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I am interested in the constructive content of mathematical reasoning. It is a well-established
fact that some proofs involve more complex arguments than others. There are several ways to
understand the notion of proof strength. Among them, reverse mathematics is a vast mathe-
matical program whose goal is to study the logical strength of ordinary theorems in terms of set
existence axioms. The choice of a computable base theory makes reverse mathematics a good
framework to investigate both the proof-theoretic strength of theorems and their computational
content.

I mainly work within the framework of reverse mathematics under a computational per-
spective. My research primarily focuses on the reverse mathematics of combinatorial theorems,
and in particular on Ramsey’s theorem and its consequences. My background is computability-
theoretic, although I am also interested other areas of mathematical logic, such as proof theory,
set theory, and model theory.

Background

I now briefly introduce the two frameworks in which I will state my main results.

Reverse mathematics

Reverse mathematics uses the language of second-order arithmetic, which happens to be suf-
ficiently expressive to formalize in a natural way most of ordinary mathematics. The base
theory is RCA0, standing for Recursive Comprehension Axiom. RCA0 contains the basic first-
order Peano axioms, the ∆0

1 comprehension scheme and the Σ0
1 induction scheme. RCA0 can be

though as capturing computable mathematics.
Due to its goal of analyzing the logical strength of everyday life theorems, reverse mathemat-

ics is fundamentally an interdisciplinary research topic. The logical analysis of a theorem from
a particular field requires to understand the deep mechanisms of the underlying theory. The
base theory RCA0 is composed of axioms, so that any proof over RCA0 reveals the computable
nature of theorems. Moreover, the search for optimal axioms sometimes leads to simpler proofs
of the considered theorem. In that, all mathematics can potentially take benefit from reverse
mathematics.

Far beyond its pragmatic applications to mathematics, reverse mathematics is of particular
interest from a philosophical point of view. The early study of reverse mathematics revealed that
most “ordinary”, i.e., non set-theoretic, theorems are equivalent to one of five main subsystems,
known as the Big Five [31]. These five basic systems correspond to well known philosophical
approaches to mathematics. They are essentially similar to Bishop’s constructivism; Hilbert’s
finitistic reductionism; the Predicativism of Weyl and Feferman; the Predicative Reduction-
ism of Friedman and Simpson and Impredicativity as developed by Feferman and others. See
Simpson [47, I.12] for a discussion.

We are in particular interested in models whose first-order part consists of the natural
numbers. An ω-structure is a tuple (ω,S,+, ·, 0, 1, <) where ω is the set of natural numbers,
together with the standard arithmetic operations +, ·, <, and S ⊆ 2ω is a set of reals. An
ω-structure is therefore fully specified by its second-order part S. An ω-structure is a model
of RCA0 iff its second-order part is a Turing ideal S, that is, (∀X,Y ∈ S)[X⊕Y ∈ S] and (∀Y ∈
S)(∀X ≤T Y )[X ∈ S].

Computable reducibility

A proof of implication from a statement P to another statement Q is coarse, in that it does
not take in account the number of applications of P in the proof of Q. There have been devel-
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opments towards a refinement of the proof reducibility with more precise logics such as linear
logic [20]. Recently, two main reducibility notions, namely, computable reducibility and uniform
reducibility, appeared as a refinement of reverse mathematics and revealed subtle distinctions
between theorems [5, 11, 23]. We shall introduce the former one.

Many theorems are Π1
2 statements P of the form (∀X)[Φ(X) → (∃Y )Ψ(X,Y )], where Φ

and Ψ are arithmetic formulas. Such theorems can be thought of as mathematical problems. A
P-instance is a set X such that Φ(X) holds. A solution to X is a set Y such that Ψ(X,Y ) holds.
For example, König’s lemma asserts that every infinite, finitely branching tree has an infinite
path. An instance is an infinite, finitely branching tree T and a solution to T is an infinite path
through T .

