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Abstract

We both survey and extend a new technique from Lu Liu to prove sep-
aration theorems between products of Ramsey-type theorems over com-
putable reducibility. We use this technique to show that Ramsey’s the-
orem for n-tuples and three colors is not computably reducible to finite
products of Ramsey’s theorem for n-tuples and two colors.

1 Introduction

In this article, we consider mathematical theorems as problems P, formulated
in terms of instances and solutions. For example, König’s lemma states that
every infinite, finitely branching tree admits an infinite path. Here, an instance
of KL is an infinite, finitely branching tree T Ď NăN, and a solution to T is an
infinite path P P rT s.

There are many ways to compare the strength of mathematical problems.
The most well-known approach is proof-theoretic, using reverse mathematics. It
uses subsystems of second-order arithmetic, with a base theory, RCA0, capturing
computable mathematics. Then, if RCA0 $ Q Ñ P, then Q is at least as strong
as P, in the sense that one can solve P using multiple applications of Q as a
black box, with only computable manipulations. There exist other approaches,
more computability-theoretic, such as the Weihrauch reduction and computable
reduction. A problem P is computably reducible to Q (written P ďc Q) if for

every P-instance X, there exists an X-computable Q-instance pX such that,
for every Q-solution pY of pX, X ‘ pY computes a P-solution to X. Weihrauch
reduction is a uniform variant of computable reduction.

The proof-theoretic and computability-theoretic approaches are related, in
that when restricting reverse mathematics to ω-models, that is, models whose
first-order part consists of the standard integers together with the usual opera-
tions, then an implication over RCA0 is a generalization of computable reduction,
in which multiple successive applications are allowed. There are similar links
between intuitionistic reverse mathematics and the Weihrauch reduction. From
this viewpoint, computable reduction is “ressource-sensitive”, in that only one
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application of Q is allowed to solve P. Each approach has its own interest, as it
reveals a different aspect of the relation between P and Q.

1.1 Ramsey’s theorem

In this article, we consider one particular family of problems, based on Ramsey’s
theorem. Given a set X Ď N, we write rXsn for the set of all n-element subsets
of X. Given a coloring f : rNsn Ñ k, a set H Ď N is f -homogeneous if f is
constant on rHsn. Ramsey’s theorem for n-tuples and k-colors (RTn

k ) states the
existence, for every coloring f : rNsn Ñ k, of an infinite f -homogeneous set.
The statement RTn

k has two parameters.
The computational power of RTn

k depending on n is well-understood for
computable instances. For n “ 1, there is always a computable solution. For
n ě 2, Jockusch [17, Theorem 5.1] proved the existence of a computable in-
stance of RTn

2 with no Σ0
n solution. He also showed [17, Theorem 5.5] that

every computable instance of RTn
k admits a Π0

n solution. Cholak, Jockusch, and
Slaman [5, Theorem 12.1] proved that for every computable instance of RTn

k ,
every PA degree over Hpn´2q computes the jump of a solution. Seetapun [27,
Theorem 2.1] proved that for every computable instance of RTn

k and for every
non ∆0

n´1 set C, there exists a solution that does not compute C. Liu [21,

Theorem 1.5] proved that every computable instance of RT2
k admits a solution

of non-PA degree. On the other hand, for n ě 3, Hirschfeldt and Jockusch [15,
Corollary 2.2] proved the existence of a computable instance of RTn

2 such that
every solution is of PA degree over Hpn´2q.

Translated in terms of reverse mathematics, RT1
2 is provable over RCA0,

RT2
2 is strictly in between RCA0 and ACA0, and incomparable with WKL0, and

RTn
2 is equivalent to ACA0 over RCA0 for every n ě 3. See Simpson [28] for a

presentation of RCA0, WKL0 and ACA0. The number k of colors is not relevant
when it is standard, using a color-blindness argument. Indeed, given an instance
of RTn

k2 , one can create an instance of RTn
k by grouping the colors into blocks

of size k, and, given a solution, define another instance of RTn
k by working on

the domain of the first solution. For this reason, the power of RTn
k depending

on k was not studied until recently.
The color blindness argument shows that RCA0 $ RTn

k Ñ RTn
k2 by two

successive applications of RTn
k . This kind of argument does not hold for a

resource-sensitive notion such as computable reduction. Patey [24, Corollary
3.14] proved that for every n ě 2 and every k, RTn

k`1 ęc RT
n
k .

1.2 Products of problems

There exist various operators on mathematical problems, coming essentially
from the study of Weihrauch degrees. Among these, we shall consider two
operators:

• The star of a problem P is the problem P˚ whose instances are finite tuples
pX0, . . . , Xn´1q of instances of P for some n P N and whose solutions are
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finite tuples pY0, . . . , Yn´1q such that Yi is a P-solution to Xi for every i ă

n.

• The parallelization of a problem P is the problem pP whose instances are
infinite sequences of P-instances X0, X1, . . . and whose solutions are in-
finite sequences Y0, Y1, . . . such that for every n P N, Yn is a P-solution
to Xn.

When considering a reduction P ďc Q˚, one is allowed to use an arbitrarily
large, but finite number n of instances of Q to solve an instance X of P, where n
depends on X. However, the instances of Q must be simultaneously chosen, in
that they are not allowed to depend on each others’ solutions. This simultaneity
prevents from using the standard color blindness argument, and motivates the
following question:

Question 1.1. Given n, k ě 1, is RTn
k`1 ďc pRTn

k q˚?

The case n “ 1 is not interesting since RTn
k is computably true, but was

studied in the context of Weihrauch degrees by Dorais et al [8], Hirschfeldt
and Jockusch [15] and Dzhafarov and al [10]. The first interesting case for
computable reduction is then n “ 2. Let us first illustrate why the technique
used to prove that RT2

k`1 ęc RT2
k fails when considering products. Patey [24]

used an analysis based on preservation of hyperimmunities. A function g :
N Ñ N is hyperimmune if it is not dominated by any computable function. An
infinite set A is hyperimmune if its principal function is hyperimmune, where
the principal function pA of a set A :“ tx0 ă x1 ă . . .u is the function n ÞÑ

xn. Patey proved [24, Theorem 3.11] that for every k ě 1, every pk ` 1q-
tuple of hyperimmune functions g0, . . . , gk, and every computable instance X
of RTn

k , there exists a solution Y such that at least two among the hyperimmune
functions remain Y -hyperimmune, but that it is not the case for computable
instances of RTn

k`1. This property fails when considering the star operator, as
the following lemma shows:

Lemma 1.2 (Cholak et al [4]). There exist 4 hyperimmune functions g0, . . . , g3
and two computable colorings f0, f1 : rNs2 Ñ 2 such that for every infinite f0-
homogeneous set H0 and every infinite f1-homogeneous set H1, at most one gi
is H0 ‘H1-homogeneous.

Proof. Indeed, consider a ∆0
2 4-partition A0\¨ ¨ ¨\A3 “ N such that for every i ă

4, Ai is hyperimmune. For every i ă 4, gi is the principal function of Ai. Let
f0, f1 be computable instances of RT2

2 such that for every x, limy f0px, yq “ 1
iff x P A0 Y A1 and limy f1px, yq “ 1 iff x P A0 Y A2. Every infinite f0-
homogeneous set H0 is either included in A0 Y A1 or in A2 Y A3, and every
infinite f1-homogeneous set H1 is either included in A0 YA2 or in A1 YA3.

Note that if a set H Ď Ai YAj for some i ă j ă 4, then pH dominates each
gk for k P t0, 1, 2, 3u´ti, ju, in which case none of those gk are H-hyperimmune.
Thus, either g0 and g1 or g2 and g3 are not H0-hyperimmune, and either g0 and
g2, or g1 and g3 are not H1-hyperimmune. It follows that at most one of the gi
is H0 ‘H1-hyperimmune.
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The instances of RT2
2 created in Lemma 1.2 are called stable, that is, for

every x, limy fpx, yq exists. Let SRT2
k denote the restriction of RT2

k to stable
instances. Liu [22] proved that SRT2

3 ęc pSRT2
2q˚, answering a question by

Cholak et al [4]. His proof involved completely new combinatorics, which will
be presented in this article. We will also extend his result to give a complete
answer to Question 1.1 and prove that RTn

3 ęc pRTn
2 q˚ for every n ě 2. Be-

fore presenting Liu’s approach, note that the reduction holds when considering
parallelization, but for a completely different reason.

Lemma 1.3. For every n, k ě 1, RTn`1
k ďc

yRTn
2 .

Proof. By Brattka and Rakotoniaina [3, Corollary 3.30], WKLpnq
ďc

yRTn
2 , where

WKLpnq is the problem whose instances are ∆0
n`1 approximations of infinite

binary trees, and whose solutions are infinite paths through the trees. It follows

that for every set X, there is an X-computable instance of yRTn
2 such that every

solution is of PA degree over Xpnq. By Cholak, Jockusch and Slaman [5], for
every instance X of RTn`1

k , every PA degree over Xpnq computes the jump of a
solution to X.

1.3 Definitions and notation

We assume familiarity with computability theory (see Soare [29]) and reverse
mathematics (see any of Simpson [28], Hirschfeldt [13] or Dzhafarov and Mum-
mert [12]).

