainder of the construction. Surprisingly, a very
large class of properties can be determined in advance by approximations.

Definition 2.3.6. A condition 𝑎 ↑ ℙ forces2323: The naive approach would be to say
that a condition 𝑎 forces a property 𝜔(𝑖) if
it holds for every 𝑖 ↑ [𝑎]. This relation is
too strong and does not enjoy the desirable
properties of a forcing relation.

a property 𝜔(𝑖) if for every
su"ciently generic filter Fcontaining 𝑎, 𝜔(𝑖F) holds. ↓

The above definition shall be referred to as a semantic definition. From a defi-
nitional viewpoint, the semantic definition is very complicated, as it requires to
quantify over filters, which are higher-order objects. Thankfully, there exists an
inductive syntactic definition of the forcing relation with much better definitional
features.

In our setting, we shall be interested only in arithmetic properties.

Proposition 2.3.7. Let (ℙ,↔) be a notion of forcing satisfying (†) and 𝜔(𝑖)
be an arithmetic formula.

1. If 𝑎 forces 𝜔(𝑖) and 𝑕 ↔ 𝑎, then 𝑕 forces 𝜔(𝑖).
2. The class {𝑎 ↑ ℙ : 𝑎 forces 𝜔(𝑖) or 𝑎 forces ¬𝜔(𝑖)} is dense. 𝜗

This last property is essential, as it says that every arithmetic property can
be decided by some condition. In particular, for every su"ciently generic
filter F, and every arithmetic formula 𝜔(𝑖), then 𝜔(𝑖F) holds i! there is a
condition 𝑎 ↑ F forcing 𝜔(𝑖).