A Π1
2 statement P is computably reducible to another Π1

2 statement Q (written P ≤c Q)
if every P-instance X computes a Q-instance Y such that for every solution Z to Y , Z ⊕ X
computes a solution toX. P is uniformly reducible to Q (written P ≤u Q) if the reduction P ≤c Q
is witnessed by two fixed Turing functionals.

When looking at ω-models, a reduction Q ≤c P can be seen as a proof that RCA0 ` P→ Q
where only one application of the P statement is allowed to compute a solution to a Q-instance.
In this sense, computable reducibility is finer than provability over RCA0.

Research accomplishments

In the past two decades, Ramsey theory emerged as one of the most important topics in reverse
mathematics. Ramsey theory is a branch of mathematics studying the conditions under which
some structure appears among a sufficiently large collection of objects. This theory provides a
large class of theorems escaping the Big Five phenomenon, and whose strength is notoriously
hard to gauge.

I investigated the strength of Ramsey’s theorem and various consequences, such as the
Erdős-Moser theorem, the free set and thin set theorems, the rainbow Ramsey theorem, the
ascending descending sequence principle and the atomic model theorem, among others. The
following sections cover materials appearing in my papers [2, 3, 19, 32, 33, 34, 42, 35, 36, 37,
38, 39, 40, 41, 43]. In what follows, WKL denotes the restriction of König’s lemma to infinite
binary trees, and WWKL denotes the restriction of WKL to trees T of positive measure, that is,
such that lims

|{σ∈T :|σ|=s}|
2s > 0. AMT denotes the atomic model theorem [24].

The colors in Ramsey’s theorem

Ramsey theory plays an important role in reverse mathematics. Indeed, it provides many
examples of theorems escaping the Big Five (see Montálban [31]). Among them, Ramsey’s
theorem (RTnk) asserts that every k-coloring of [N]n admits an infinite homogeneous set.

A simple color-blindness argument shows that RTnk and RTn` are equivalent over RCA0 for
each n, k, ` ≥ 2. However, whenever k > `, the proof that RCA0 ` RTn` → RTnk involves multiple
applications of the statement RTn` . Dorais, Dzhafarov, Hirst, Mileti and Shafer [11] tried to prove
that RTnk 6≤u RTn` whenever k > ` ≥ 2 and let it open as a “chief question”. Rakotoniaina [45],
Hirschfeldt and Jockusch [23] and I [43] answered this question independently. In fact, I proved
the following stronger theorem, which also answers a question of Hirschfeldt [22].

Theorem 1 ([43]). For every n ≥ 2 and every k > ` ≥ 2, SRTnk 6≤c RTn` .

Ramsey’s theorem and the Erdős-Moser theorem

Ramsey’s theorem for pairs admits two main decompositions.
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First, RT2
2 is equivalent to the conjunction of stable Ramsey’s theorem for pairs (SRT2

2)
and cohesiveness (COH). The former is the restriction of RT2

2 to colorings f : [N]2 → 2 such
that lims f(x, s) always exists. The latter asserts for every sequence of sets R0, R1, . . . the
existence of an infinite set C such that C ⊆∗ Ri or C ⊆∗ Ri for every i.

Second, RT2
2 is equivalent to the conjunction of the Erdős-Moser theorem (EM) and the

ascending descending sequence principle (ADS). The former asserts that every infinite tourna-
ment admits an infinite transitive subtournament. The latter states the existence of an infinite
ascending or descending sequence in every infinite linear order.

There has been a lot of recent literature around the weakness of the Erdős-Moser theorem.
Lerman, Solomon and Towsner [26] proved that RCA0 ∧EM 0 SADS (where SADS is the restric-
tion of ADS to linear orders of type ω + ω∗). I refined their proof to obtain RCA0 ∧EM 0 STS2

[33] (where STS2 is the stable thin set theorem for pairs, defined below). Wang [49] enhanced
this result to prove that RCA0 ∧EM∧COH∧WKL 0 STS2 ∨SADS. Finally, I proved the follow-
ing theorem, which strengthen all the above-mentioned results since AMT is a consequence of
both SADS and STS2 over RCA0.