We identify an integer k P N with the set t0, . . . , k ´ 1u. The set rXsn of n-
element subsets of X is in one-to-one correspondence with the set of increasing
ordered n-tuples over X. Thus, we shall write for example f : rNsn Ñ k for
f : rNsn Ñ t0, . . . , k ´ 1u, and fpx0, . . . , xn´1q for fptx0, . . . , xn´1uq, assuming
x0 ă ¨ ¨ ¨ ă xn´1.

Given k P N, let kN be the set of all infinite k-valued sequences, and kăN be
the set of all finite k-valued strings. We use Greek letters σ, τ, µ, ρ, . . . to denote
finitary strings, capital Latin letters X,Y, Z to denote finite or infinite sets of
integers, or infinite k-valued sequences. Given k, n P N, k“n denotes the set of
k-valued strings of length exactly n. We define kăn and kďn accordingly.

Given two strings σ, τ , we let |σ| denote the length of σ, and σ ď τ means
that σ is a (non-strict) prefix of τ . We also write σ ă X to mean that σ is an
initial segment of X. We let rσs :“ tX P kN : σ ă Xu. The choice of k will be
clear from the context. The letter ε denotes the empty string.

In the whole document, we fix r P N, and use the following notations. For
N P N and u P tN,ăN,ďN,“Nu, we let Xup0q :“ 3u, Xup1q :“ p2uqr and
Xu :“ Xup0q ˆ Xup1q. For simplicity, when u is omitted it means u :“ N, i.e.
X :“ 3N ˆ p2Nqr.

1.4 Organization of the paper

We start by giving a general overview of the construction in Section 2, by
considering separations of theorems in general, then specializing to Ramsey-
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type theorems, and then to the actual separation of this article. Then, in
Section 3, we introduce the main concepts, and prove a parameterized version
of the theorems of Liu’s article, justifying the study of cross-constraint basis
theorems. In Section 4, we prove several cross-constraint basis theorems. More
precisely, we reprove the ∆0

2 basis theorem as a warm-up, give a new proof of the
cone avoidance basis theorem, and prove a preservation of non-Σ0

1 definitions
and a low basis theorem. In Section 5, study the notion of Γ-hyperimmunity
introduced by Liu, prove that COH preserves this notion, and deduce from it
our main theorem, that is, RTn

3 ęc pRTn
2 q˚ for n ě 2.

2 Core ideas

In this section, we give the general picture of a proof for separating a theorem
from another over computable reducibility. Then, we specialize the idea to the
particular question of RT2

k`1 ďc pRT2
kq˚ and explain the core ideas of Liu’s

technique. Note that the terminology has been freely altered from Liu’s original
article.

2.1 Separating theorems

Given two problems P and Q, in order to prove that P ęc Q, one needs to
construct an instance XP of P whose solutions are difficult to compute, and,
for every XP-computable instance XQ of Q, a solution YQ to XQ that does
not XP-compute any solution to XP. The framework was used in its whole
generality by Lerman, Solomon, and Towsner [20], but all the currently known
separations over reverse mathematics or over computable reduction can be done
by constructing a computable instance of P.

The construction of the instance of P can be done either by a priority con-
struction or by an effectivization of a forcing construction. In many cases, it
is constructed using the finite extension method, that is, an effectivization of
Cohen forcing. This will be the case in our article (see Proposition 5.13).

Given a computable instance XQ of Q, the solution YQ is usually built by
forcing, in a forcing notion pPXQ

,ďq. The solution has to satisfy two types of
properties:

• Structural properties: being a solution to XQ. These properties are gen-
erally ensured by the very definition of the notion of forcing.

• Computational properties: not computing a solution to XP. These prop-
erties are divided into countably many requirements, by considering each
Turing functional individually. Given a requirement Re, one must prove
that the set of conditions forcing Re is dense.

There is often a tension between the structural properties which provide some
computational strength, and the computational properties which require some
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weakness. There is however some degree of freedom in the computational prop-
erties, as they are parameterized by the instance XP of P on which we have the
hand.

The idea, coming from Lerman, Solomon and Towsner [20], consists in build-
ing the instance XP considering each tuple pXQ, c,Req at a time, where XQ is
a computable instance of Q, c is a forcing condition in pPXQ

,ďq, and Re is
a requirement. Given a partial approximation of XP and a tuple pXQ, c,Req,

ask whether there is an extension d ď c forcing Φ
YQ
e to output enough bits

of information. If so, complete XP so that it diagonalizes against the func-
tional. Otherwise, there is an extension d ď c forcing Φ

YQ
e to be partial. The

counter-intuitive part of this approach is that the satisfaction of the require-
ments is ensured by the construction of XP instead of the construction of the
solutions YQ to computable instances of Q.

As explained by Patey [25], one can polish the previous construction, by
abstracting the construction steps of XQ to consider every operation with the
same definitional properties, yielding some kind of genericity property. For
example, the separation of the Erdős-Moser theorem and the Ascending De-
scending Sequence from Ramsey’s theorem for pairs [20] were polished in [25]
and [26] to obtain hyperimmunity and dependent hyperimmunity, respectively.
In this article, the polishing step yields Γ-hyperimmunity (see Definition 5.11).

2.2 Separating Ramsey-type theorems

In the particular case of Ramsey-type theorems, there exists a well-established
sub-scheme of construction. Many Ramsey-type theorems are of the form “For
every k-coloring of the n-tuples of an infinite structure, there exists an infinite
isomorphic substructure over which all the n-tuples satisfy some properties”. In
the case of Ramsey’s theorem, the infinite structure is pN,ăq, and the property
is homogeneity, but one can consider weaker properties, such as transitivity,
in which case one obtains the Erdős-Moser theorem. One can also consider
tree structures, yielding the tree theorem [6] or Milliken’s tree theorem [1].
These theorems are usually proven by induction, by constructing so-called pre-
homogeneous substructures. In the case of Ramsey’s theorem, an infinite set X
is pre-homogeneous for a coloring f : rNsn`1 Ñ k if for every x⃗ P rXsn and every
larger y0, y1 P X, fpx⃗, y0q “ fpx⃗, y1q.

Although pre-homogeneity is the natural notion to consider from a combi-
natorial viewpoint, the computability-theoretic practice has shown the interest
of a weaker notion of “delayed pre-homogeneity” called cohesiveness. Each
Ramsey-type theorem has its own notion of cohesiveness. In the case of Ram-
sey’s theorem, this yields the following definition.

Definition 2.1. An infinite set C is cohesive for an infinite sequence of setsR0, R1, . . .
if for every n, C Ď˚ Rn or C Ď˚ Rn, where Ď˚ means “included up to finite
changes”. COH is the statement “Every infinite sequence of sets admits an
infinite cohesive set.”
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Given a coloring f : rNsn`1 Ñ k, one can consider the sequence of sets

R⃗ :“ xRx⃗,z : x⃗ P rNsn, z ă ky defined by Rx⃗,z :“ tz P N : fpx⃗, zq “ yu. Given

an infinite R⃗-cohesive set C, the coloring f restricted to rCsn`1 is stable, that
is, for every x⃗ P rNsn, limyPC fpx⃗, yq exists. This induces a ∆0

2pCq coloring
pf : rCsn Ñ k. Cohesiveness is therefore a bridge between computable instances
of RTn`1

k and ∆0
2 instances of RTn

k .
Cohesiveness has almost no computational power. Indeed, by delaying pre-

homogeneity, the statement becomes about the jump of sets. More precisely,
COH is computably equivalent to the statement “For every ∆0

2 infinite binary
tree, there exists a ∆0

2 path” (see Belanger [2]). Most of the properties used
to separate Ramsey-type statements are preserved by COH. This phenomenon
can be explained by the fact that every set can be made ∆0

2 without affecting
too much the ground model (see Towsner [30]). This will be again the case
in our article (Theorem 5.16). Because of this, the question of the separation
RT2

k`1 ęc pRT2
kq˚ becomes a question about separating ∆0

2 instances of RT1
k`1

from finite products of ∆0
2 instances of RT1

k.
More generally, given two Ramsey-type statements Pn, Qn parameterized by

the dimension of the n-tuples, the question of Pn`1 ďc Qn`1 is often reduced
to the corresponding question with ∆0

2 instances of Pn and Qn. The experience
shows that almost all the known separations consist in actually constructing a
∆0

2 instance of Pn which defeats not only all the ∆0
2 instances of Qn, but all

the instances of Qn, with no effectiveness restriction (see [24, 23] for examples).
The previous remark about Towsner’s work shows that this apparently stronger
diagonalization is often without loss of generality. This will be again the case
in our article, and the ∆0

2 instance of RT1
k`1 will defeat all the finite products

of instances of RT1
k (Theorem 3.13).

Building a single instance of RT1
k which defeats simultaneously uncountably

many instances of pRT1
k`1q˚ raises new difficulties, as the sequence of all tuples

pXQ, c,Req is not countable anymore. Thankfully, we shall see that there exists
a single countable notion of forcing pP,ďq such that PX Ď P for every Q-
instanceX. Moreover, given a condition c P P, the class Ipcq of all Q-instancesX
such that c P PX is a compact class. One will exploit this compactness to defeat
all Q-instances X P Ipcq simultaneously.