Theorem 2 ([32]). RCA0 ∧EM∧COH∧WKL 0 AMT.

The free set and thin set hierarchies

Ramsey’s theorem for n-tuples is equivalent to the arithmetic comprehension axiom when-
ever n ≥ 3. Therefore, the hiearchy collapses at level 3. However, we can weaken Ramsey’s
theorem by allowing more colors in the solutions.

Given a coloring f : [N]n → k, an infinite set is f -thin if it avoids at least one color.
TSnk asserts the existence of an f -thin set for every k-coloring of [N]n, and TSn is the same
statement for functions f : [N]n → N. STS2k and STS2 are the restrictions of TS2k and TS2 to
stable colorings, respectively.

The free set theorem (FSn) is a strengthening of TSn which asserts for every coloring f :
[N]n → N the existence of an f -free set. A set H is f -free if for every σ ∈ [H]n, if f(σ) ∈ H
then f(σ) ∈ σ. In particular, if H is f -free, then for every x ∈ H, H r {x} is f -thin with
witness x.

The free set and thin set theorems have been introduced by Friedman [18, 17] and studied
by Cholak, Giusto, Hirst and Jockusch [7] and Wang [50] among others. Cholak et al. [7] and
Montálban [31] asked whether TS2 implies RT2

2 over RCA0. Cholak et al. [7] asked whether
any of FS2, FS2 ∧COH and FS2 ∧WKL implies RT2

2 over RCA0. Hirschfeldt [22] asked whether
FS2 ∧WKL implies any of SRT2

2, ADS or CAC (the chain antichain principle) over RCA0. I
answered all these questions negatively through the following theorem.

Theorem 3 ([43]). For every k ≥ 2, RCA0 ∧COH∧WKL∧EM∧TS2k+1 ∧FS 0 STS2k ∨SADS.

Many proofs of Ramsey’s theorem for pairs involve weak König’s lemma. The commu-
nity naturally wondered whether WKL is really necessary to prove RT2

2, and in particular
whether RT2

2 implies WKL over RCA0. The question has been a long-standing open prob-
lem until Liu [27] proved that RCA0 ∧RT2

2 0 WKL. He later refined is theorem by proving
RCA0 ∧RT2

2 0 WWKL [28].
Hirschfeldt [22] asked whether any of FSn, TSn, FS or TS imply WKL over RCA0 when-

ever n ≥ 3. I answered these questions negatively with the following stronger theorem.

Theorem 4 ([35]). RCA0 ∧RT2
2 ∧FS 0 WWKL.

In fact, even the help of WWKL is not enough to obtain WKL.

Theorem 5 ([35]). RCA0 ∧RT2
2 ∧FS∧WWKL 0 WKL.
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Strengthening Ramsey’s theorem for pairs

There were no natural theorem known to lie strictly between the arithmetic comprehension
axiom and Ramsey’s theorem for pairs until recently. There were however two good candidates.

The tree theorem (TTnk) asserts for every coloring of [2<N]n the existence of an infinite
homogeneous subtree T ⊆ 2<N isomorphic to the full binary tree 2<N. Here, [2<N]n denotes
the n-tuples of comparable nodes. The tree theorem was first analyzed by McNicholl [29] and by
Chubb, Hirst, and McNicholl [9]. They proved that TT2

2 lies between ACA and RT2
2 over RCA0,

and left open whether any of the implications is strict. Further work was done by Corduan,
Groszek, and Mileti [10] and Dzhafarov, Hirst and Lakins [12]. Montálban [31] asked whether
RT2

2 implies TT2
2 over RCA0. I answered negatively.

Theorem 6 ([41]). RCA0 ∧RT2
2 ∧WKL 0 TT2

2.

Together with Dzhafarov, we closed the question by showing that TT2
2 is strictly weaker

than ACA in reverse mathematics.