2.3 Cross-constraint techniques

The setting is therefore the following: in order to prove that Pn`1 ęc Q
n`1, one

builds a ∆0
2 instance X of Pn such that for every instance rX of Qn, there is a

Qn-solution rY to rX that does not compute any Pn-solution to X.
The instance X of Qn is built by an effectivization of Cohen forcing. For

example, in this article, to prove that RT2
k`1 ęc pRT2

kq˚, we will build a ∆0
2

instance f of RT1
k`1 using an increasing sequence of pk` 1q-valued strings σ0 ă

σ1 ă . . . and let f be the limit of this sequence.
Let pP,ďq be a countable notion of forcing used to build solutions to every

instance of Qn. At stage s, assuming the Cohen condition σs has been defined,
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consider the next pair pc,Req where c P P and Re is a requirement saying that
ΦG

e is not a solution to the Pn-instance. Consider the class C Ď domPn ˆ Ipcq

of all pairs pX, rXq such that there is an extension d ď c with rX P Ipcq forcing
ΦG

e to be partial or a Pn-solution to X. There are two cases:

• Case 1: the class C is left-full below σs, that is, for every instance X of Pn

extending σs, there exists a Q
n-instance rX such that pX, rXq P C. Then, by

some appropriate basis theorem which depends on the combinatorics of Pn

and Qn, there exist multiple pairs pX0, rX0q, . . . , pXk´1, rXk´1q in C such
that X0, . . . , Xk´1 are incompatible, in the sense that there is no set which

is a solution to all these Pn-instances simultaneously, while rX0, . . . , rXk´1

are compatible as Qn-instances. Then, by building a solution to the Qn-
instance which will be simultaneously a solution to rX0, . . . , rXk´1, this
forces ΦG

e to be partial, hence to satisfy Re.

• Case 2: the class C is not left-full below σs. Then, there exists a Pn-
instance X extending σs such that, for every Qn-instance rX P Ipcq, c
forces ΦG

e not to be a Pn-solution to X. By compactness of Ipcq, an initial
segment σs`1 ă X is sufficient to witness this diagonalization, hence to
satisfy Re.

The general idea of cross-constraint techniques takes its roots in Liu’s proof
of separation of Ramsey’s theorem for pairs from weak König’s lemma [21], in
a slightly different setting. Indeed, Pn`1 was WKL, which is known to admit a
maximally difficult instance, so only Qn was built. In that article, he considered
the class C of all pairs pf, rXq such that f is a partial function with finite support,

and rX P Ipcq is an instance of RT1
2.

3 General framework

In this section, we define the fundamental notions of left-full cross-tree, and
prove the main theorems parameterized by the cross-constraint ideals. The basis
theorems proven in Section 4 will show the existence of cross-constraint ideals
with various computability-theoretic properties, and will be used to answer the
main question in Section 5.2.

3.1 Cross-trees

When considering Π0
1-classes for the space X , it is natural to consider cross-trees

which play a role analogous to binary trees in the case of the Cantor space.

Definition 3.1. We extend the prefix relation on strings ď to tuples of strings,
in the natural way. More precisely, for any n P N, given integers k0, . . . , kn´1,
and two tuples σ :“ pσ0, . . . , σn´1q, τ :“ pτ0, . . . , τn´1q P

ś

iăn k
ăN
i , we have

σ ď τ if and only if @i ă n, σi ď τi. For any k P N, the empty string of kăN is
denoted by ε, and we abuse the notation to also denote any tuple pε, . . . , εq.
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Moreover, we define the set of its infinite extensions by rσs :“ rσ0s ˆ . . . ˆ

rσn´1s, and its length by |σ| :“ maxt|σi| : i ă nu.

Definition 3.2. A class P Ď X is Π0
1 if there is a c.e. set W Ď XăN such that

P “
ď

χPW

rχs

Definition 3.3. A cross-tree is a set T Ď XăN which is downward-closed for the
prefix relation ď, and such that @pρ, σq P T,@iăjăr, |σi| “ |σj | and |σ| ď |ρ|.
The height of T is hpT q :“ maxt|χ| : χ P T u

The class of its (infinite) paths is defined as

rT s :“
␣

pX,Y q P X : @n, pXæn, Yænq P T
(

Moreover, given a string ρ P XăNp0q, we define the tree T rρs :“ tσ P XăNp1q :
pρ, σq P T u, which is finite since |σ| ď |ρ|. A cross-tree T is said to be right-
pruned if @ρ P XăNp0q, T rρs is pruned, i.e. all the leaves of T rρs have length |ρ|.
Finally, for any N P N we define TæN :“ tχ P T : |χ| ď Nu.

Lemma 3.4. A class P Ď X is Π0
1 if and only if there is a computable cross-tree

T Ď XăN such that rT s “ P.

Proof. Let T Ď XăN be a computable cross-tree. The set rT s is Π0
1 as its

complement is the set
Ť

χPW rχs where W :“ XăN ∖ T is computable.

Now let P be a Π0
1 class whose complement is

Ť

pρ,σqPW rρsˆrσs. Consider the

cross-tree T such that pρ, σq P T ðñ @µ ď ρ,@τ ď σ, pµ, τq R W r|ρ|s and |ρ| ě

|σ|. It is computable and its paths are exactly the elements of P.

Remark 3.5. In the rest of the document, every notion or proposition related
to a class P Ď X , also holds for a computable cross-tree T Ď XăN instead, by
considering its associated class rT s.

3.2 Left-fullness

The notion of left-fullness below is a sufficient notion of largeness such that any
left-full Π0

1-class contains multiple members satisfying some constraints. A key
factor also lies in the fact that the complexity of this notion is only Π0

1.

Definition 3.6. A class P Ď X is left-full below pρ, σq P XăN if

@X P rρs, DY P rσs, pX,Y q P P

Moreover, for any integer N P N, we say that a finite tree T Ď XďN is left-full
below pρ, σq P T if for every leaf pµ, τq P T , |µ| “ N , and for every µ P XN p0q

extending ρ, there is some τ P XN p1q extending σ, such that pµ, τq P T .
We simply say “left-full” to signify “left-full below pε, εq”.
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The above definition for finite trees is motivated by the following lemma. In
particular it shows that T is left-full below pρ, σq if and only if for any N P N,
TæN is left-full below pρ, σq.

Lemma 3.7. Let pρ, σq P XăN, and P Ď X be a Π0
1 class, whose associated

computable cross-tree is T . The statement

P is left-full below pρ, σq (a)

is equivalent to
@µ ě ρ, Dτ ě σ, |τ | “ |µ| and pµ, τq P T (b)

Moreover, if T is right-pruned, then the statement is equivalent to

@µ ě ρ, pµ, σq P T (c)

Proof. We first show (a) ùñ (b). Let µ ě ρ. Consider X P rµs Ď rρs. By
(a), there is Y P rσs such that pX,Y q P P. Thus, in particular, we have that
pµ, Yæ|µ|q P T . Hence τ :“ Yæ|µ| is the desired witness.

For the converse, let X P rρs. We want to find Y P rσs such that pX,Y q P P.
Consider the set S :“ tτ ě σ : pXæ|τ |, τq P T u. Since T is a cross-tree, S is a
finitely-branching cross-tree, with root σ. Moreover, it is infinite because of (b).
Thus, by König’s lemma, there is Y P 2N such that @ℓ, pXæℓ, Yæℓq P T . Hence
pX,Y q P P.

Last, we show (c)ô(b). For all µ ě ρ, if there is τ ě σ such that |τ | “

|µ| and pµ, τq P T , then in particular pµ, σq P T since T is a cross-tree. As
for the converse, consider µ ě ρ. We have pµ, σq P T , and since the cross-tree
tτ : pµ, τq P T u is pruned, it means there is τ ě σ in it of size |µ| and such that
pµ, τq P T .

The following lemma shows how left-fullness is preserved when extending or
shortening the stems. Note that the first and second components do not play a
symmetric role.

Lemma 3.8. Let T be a computable cross-tree left-full below pρ, σq P XăN. Then

(a) @pρ ě ρ,@pσ ď σ, T is left-full below ppρ, pσq

(b) For every n P N, there are some pρ ě ρ and pσ ě σ such that |pσ| “ n and T
is left-full below ppρ, pσq

Proof. Item paq can be proven directly from the definition of left-full. For
Item pbq, we can suppose WLOG that |ρ| ě n and |σ| ď n, thanks to the previ-
ous item. Consider all the extensions of σ of length n, denoted σ0, . . . , σk´1 for
some k P N, and define ρ0 :“ ρ. If T is left-full below pρ0, σ0q then the assertion
is proven. Otherwise, by Lemma 3.7, it means Dρ1 ě ρ0,@τ ě σ0, |τ | “ |ρ1| ùñ

pρ1, τq R T . Now we consider the pair pρ1, σ1q to see if T is left-full below it.
In case it is not, use Lemma 3.7 as in the previous case. Proceed inductively
like this for every σj , where j ă k. If at some point T is left-full below pρj , σjq
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then the assertion is proven. Otherwise, it means we have built a sequence of
string ρ0 ď . . . ď ρk such that @j ă k,@τ ě σj , |τ | “ |ρj`1| ùñ pρj`1, τq R T ,
and since T is a tree we even have @j ă k,@τ ě σj , |τ | “ |ρk| ùñ pρk, τq R T .
But the latter statement contradicts the fact that T is left-full below pρ, σq, by
considering the string ρk in Lemma 3.7.