Theorem 7 ([13]). RCA0 ∧TT2
2 ∧WKL 0 ACA.

Ramsey’s theorem for pairs can be stated as ω → (ω)22, where α → (β)22 is the statement
“For every coloring f : [L]2 → 2, where L is a linear order of type α, there is a homogeneous
set H such that (H,≤L) has order type β”. It turns out that ω and ω∗ are the only countable
order types α such that α → (α)22 holds. In particular, η → (η)22 does not hold, where η is the
order type of the rationals. However, Erdős and Rado [14] proved that the partition relation
η → (ℵ0, η)2 holds. The statement η → (ℵ0, η)2 asserts that for every coloring f : [L]2 → 2,
where L is a linear order of order type η, there is either an infinite 0-homogeneous set or a
1-homogeneous set of order type η. Frittaion and I [19] studied the reverse mathematics of
this Erdős-Rado theorem, which is arguably more natural than the tree theorem for pairs. The
statement η → (ℵ0, η)2 lies between ACA and RT2

2. With Dzhafarov, we proved that η → (ℵ0, η)2

is strictly stronger than Ramsey’s theorem for pairs.

Theorem 8 ([13]). RCA0 ∧RT2
2 ∧WKL 0 η → (ℵ0, η)2.

Degrees bounding and universal instances

The theorems studied in reverse mathematics can be seen as collections of mathematical prob-
lems parameterized by their instances. The complexity of finding a solution to an instance
depends on the instance. However, it happens that some theorems admit a universal instance,
that is, a computable instance I such that for every computable instance J , every solution to I
computes a solution to J . For example, the Π0

1 class of completions of Peano arithmetic is a
universal instance for WKL.

A common way to prove that a statement P admits no universal instance consists of using
the notion of degree bounding P. A degree d bounds P if every computable P-instance has a
d-computable solution. Let D be a downward-closed class of Turing degrees. If every com-
putable P-instance has a solution of degree in D, but no degree in D bounds P, then P admits
no universal instance.

Mileti [30] studied the degrees bounding Ramsey’s theorem for pairs. He proved that no
low2 degree bounds SRT2

2. I strengthened his result with essentially the same proof.

Theorem 9 ([37]). Neither SADS nor STS2 admit a low2 bounding degree.

However, much more surprisingly, the proof cannot be adapted to the Erdős-Moser theorem.
In fact, the converse holds. I used the first jump and the second jump control techniques of
Cholak, Jockusch and Slaman [8] to prove the following theorem.

Theorem 10 ([37]). Every PA degree relative to ∅′ computes the jump of a degree bounding EM.
In particular EM admits a low2 bounding degree.
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Controlling iterated jumps

Many Ramsey-type theorems are proven using forcing constructions. Whether or not it is
possible to design a notion of forcing whose forcing relation has the same complexity as the
formulas it forces is a crucial question when dealing with Ramsey-type hierarchies. Indeed, the
free set, thin set and the rainbow Ramsey theorems are known to satisfy Jockusch’s bound [25],
that is, the existence of a computable coloring over [N]n with no Σ0

n solution. Proving that
every computable Pn instance has a lown solution would enable one to separate Pn from Pn+1,
where Pn is any of FSn, TSn and RRTn2 . In order to prove the existence of a lown solution, one
has to decide Σ0

n formulas in a ∅(n)-effective construction.
All the forcing notions used to construct solutions to consequences of Ramsey’s theorem

for pairs are variants of Mathias forcing. However, Cholak, Dzhafarov, Hirst and Slaman [6]
showed that the forcing relation for Mathias forcing does not admit the desired properties. In
particular, the complexity of forcing a Π0

2 formula is Π0
3.

I designed new notions of forcing for cohesiveness and the Erdős-Moser theorem which admit
a forcing relation with the good properties. Then, I used these notions to prove two conjectures
of Wang [49].

Theorem 11 ([42]). COH and EM admit preservation of the arithmetic hierarchy.