3.3 Parameterized theorems

Most of the computability-theoretic constructions of solutions to Ramsey-type
theorems are done by variants of Mathias forcing, with reservoirs belonging to
some Turing ideal containing only weak sets. The combinatorics of the statement
usually require some closure properties on this ideal. For example, to construct
solutions to computable instances of Ramsey’s theorem for pairs, or to arbitrary
instances of the pigeonhole principle, one requires the ideal to be a Scott ideal,
that is, a model of WKL (see [11, 27]). One must then prove some basis theorem
for WKL to construct Scott ideals with only weak sets.

In our case, we shall need another closure property, yielding the notion of
cross-constraint ideal. The main constructions of this section will be parame-
terized by cross-constraint ideals, whose existence will be proven in Section 4.

Definition 3.9. Let X be an infinite set. A pair of instances pf, gq of RT1
k is

finitely compatible on X if for all color i ă k the set XXf´1piqXg´1piq is finite.
Whenever X “ N, we simply say that pf, gq is finitely compatible. Also, note
that the negation of “finitely compatible” is “infinitely compatible”

Definition 3.10. The cross-constraint problem, denoted CC, is the problem
whose instances are left-full cross-trees T Ď XăN, and a solution to T is a pair
of paths pXi, Y iqiă2 such that pX0, X1q is finitely compatible, and for all s ă r,
pY 0

s , Y
1
s q is infinitely compatible.

The following notion of cross-constraint ideal simply says that M is an ω-
model of CC, where an ω-model is a structure of second-order arithmetic in
which the first-order part consists of the standard integers. An ω-model is then
fully characterized by its second-order part, and is therefore often identified to
it. The second-order part of an ω-structure is a model of RCA0 iff it is a Turing
ideal.

Definition 3.11. A cross-constraint ideal is a Turing ideal M Ď PpNq such
that, any instance T P M of CC has a solution pXi, Y iqiă2 such that pX0, Y 0q‘

pX1, Y 1q P M.

Last, we define a notion of hyperimmunity for k-colorings f , which is an
intermediate notion between Cohen genericity and hyperimmunity. It implies
in particular that for every j ă k, tx : fpxq ‰ ju is hyperimmune, but in a
dependent way.

Definition 3.12. An instance f of RT1
k is hyperimmune relative to D Ď N if for

every D-computable array of k-tuples of mutually disjoint finite sets tF⃗nunPN

such that min
Ť

jăk Fn,j ą n, there is N P N such that @j ă k, FN,j Ď f´1pjq

11



In other words, an instance f is hyperimmune relative to D if for every D-
computable sequence g0, g1, . . . of partial k-valued functions with finite support,
such that @n P N,min dom gn ą n, then f is a completion of some gn. We are
now ready to prove our first parameterized theorem.

Theorem 3.13 (Liu [22, Theorem 2.1]). Let M be a countable cross-constraint
ideal and let f P X p0q be hyperimmune relative to any element of M, then

for any g P X p1q there is a solution G⃗ of g which, for any Z P M, does not
Z-compute any solution of f .

Proof. The set G⃗ is constructed by a variant of Mathias forcing, using conditions
of the form

`

pF⃗αqαP2r , A⃗
˘

where

• F⃗α is an r-tuple of finite sets g-homogeneous for the colors α, i.e. @s ă

r, Fα,s Ď g´1
s pαpsqq

• A⃗ is an r-tuple of infinite sets in M such that @α P 2r,@s ă r,minAs ą

maxFα,s

The idea is that we do not know in advance what the colors of homogeneity will
be for the solution being constructed, so we build all the possibilities in parallel,
with α indicating the colors, i.e. for any i ă r, the set Fα,i is gi-homogeneous
for the color αpiq.

A condition
`

pE⃗αqαP2r , B⃗
˘

extends another
`

pF⃗αqαP2r , A⃗
˘

if, for every α P 2r

and every s ă r, we have Eα,s Ě Fα,s, Bs Ď As, and Eα,s ´ Fα,s Ď As.

Every sufficiently generic filter F for this notion of forcing induces a family
of sets pGF

α,sqαP2r,săr defined by

GF
α,s “

ď

tFα,s :
`

pF⃗αqαP2r , A⃗
˘

P Fu

Given an initial segment Fα,s of a condition
`

pF⃗αqαP2r , A⃗
˘

, it is not necessarily

possible to find an extension
`

pE⃗αqαP2r , B⃗
˘

with |Eα,s| ą |Fα,s|, since it might
be the case that As X g´1

s pαpsqq is empty. Thus, for any sufficiently generic
filter F , the set GF

α,s might not be infinite. However, there must necessarily

exist some α P 2r such that every GF
α,s, s ă r is infinite. Given a condition

c “
`

pF⃗αqαP2r , A⃗
˘

and a coloring h P X p1q, define the set

Vhpcq :“ tα P 2r : @s ă r,As X h´1
s pαpsqq ‰ Hu

of “valid” combinations. Note that if d ď c, then Vhpdq Ď Vhpcq. Moreover,
Vgpcq ‰ H for every condition c. A “valid” combination of a condition c allows
us to find an extension, as the following lemma shows.

Lemma 3.14. For all conditions c :“
`

pF⃗αqαP2r , A⃗
˘

, all β P Vgpcq and all s ă r,

there is an extension
`

pE⃗αqαP2r , B⃗
˘

such that |Eβ,s| ą |Fβ,s|.

12



Proof. Let β P Vgpcq and s ă r. By definition of β consider n P As X g´1
s pαpsqq.

Define pE⃗αqαP2r to be equal to pF⃗αqαP2r , except for Eβ,s :“ Fβ,s Y tnu. Ac-

cordingly, define B⃗ to be equal to A⃗, except for Bs :“ As ´ t0, 1, . . . , nu. Then
`

pE⃗αqαP2r , B⃗
˘

is a condition which satisfies the lemma.

Fix an enumeration of Turing functionals pΨeqePN. For any e P N, j ă 3 and
Z P M let

RZ
e,j :“ ΨZ‘G⃗

e is not an infinite subset of f´1pjq

Lemma 3.15. For any 2r-tuple of integers peαqαP2r , any 2r-tuple of colors
pjαqαP2r , any Z P M, and any condition c, there is an extension forcing
Ž

αPVgpcq RZ
eα,jα

.

Proof. Let c :“
`

pF⃗αqαP2r , A⃗
˘

be a condition, and define Upcq to be the Π0
1pA⃗q-

class whose elements are colorings rg such that

@s ă r,@j ă 3, As X g´1
s pjq “ H ùñ As X rgs

´1
pjq “ H

in other words Upcq :“ trg : V
rgpcq “ Vgpcqu. Note that it is non-empty since

g P Upcq. This will ensure that the rg we consider later have the same behavior

as g regarding A⃗.
Moreover, given α P 2r, an r-tuple of finite sets G⃗ satisfies pF⃗α, A⃗q if @s ă

r,Gs Ě Fα,s and Gs ´ Fα,s Ď As

For every n P N consider the class Qn whose elements are colorings rf P X p0q

such that

Drg P Upcq,

@α P Vgpcq,@G⃗ satisfying pF⃗α, A⃗q

if G⃗ is rg-homogeneous for the colors α,

then ΨZ‘G⃗
eα XKn,`8JĎ rf´1pjαq

Note that Qn is a Π0
1pA⃗q class uniformly in n. Indeed, the above formula is

Π0
1pA⃗q, because by compactness, the existence of rg is equivalent to finding an

approximation in Xmp1q for any length m P N. Moreover, the set Vgpcq depends
on g which might be of arbitrary complexity, but since it is finite, it does not
affect the complexity of the formula.

Case 1, Dn,Qn “ 3N. Thus fix such an n and consider the class P :“
tp rf, rgq P X : rg is a witness of rf P Qnu. Since P is a left-full Π0

1pA⃗q-class and M
is a cross-constraint ideal, there are paths pXi, Y iqiă2 P P2 such that

• pX0, X1q is finitely compatible

• for any s ă r, pY 0
s , Y

1
s q is infinitely compatible on As

• pX0, Y 0q ‘ pX1, Y 1q P M

13



From the second item, define β P 2r to be colors such that @s ă r, pY 0
s q´1pβpsqqX

pY 1
s q´1pβpsqq X As is infinite. Note that β P VY0pcq X VY1pcq. Since g, Y 0, Y 1 P

Upcq, then VY0
pcq “ VY1

pcq “ Vgpcq, so β P Vgpcq. For each s ă r, let

Bs “ pY 0
s q´1pβpsqq X pY 1

s q´1pβpsqq X As, and define B⃗ :“ pB0, . . . , Br´1q. We

claim that ppF⃗αqαP2r , B⃗q is the extension we are looking for. Indeed, since

pXi, Y iqiă2 P P2, then for every G⃗ compatible with pFβ , B⃗q, we have ΨZ‘G⃗
eβ

XKn,`8J Ď

X0
´1

pjβq X X1
´1

pjβq. Since X0
´1

pjβq X X1
´1

pjβq is finite, the requirement
RZ

eβ ,jβ
is satisfied, so

Ž

αPVgpcq RZ
eα,jα

is satisfied as well.

Case 2, @n,Qn ‰ 3N.
In which case, for each n P N, there is some fn R Qn and ℓn P N such that

@rg P Upcq,

Dβ P Vgpcq, DH⃗ satisfying pF⃗β , A⃗q,

H⃗ is rg-homogeneous for the colors β

and ΨZ‘H⃗
eβ

XKn, ℓnJĘ f´1
n pjβq

This implies that there is an A⃗-computable array pEn,0, En,1, En,2qnPN such
that

@rg P Upcq,

Dβ P Vgpcq, DH⃗ satisfying pF⃗β , A⃗q,

H⃗ is rg-homogeneous for the colors β

and ΨA⃗‘H⃗
eβ

XKn, ℓnJĘ Enpjβq

Indeed, for each n, the set Kn, ℓnJ can be partitioned into ptm : fnpmq “ juqjă3,
so it is sufficient to search for a coloring satisfying the above properties, as the
search must end.

The coloring f is hyperimmune relative to A⃗, because A⃗ P M. Hence there
is some n P N such that @j ă 3, En,j Ď f´1pjq. Moreover, we have En,j “

f´1pjqXKn, ℓnJ. So, by considering g, we obtain

Dβ P Vgpcq, DH⃗ satisfying pF⃗β , A⃗q,

H⃗ is g-homogeneous for the colors β

and ΨZ‘H⃗
eβ

XKn, ℓnJĘ f´1pjβq

Finally, the extension we are looking for is
`

tF⃗αuα‰βP2rYtH⃗u, A⃗´t0, . . . ,max H⃗u
˘

.
This completes the proof of Lemma 3.15.

Let c0 be a condition such that Vgpc0q is minimal for inclusion. Let V “

Vgpc0q. Let F be a sufficiently generic filter containing c0. In particular,
V “ Vgpcq for every c P F . By Lemma 3.14, for every α P V and ev-
ery s ă r, GF

α,s is infinite. Moreover, by Lemma 3.15, for every Z P M,
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for every 2r-tuple of integers peαqαP2r and every 2r-tuple of colors pjαqαP2r ,

G⃗F satisfies
Ž

αPV RZ
eα,jα

. By a pairing argument, for every Z P M, there is

some α P V such that Z ‘ G⃗F
α does not compute any infinite f -homogeneous

set. Since M “ tZ0, Z1, . . . u is countable, by the infinite pigeonhole principle,

there exists some α P V such that for infinitely many n P N, Z0 ‘ ¨ ¨ ¨ ‘Zn ‘ G⃗F
α

does not compute any infinite f -homogeneous set. By downward-closure of this
property under the Turing reduction, it holds for every n. This completes the
proof of Theorem 3.13.

Our first parameterized theorem has applications in terms of strong non-
reducibility between non-computable instances of RT1

k`1 and pRT1
kq˚ (Theo-

rem 5.20) and non-reducibility between computable instances of SRT2
k`1 and

pSRT2
kq˚ (Theorem 5.21). We now prove a second parameterized theorem which

enables us to prove separations between computable instances of Ramsey’s the-
orem for pairs. Note that in the following theorem, the colorings g0, . . . , gr´1

are required to belong to M, contrary to Theorem 3.13.

Theorem 3.16. Let M be a countable cross-constraint ideal such that M |ù

COH and let f : N Ñ 3 be hyperimmune relative to any element of M, then
for any r P N and any g0, . . . , gr´1 : rNs2 Ñ 2 in M, there are infinite gi-
homogeneous sets Gi for every i ă r, such that

À

iăr Gi does not compute any
infinite f -homogeneous set.

Proof. First, consider the sequence of sets R⃗ :“ pRx,j,iqxPN,jă2,iăr defined by
Rx,j,i :“ ty : gipx, yq “ ju. This sequence is in M, because @i ă r, gi P M. And

since M |ù COH, there is an infinite R⃗-cohesive set C :“ tc0 ă c1 ă . . .u P M.

By choice of R⃗, for each i ă r, the coloring giærCs2 is stable Indeed, for x P N

and i ă r, there is exactly one j ă 2 for which C Ď˚ Rx,j,i, and so this implies
that limyPC gipx, yq “ j.

Now let hi : N Ñ 2, n ÞÑ limm gipcn, cmq, and h⃗ :“ ph0, . . . , hr´1q. By

Theorem 3.13 with pf, phiqiărq, there are infinite h⃗-homogeneous sets H⃗ such

that, for any Z P M, H⃗ ‘ Z does not compute an infinite f -homogeneous set.
In particular this is true for Z :“

À

iăr Ci, and since for any i ă r, Hi ‘ Ci

computes an infinite gi-homogeneous set Gi, we deduce that
À

iăr Gi does not
compute any infinite f -homogeneous set.

4 Cross-constraint basis theorems

As mentioned before, the two main theorems of Section 3 are parameterized by
cross-constraint ideals, which are themselves built using iterated applications
of the cross-constraint principle (CC). In this section, we prove various basis
theorems for CC, namely, the ∆0

2, low, cone avoidance, and non-Σ0
1 preservation

basis theorems. The ∆0
2 and cone avoidance basis theorems for CC were previ-

ously proven by Liu [22], but we give a new proof of the cone avoidance basis
theorem which resembles more its classical counterpart for Π0

1 classes.
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4.1 Conditions

The most famous basis theorems for Π0
1 classes are all proven using effective

versions of forcing with binary trees. Similarly, all the basis theorems for CC in
this section will be proven with effective variants of the same notion of forcing
that we now describe.

Definition 4.1. For k P N and m ď n P N, given chains ρ0, ρ1 P km, µ0, µ1 P

kn, and τ0, τ1 P kn´m such that @i ă 2, µi “ ρi ¨ τ i. We say that pµ0, µ1q

is completely incompatible over pρ0, ρ1q if @i ă n ´ m, τ0piq ‰ τ1piq. When
pρ0, ρ1q “ pε, εq, we simply say completely incompatible.

Definition 4.2. A condition-tuple for a class P Ď X is a tuple pρi, σiqiă2 P X 2
ăN

such that P is left-full below pρi, σiq for both i ă 2, and |ρ0| “ |ρ1|. A condition-
tuple ppρi, pσiqiă2 extends another pρi, σiqiă2, written ppρi, pσiqiă2 ď pρi, σiqiă2, if

1. for both i ă 2, ppρi, pσiq ě pρi, σiq

2. ppρ0, pρ1q is completely incompatible over pρ0, ρ1q

Remark 4.3. A pair pρi, σiq of a condition-tuple is seen as a finite approximation
of some pXi, Y iq P P we wish to build, i.e. of an element in P X

“

pρi, σiq
‰

, such
that pX0, X1q is completely incompatible over pρ0, ρ1q.

4.2 Cross-constraint ∆0
2 basis theorem

The following ∆0
2 basis theorem is an effective analysis of the simplest known

combinatorial proof of the cross-constraint problem. It was proven by Liu [22].
We provide the original proof as a warmup for the next basis theorems and for
the sake of completeness.

Theorem 4.4 (Liu [22, Lemma 2.2]). Any left-full computable instance T of
CC has a solution pXi, Y iqiă2 such that pX0, Y 0q ‘ pX1, Y 1q ďT H1.

Proof. Let P :“ rT s. We build a H1-computable sequence of condition-tuples
pρi0, σ

i
0qiă2 ě pρi1, σ

i
1qiă2 ě . . ., such that, for i ă 2 the functions Xi :“

Ť

t ρ
i
t

and Y i :“
Ť

t σ
i
t are the desired witnesses. To simplify notation, we simply say

condition for condition-tuple.
Given a condition pρit, σ

i
tqiă2, we want to extend it to pρit`1, σ

i
t`1qiă2 such

that for all s ă r, pσ0
t`1,s, σ

1
t`1,sq is not completely incompatible over pσ0

t,s, σ
1
t,sq.

We proceed as follows: say pρit, σ
i
tqiă2 has been constructed, search for an ex-

tension pρit`1, σ
i
t`1qiă2 such that the property above holds. By Lemma 3.7, this

search requires the use of H1 to check whether P is left-full below pρit`1, σ
i
t`1q

or not (for each i).
If there is always such an extension, then the construction is complete. Oth-

erwise, for some condition pρit, σ
i
tqiă2, there is some s ă r such that all exten-

sions are completely incompatible over pσ0
t,s, σ

1
t,sq. Such a condition is said to

exclude component s ă r. Nevertheless, by considering the following lemma,
the construction can be completed.
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Lemma 4.5. If a condition pρi, σiqiă2 excludes component s ă r, then for
every i ă 2, there is a coloring Y P 2N such that for every ppρ, pσq ď pρi, σiq, if P
is left-full below ppρ, pσq, then pσs is compatible with Y .

Proof. Fix pρi, σiqiă2 such that it excludes component s ă r and fix i ă 2.
Suppose first that for cofinitely many n P N, there exists a kn ă 2 such that

for every pρ1, σ1q ď pρi, σiq for which P is left-full, if |σ1
s| ą n then σ1

spnq “ kn.
Then let Y pnq :“ kn. This is well-defined since by Lemma 3.8, there exist
suitable extensions of every length.

Suppose now that for infinitely many n P N, for every k ă 2, there is a
pρ1, σ1q ď pρi, σiq for which P is left-full and such that σ1

spnq ‰ k. Fix n ą |σi
s|,

and for each k ă 2, let pρk, σkq ď pρi, σiq be a condition extension such that
σk,spnq ‰ k.