I furthermore designed a forcing notion for stable Ramsey’s theorem for pairs. This notion
of forcing generalizes the first jump and second jump control techniques of Cholak, Jockusch
and Slaman [8] and opens the door to the jump control of the Ramsey-type hierarchies.

A Ramsey-type weak König’s lemma

After the proof by Liu [27] that RCA0 ∧RT2
2 0 WKL, Flood [15] introduced a Ramsey-type weak

König’s lemma to clarify the relation between Ramsey’s theorem for pairs and weak König’s
lemma. Informally, RWKL asserts the existence, for every non-empty Π0

1 class C, of an infinite
set H ⊆ P or H ⊆ P for some P ∈ C. One has to state RWKL carefully not to imply the
existence of a member of C.

Montálban [31] introduced the informal notion of robustness of a statement. A theorem P
is robust if its strength remains the same when considering slight variations of the statement.
Robustness is an argument for the naturality of a statement. In particular, the Big Five are
robust, and in some sense, so is weak weak König’s lemma. Bienvenu, Shafer and I [3] studied
extensively RWKL and showed that it exhibits robustness. In the following theorem, RCOLORk
and RSAT are Ramsey-type versions of the infinite graph coloring problem and the infinite
boolean satisfaction problem, respectively.

Theorem 12 ([3]). For every k ≥ 3, RCA0 ` RWKL↔ RCOLORk ↔ RSAT.

Flood [15] proved that RWKL is a strict consequence of both SRT2
2 and WKL. He furthermore

proved that RWKL implies the diagonally non-computable principle, which asserts for every
set X the existence of a function f such that f(e) 6= ΦX

e (e) for every e. He asked whether
DNC is a strict consequence of RWKL over RCA0. Flood and Towsner [16] and Bienvenu, Shafer
and I [3] independently clarified the relation between DNC and RWKL by proving the following
theorems. By RWWKL, we mean the restriction of RWKL to trees of positive measure.

Theorem 13 ([3]). RCA0 ` RWWKL↔ DNC.

Theorem 14 ([3]). RCA0 ∧WWKL 0 RWKL.
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Ramsey’s theorem and finitistic reductionism

During the foundational crisis of mathematics, Hilbert proposed a program to justify the use
of infinity, namely, finitistic reductionism. His goal was to reduce any proof of finite facts
using infinitary method to a proof using only finitary ones. Although Gödel showed through
his incompleteness theorems that such a program couldn’t be realized in its full generality,
Simpson [46] recently proposed a partial realization of Hilbert’s program using the insights
of reverse mathematics. Based on the work of Hilbert and Bernays [21] and of Tait [48], he
formally interpreted finitistic reductionism as Π0

1 conservation of subsystems of second-order
arithmetic over primitive recursive arithmetics. Weak König’s lemma being Π0

1 conservative
over PRA, a large part of mathematics can already proven to be reducible finitistically thanks
to the program of reverse mathematics. The question whether Ramsey’s theorem for pairs is
finitistically reducible was a long-standing problem, until Yokoyama and I recently solved it.

Theorem 15 ([44]). RT2
2 is Π0

2 conservative over PRA.

A popularization of the result is presented in an article of Natalie Wolchover in Quanta
Magazine [51].

Future work

Many open questions remain in the reverse mathematics of combinatorial theorems. My short
term investigation will consist of trying to adapt the forcing notions of [42] to prove the strictness
of the free set, thin set and the rainbow Ramsey theorem hierarchies. In particular, I will try
to prove the following conjecture.

Conjecture 1. Every ∆0
n set has an infinite lown subset in either it or its complement.

I also would like to explore Hindman’s theorem [1] further, which asserts for every coloring
of the integers the existence of an infinite set over which the finite sums are monochromatic.
Blass, Hirst and Simpson [4] proved that Hindman’s theorem (HT) lies between ACA+ and ACA.
Montálban asked whether HT is provable in RCA0 +ACA.
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