Since we are working in a 3-valued realm, there exists a rρ ě ρ1´i of length
greater than maxp|ρ0|, |ρ1|q such that both prρ, ρ0q and prρ, ρ1q are completely
incompatible over pρ1´i, ρiq. Pick any pair ppρ1´i, pσ1´iq ď prρ, σ1´iq for which P
is left-full and such that |pσ1´i

s | ą n, this is possible by Lemma 3.8. Let k “

pσ1´i
s pnq. Then ppρ1´i, pσ1´i, ρk, σkq is an extension contradicting the fact that

pρi, σiqiă2 excludes component s ă r

If at some point in the construction the condition pρit, σ
i
tqiă2 excludes the

components of I Ď r, then we restart the construction from the begining with
pρi0, σ

i
0qiă2 :“ pρ0t , σ

0
t , ρ

0
t , σ

0
t q. The lemma ensures that pY 0

s , Y
1
s q will not be

finitely compatible for all s P I, no matter the conditions selected for the se-
quence. And since r is a standard integer, the construction can only be restarted
a finite number of times.

Remark 4.6. The fact that Xi is an instance of RT1
3 whereas each Y i

s is an in-
stance of RT1

2 is exploited in the proof of Lemma 4.5, to ensure the existence of a
3-valued string rρ completely incompatible with two other strings simultaneously.

Corollary 4.7. The class of all arithmetic sets is a cross-constraint ideal.

4.3 Combinatorial lemmas

All the remaining basis theorems will involve some kind of first-jump control.
They will require a much more involved combinatorial machinery that we now
develop. These combinatorics are all due to Liu [22], with a slightly different
organization and terminology.

Definition 4.8. For k P N and m ď n P N, given chains ρ0, ρ1 P kďm, a total
function φ : km Ñ kn preserves incompatibility over pρ0, ρ1q if

1. @µ P km, φpµq ě µ

2. For all µ0, µ1 P km such that pµ0, µ1q ě pρ0, ρ1q, the pair pφpµ0q, φpµ1qq is
completely incompatible over pµ0, µ1q
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Remark 4.9. Note that for pρ0, pρ1 P kďn extending ρ0, ρ1 respectively, if φ pre-
serves incompatibility over pρ0, ρ1q then it also preserves incompatibility over
ppρ0, pρ1q.

The following two lemmas are purely technical ones, used only locally to
obtain the main combinatorial lemmas of this section.

Lemma 4.10 (Liu [22, Lemma 4.3]). For any n ď n1 ď m P N, pρ P 3m extending
ρ P 3n, and any map ψ : 3n Ñ 3n

1

preserving incompatibility over pε, εq such that
ψpρq ď pρ, there is a map φ : 3n Ñ 3m extending ψ and preserving incompatibility
over pε, εq, such that φpρq “ pρ.

Proof. To give an intuition, if we just wanted to show the existence of a map
φ : 3n Ñ 3m preserving incompatibility over pε, εq, we could have taken the
function which maps η P 3n to η ¨ am´n where a :“ ηp0q.

Fix ρ, pρ and ψ as in the statement of the lemma, and let τ be such that
ρ ¨ τ “ pρ. For every a ă 3, let τa P 3m´n1

be defined by τapxq “ τpxq ` a´ ρp0q

mod 3. In particular, τρp0q “ τ and for every a ‰ b, τa and τb are preserving
incompatibility over pε, εq.

Let φ be the function φ1 ˝ ψ where φ1 maps η P 3n to η ¨ τηp0q. Note that
φ1pρq “ ρ ¨ τρp0q “ pρ. Moreover, if µ, ν P 3n are completely incompatible,
then ψpµqp0q ‰ ψpνqp0q, hence τµp0q and τνp0q are completely incompatible. It
follows that φpµq “ µ ¨ τµp0q and φpνq “ ν ¨ τνp0q are completely incompatible
themselves.

Lemma 4.11 (Liu [22, Lemma 4.4]). Let N P N and f : 3ăN Ñ P
`

XN p1q
˘

be a
total and non-increasing function. For every n P N, there is m P N and a map
φ : 3n Ñ 3m preserving incompatibility over pε, εq, such that @ρ P 3n,@ν P XN p1q

either @pρ ě φpρq, ν P fppρq or ν R fpφpρqq.

Proof. We construct a finite sequence of integers pnsqsďp, for some p P N, along
with a finite sequence of maps pφs : 3n0 Ñ 3nsqsďp preserving incompatibility
over pε, εq.

For each ν P XN p1q and ρ P 3n there is a step to ensure that the map φ we
construct satisfies the requirement

Rν,ρ :“ @pρ ě φpρq, ν P fppρq or ν R fpφpρqq

Let n0 :“ n and φ0 : 3n0 Ñ 3n0 be the identity function. At step s ă p,
consider ν P XN p1q and ρ P 3n. If @pρ ě φspρq, ν P fppρq we are done by
defining ns`1 :“ ns and φs`1 :“ φs. Otherwise there is η extending φspρq

such that ν R fpηq. Define ns`1 :“ |η|, and use Lemma 4.10 to find a map
φs`1 : 3n Ñ 3ns`1 extending φs, preserving incompatibility over pε, εq, and
such that φs`1pρq “ η. So, under the assumption made on f we have that
@pη ě η, fppηq Ď fpηq, and thus @pη ě η, ν R fppηq. Then as φs`1 extends φs, Rν,ρ

is fulfilled.
Finally, define m :“ np and φ :“ φp. By the hypothesis made on the

function f , for every ν P XN p1q, if ν P fpφpρqq for some ρ P 3n, then @pρ ě

φpρq, ν P fppρq
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The following definition should be understood in the light of the first-jump
control for Π0

1 classes. When trying to construct an infinite path through an
infinite binary tree T Ď 2ăω, one must ensure that at every step, the node is
extensible, that is, the branch below the node is infinite. Being extensible is a
Π0

1 property, and therefore to obtain a good first-jump control, one must resort
to an overapproximation: Given a set A Ď 2ăω, instead of asking whether there
is an extensible node in T XA, one will ask whether there is a level in the tree
such that every node at this level belongs to A. Among the nodes at that level,
at least one must be extendible. If A is Σ0

1, then the former question is Σ0
2,

while the latter is Σ0
1.

One can use a different technique, and ask whether the Π0
1 class P of infinite

subtrees of T disjoint from A is empty. In particular, by considering S Ď T , the
pruned subtree of T containing only extendible nodes, since S R P, there is an
extendible node in S XA. Here again, this overapproximation is Σ0

1.
In the case of cross-constraint problems, a node pρ, σq is extensible in a cross-

tree T if T is left-full below pρ, σq. The notion of T -sufficiency below is therefore
the counterpart of the Σ0

1 question above, mutatis mutandis.

Definition 4.12 (Liu [22, Definition 4.22]). Given a tree T Ď X , and a tuple
pρi, σiqiă2 P X 2

ăN, a set A Ď X 2
ăN is T -sufficient over pρi, σiqiă2 if, for every

infinite subtree S Ď T for which pρi, σiqiă2 is a condition-tuple, there is a tuple
ppρi, pσiqiă2 P AXS2 such that @i ă 2, ppρi, pσiq ě pρi, σiq, and ppρ0, pρ1q is completely
incompatible over pρ0, ρ1q.

Note that if A is Σ0
1, then the statement “A is T -sufficient over pρi, σiqiă2”

is Σ0
1pT q. The combinatorics for the cross-constraint problem are more compli-

cated than the ones for weak König’s lemma, and one cannot simply consider
the pruned tree containing only extensible nodes. However, the following lem-
mas show that one can consider a weakly pruned tree in which every node is
almost extensible, in the sense that every node can be extended into a node
below which the cross-tree is left-full.

The following lemma uses compactness to give a finite cross-tree version of
T -sufficiency. Recall that the notion of left-fullness was extended to finite trees,
which induces a notion of condition-tuple. Given a set S Ď XăN, we write ℓN pSq

for the set of pairs pρ, σq P S such that |ρ| “ |σ| “ N .

Lemma 4.13. Let T Ď X be a cross-tree. If A Ď X 2
ăN is T -sufficient over

pρi, σiqiă2 P X 2
ăN, then there is N P N such that for every finite cross-subtree S Ď

T X XďN for which pρi, σiqiă2 is a condition-tuple, there is a tuple ppρi, pσiqiă2 P

AX S2 such that @i ă 2, ppρi, pσiq ě pρi, σiq, and ppρ0, pρ1q is completely incompat-
ible over pρ0, ρ1q.

Proof. Consider the class T of finite subtrees S Ď T whose leaves are all of
the same length, such that S is left-full below pρi, σiq for both i ă 2, and such
that for all tuple ppρi, pσiqiă2 P S2 which extends pρi, σiq and such that ppρ0, pρ1q

is completely incompatible over pρ0, ρ1q, then ppρ0, pρ1q R A. It forms a tree for
the relation where S0 ď S1 if and only if S1æhpS0q “ S0.
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There is no infinite path in T , otherwise it would contradict the assumption
that A is T -sufficient. Hence T is finite thanks to König’s lemma. In other
words, there is N P N such that, for any finite subtree S Ď T X XďN left-
full below both pρi, σiq, there is ppρi, pσiq P A X S2 witnessing the T -sufficiency
of A.

The following lemma is the desired combinatorial lemma.

Lemma 4.14 (Liu [22, Subclaim 4.7]). Let T Ď X be a cross-tree. If A Ď X 2
ăN

is T -sufficient over pρi, σiqiă2 P X 2
ăN and closed under the suffix relation, then

there is a condition-tuple in A which extends pρi, σiqiă2.

Proof. Let N P N witness Lemma 4.13. For i ă 2, define the maps

fi : 3
ăN Ñ P

`

XN´|σi|p1q
˘

τ ÞÑ
␣

ν : pρi ¨ τ, σi ¨ νq P T
(

And consider the map f : τ ÞÑ f0pτq Y f1pτq.
Since T is left-full below pρi, σiq for both i ă 2, then by Lemma 3.8,

@τ, fpτq ‰ H. Moreover, each fi is non-decreasing since T is a cross-tree,
so f is also non-decreasing. Thus we can apply Lemma 4.11 on f to obtain
L P N and a map ψ : 3N´|ρ0

| Ñ 3L preserving incompatibility over pρ0, ρ1q such
that, for any τ P XN´|ρ0|p0q and any ν P XN´|σi|p1q either T is left-full below
pρi ¨ ψpτq, σi ¨ νq or pρi ¨ ψpτq, σi ¨ νq R T . In other word, ψ is such that

`

ρi ¨ ψpτq, σi ¨ ν
˘

P T ùñ T is left-full below
`

ρi ¨ ψpτq, σi ¨ ν
˘

(4.1)

Now for each i ă 2, define the set

Bi :“
␣

pρi ¨ τ, σi ¨ νq P T : pτ, νq P X and pρi ¨ ψpτq, σi ¨ νq P T
(

And consider S Ď T , the downward-closure of B0 Y B1. We claim that S is a
cross-subtree of T for which pρi, σiqiă2 is a condition-tuple.

Indeed, fix some i ă 2 and let τ P 3N´|ρi
|. Since T is left-full below pρi, σiq,

by Lemma 3.8, there is some ν P XN´|σi|p1q such that pρi ¨ ψpτq, σi ¨ νq P T .
Thus, by 4.1, T is left-full below pρi ¨ ψpτq, σi ¨ νq and by definition of Bi,
pρi ¨ τ, σi ¨ νq P Bi Ď S. Thus S is left-full below pρi, σiq.

By Lemma 4.13, there is a tuple ppρi, pσiqiă2 P A X S2 such that @i ă

2, ppρi, pσiq ě pρi, σiq, and ppρ0, pρ1q is completely incompatible over pρ0, ρ1q. Since
A is closed under suffix, we can suppose without loss of generality that |pρi| “

|pσi| “ N , hence that ppρi, pσiq P Bi. Let τ i P XN´|ρi|p0q and νi P XN´|σi|p1q be
such that pρi “ ρi ¨ τ i and pσi “ σi ¨νi. By definition of Bi, pρi ¨ψpτ iq, σi ¨νiq P T ,
thus by Equation (4.1), T is left-full below pρi ¨ψpτ iq, σi ¨νiq. Thus, pρi ¨ψpτ iq, σi ¨

νiqiă2 is a condition-tuple for rT s. Moreover, since ψ preserves incompatibility
over pρ0, ρ1q, pρi ¨ ψpτ iq, σi ¨ νiqiă2 is an extension of pρi, σiqiă2.
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4.4 Cross-constraint cone avoidance basis theorem

We now prove our first cross-constraint basis theorem which requires some sort of
first-jump control, using the combinatorics developed in Section 4.3. This basis
theorem was first proven by Liu [22, Lemma 4.5] using a different argument.
Our new proof follows more closely the standard proof of the cone avoidance
basis theorem for Π0

1 classes.

Theorem 4.15 (Cross-constraint cone avoidance, Liu [22, Lemma 4.5]). Let
C be a non-computable set. Any left-full computable instance T of CC has a
solution pXi, Y iqiă2 such that pX0, Y 0q ‘ pX1, Y 1q ğT C.

Proof. To prove the theorem, we use forcing with conditions of the form
`

pρi, σiqiă2, U,B
˘

,
where

• U is a B-computable cross-subtree of T

• pρi, σiqiă2 is a condition-tuple for rU s

• B Ď N and B ğT C

We will satisfy the following requirements for each e P N:

Re : Φ
pX0,Y 0

q‘pX1,Y 1
q

e ‰ C

A condition
`

pρi, σiqiă2, U,B
˘

forces RΨ, if RΨ holds for all pXi, Y iq P rU s

extending pρi, σiq for each i ă 2.

Lemma 4.16. For every condition c :“
`

pρi, σiqiă2, U,B
˘

and every e P N,
there is an extension of c that forces Re.

Proof. For all x P N, v ă 2, define

Ax,v :“ tppρi, pσiqiă2 P X 2
ăN : Φppρ0,pσ0

q‘ppρ1,pσ1
q

e pxq Ó“ vu

The set Ax,v is upward-closed, and Σ0
1 uniformly in x, v. Consider the following

Σ0
1pBq set:

Q “ tpx, vq : Ax,v is U -sufficient over ppρi, pσiqiă2u

Case 1. px,Cpxqq R Q for some x P N. Let L be the Π0
1pBq class of cross-

trees S witnessing that Ax,Cpxq is not U -sufficient over pρi, σiqiă2. By the cone
avoidance basis theorem, there is some cross-tree S such that S‘B ğT C. The
condition d :“

`

pρi, σiqiă2, S, S‘B
˘

is the extension we are looking for. Indeed,

it forces Re, because for pXi, Y iqiă2 P rds, if ΨpX0,Y 0
q‘pX1,Y 1

q is total, then it
is different from C on input x.

Case 2. px, 1 ´ Cpxqq P Q for some x P N. Unfolding the definition,
Ax,1´Cpxq is U -sufficient pρi, σiqiă2, so by Lemma 4.14, there is a condition-tuple

ppρi, pσiqiă2 P Ax,1´Cpxq extending pρi, σiqiă2. Thus the condition
`

ppρi, pσiqiă2, U,B
˘

is the desired extension, as it forces Re.
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Case 3. Neither Case 1 nor Case 2 holds. Then Q is the Σ0
1pBq graph of the

characteristic function of C, so C ďT B. Contradiction.

We are now ready to prove Theorem 4.15. Let c0 “
`

pρi, σiqiă2, U,B
˘

be
a condition that excludes a maximal number of components and let F be a
sufficiently generic filter for this notion of forcing, containing c0. For i ă 2, let
Xi “

Ť

tρi :
`

pρi, σiqiă2, U,B
˘

P Fu and Y i “
Ť

tσi :
`

pρi, σiqiă2, U,B
˘

P Fu.
By Lemma 3.8, Xi and Y i are both infinite sequences. By Lemma 4.5, for
every s ă r, Y 0

s X Y 1
s is infinite. By Lemma 4.16, pX0, Y 0q ‘ pX1, Y 1q ğT C.

This completes the proof of Theorem 4.15.

Corollary 4.17. For any non-computable set C Ď N, there is a cross-constraint
ideal that does not contain C.

Proof. We construct a sequence of sets Z0 ďT Z1 ďT . . . such that for any
integer n “ xk, ey, Zn ğT C, and if ΦZk

e is an instance of CC, then Zn`1

computes a solution.
Define Z0 :“ H. Suppose Zn has been defined and let n “ xk, ey. If ΦZk

e

is not a left-full cross-tree, then Zn`1 :“ Zn. Otherwise, by Theorem 4.15
relativized to Zn, there is a pair of paths P0 and P1, such that P0‘P1‘Zn ğT C.
In which case Zn`1 :“ P0 ‘ P1 ‘ Zn.

By construction, the class M :“ tX P 2N : Dn,X ďT Znu is a cross-
constraint ideal containing only sets avoiding the cone above C, in particular C
is not in the ideal.

4.5 Cross-constraint preservation of non-Σ0
1 definitions

We now prove a second cross-constraint basis theorem, about preservation of
non-Σ0

1 definitions. This basis theorem for Π0
1 classes was first proven by

Wang [31], and implies the cone avoidance basis theorem in a straightforward
way. Later, Downey et al. [9] actually proved that the two basis theorems are
equivalent, as any problem satisfying any of them, satisfies both. Thus, the
following theorem is a (non-trivial) consequence of Theorem 4.15. However, we
give a direct proof of it, to get familiar with the combinatorics of the cross-
constraint problem.

Theorem 4.18 (Cross-constraint preservation of non-Σ0
1 definitions). Let C be

a non-Σ0
1 set. Any computable instance T of CC, has a solution pXi, Y iqiă2

such that C is not Σ0
1 relative to pX0, Y 0q ‘ pX1, Y 1q.

Proof. To prove the theorem, we use forcing with conditions of the form ppρi, σiqiă2, U,Bq

where

• U is a B-computable cross-subtree of T

• pρi, σiqiă2 is a condition-tuple for rU s

• B Ď N is such that C is not Σ0
1pBq

22



We want to satisfy the following requirements for every Turing index e:

Re :W
pX0,Y 0

q‘pX1,Y 1
q

e ‰ C

Lemma 4.19. For every condition c :“
`

pρi, σiqiă2, U,B
˘

and every e P N,
there is an extension of c forcing Re.

Proof. Given some x P N, consider the set

Ax :“ tppρi, pσiqiă2 P X 2
ăN : x P W ppρ0,pσ0

q‘ppρ1,pσ1
q

e u

Here again, the set Ax is upward-closed and Σ0
1 uniformly in x. Let

Q :“ tx : Ae,x is U -sufficient over pρi, σiqiă2u

The set Q is Σ0
1pBq, thus Q ‰ C. This leads to two cases.

Case 1. There is x P C ∖ Q. Let L be the class of all cross-trees S Ď U
which witness that Ax is not U -sufficient over pρi, σiqiă2. It is non-empty by
hypothesis, and since Ax is Σ0

1, then L is Π0
1pBq. Now since WKL admits

preservation of non-Σ0
1 definitions (see [31, Theorem 3.6]), there is a cross-tree

S P L such that C is not Σ0
1pS ‘ Bq. The condition d :“

`

pρi, σiqiă2, S, S ‘

B
˘

is the extension we are looking for, since x P C but d forces that x R

W
pX0,Y 0

q‘pX1,Y 1
q

e .

Case 2. There is x P Q ∖ C. Unfolding the definition, Ax is U -sufficient
over pρi, σiqiă2, so by Lemma 4.14, there is a condition-tuple ppρi, pσiqiă2 P Ax

extending pρi, σiqiă2. The condition
`

ppρi, pσiqiă2, U,B
˘

is the desired extension,

as it forces x P W
pX0,Y 0

q‘pX1,Y 1
q

e for some x R C.

We are now ready to prove Theorem 4.18. Let c0 “
`

pρi, σiqiă2, U,B
˘

be
a condition that excludes a maximal number of components and let F be a
sufficiently generic filter for this notion of forcing, containing c0. For i ă 2, let
Xi “

Ť

tρi :
`

pρi, σiqiă2, U,B
˘

P Fu and Y i “
Ť

tσi :
`

pρi, σiqiă2, U,B
˘

P Fu.
By Lemma 3.8, Xi and Y i are both infinite sequences. By Lemma 4.5, for
every s ă r, Y 0

s X Y 1
s is infinite. By Lemma 4.19, C is not Σ0

1ppX0, Y 0q ‘

pX1, Y 1qq. This completes the proof of Theorem 4.18.

Corollary 4.20. For any non-Σ0
1 set C Ď N. There is a cross-constraint ideal

such that C is not Σ0
1 relative to any element of the ideal.

Proof. We construct a sequence of sets Z0 ďT Z1 ďT . . . such that for any
integer n “ xk, ey, C is not Σ0

1pZnq, and if ΦZk
e is an instance of CC, then Zn`1

computes a solution.
Define Z0 :“ H. Suppose Zn has been defined, and let n “ xk, ey. If ΦZk

e

is not a left-full cross-tree, then Zn`1 :“ Zn. Otherwise, by Theorem 4.18
relativized to Zn, there is a pair of paths P0 and P1, such that C is not Σ0

1

relative to P0 ‘ P1 ‘ Zn. In which case Zn`1 :“ P0 ‘ P1 ‘ Zn.
By construction, the class M :“ tX P 2N : Dn,X ďT Znu is a cross-

constraint ideal such that C is not Σ0
1 relative to any element in it.
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Corollary 4.21 (Cross-constraint cone avoidance). Let C be a non-computable
set. Any left-full computable instance T of CC, has a solution pXi, Y iqiă2 such
that pX0, Y 0q ‘ pX1, Y 1q ğT C.

Proof. Suppose C is non-computable. Then either C or C is not Σ0
1. By Theo-

rem 4.18, there is a solution pXi, Y iqiă2 P rT s2 such that either C or C is not Σ0
1

relative to pX0, Y 0q ‘ pX1, Y 1qq. In particular, pX0, Y 0q ‘ pX1, Y 1q ğT C.

4.6 Cross-constraint low basis theorem

The low basis theorem for Π0
1 classes is one of the most famous theorems in

computability theory. We prove its counterpart for the cross-constraint prob-
lem. However, contrary to the case of Π0

1 classes, where the theorem can be
strengthened to obtain superlow sets, it does not seem to be the case for cross-
constraint problems.

Theorem 4.22 (Cross-constraint low basis). Any left-full computable instance
T of CC, has a solution pXi, Y iqiă2 such that pX0, Y 0q ‘ pX1, Y 1q is low.

Proof. To prove the theorem, we use forcing with conditions of the form

`

pρi, σiqiă2, U,B
˘

where

• U is a B-computable cross-subtree of T

• pρi, σiqiă2 is a condition-tuple for rU s

• B is a set of low degree

An index for a condition
`

pρi, σiqiă2, U,B
˘

is a tuple
`

pρi, σiqiă2, a, b
˘

such that

ΦB
a “ U and ΦH

1

b “ B1. An index is therefore a finite representation of a
condition. We say that a condition c :“

`

pρi, σiqiă2, U,B
˘

decides the jump

on e if either Φ
pρ0,σ0

q‘pρ1,σ1
q

e peq Ó holds or c forces Φ
pX0,Y 0

q‘pX1,Y 1
q

e peq Ò.

Lemma 4.23. For every condition c :“
`

pρi, σiqiă2, U,B
˘

and every e P N,
there is an extension d of c deciding the jump on e. Moreover, an index for d
can be found H1-uniformly in e and an index for c.

Proof. Consider the following Σ0
1 set

Ae :“ tppρi, pσiqiă2 P X 2
ăN : Φppρ0,pσ0

q‘ppρ1,pσ1
q

e peq Óu

Case 1. Ae is not U -sufficient over pρi, σiqiă2. Let L be the class of all
cross-trees S Ď T which witness that Ae is not U -sufficient over pρi, σiqiă2.
Since Ae is Σ0

1, then L is Π0
1pBq. By the uniform low basis theorem relative

to B (see [16, Theorem 4.1]), there is some S P L such that pS ‘ Bq1 ďT H1.
Moreover, a lowness index of S‘B (an integer a such that ΦH

1

a “ pS‘Bq1) can
be H1-computed from an index of L . The condition d :“ ppρi, σiqiă2, S, S ‘Bq
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is the extension we are looking for. Indeed, Φ
pX0,Y 0

q‘pX1,Y 1
q

e peq Ò holds for any
pXi, Y iqiă2 P rds.

Case 2. Ae is U -sufficient over pρi, σiqiă2. By Lemma 4.14, there is a
condition-tuple ppρi, pσiqiă2 P Ae for rU s which extends pρi, σiqiă2. Thus, the

condition
`

ppρi, pσiqiă2, T, B
˘

is the desired extension, since Φ
ppρ0,pσ0

q‘ppρ1,pσ1
q

e peq Ó.
Finally, note that H1 can decide whether or not it is in the first or second

case, since Ae is Σ0
1, and so “Ae is T -sufficient over pρi, σiqiă2” also is. Hence,

each extension can be uniformly computed from H1.

We are now ready to prove Theorem 4.22. We build a uniformly H1-
computable descending sequence of conditions c0 ě c1 ě . . . such that for
every n, letting cn “

`

pρin, σ
i
nqiă2, Un, Bn

˘

• cn`1 decides the jump on n ;

• |ρin| ě n ; |σi
n,s| ě n for every s ă r;

• pσ0
n`1,s, σ

1
n`1,sq is not completely incompatible over pσ0

n,s, σ
1
n,sq.

Let c0 “
`

pρi, σiqiă2, U,B
˘

be a condition which excludes a maximal number
of components. Note that c0 does not need to be found in H1, since it is
a one-time guess. Assuming cn has been defined, by Lemma 4.23, there is
an extension c1n ď cn deciding the jump on n. By Lemma 3.8, there is an
extension c2n ď c1n satisfying the second item, and by Lemma 4.5, there is an
extension cn`1 ď c2n satisfying the third item. Moreover, indices for each of
these extensions can be found H1-computably uniformly in n. This completes
the proof of Theorem 4.22.

Corollary 4.24. There is a cross-constraint ideal that contains only low sets.

Proof. We construct a sequence of sets Z0 ďT Z1 ďT . . . such that for any
integer n “ xk, ey, Zn is low, and if ΦZk

e is an instance of CC, then Zn`1

computes a solution.
Define Z0 :“ H. Suppose Zn has been defined, and let n “ xk, ey. If

ΦZk
e is not a left-full cross-tree, then Zn`1 :“ Zn. Otherwise, by Theorem 4.22

relativized to Zn, there is a pair of paths P0 and P1, such that pP0‘P1‘Znq1 ďT

Z 1
n. In which case Zn`1 :“ P0 ‘ P1 ‘ Zn.
By construction, the class M :“ tX P 2N : Dn,X ďT Znu is a cross-

constraint ideal containing only low sets.

4.7 Yet some other antibasis theorem

As noted by Liu [22, section 4.6], if two 2-colorings are completely incompatible
over a pair, then they are Turing equivalent. Then, instead of requiring that
two 2-colorings are infinitely compatible, one could strengthen the requirement
and ask them not to be Turing equivalent. He therefore asked the following
question.
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Question 4.25 (Liu [22, Question 4.25]). Given two incomputable oracles D0 ğT

D1, a non-empty Π0
1 class P Ď 2N, does there exist anX P P such thatX ğT D0

and D0 ‘X ğT D1?

There is a negative answer thanks to a theorem of Day and Reimann [7]:

Theorem 4.26 (Day and Reimann [7, Corollary 2.1]). Suppose that X has PA
degree and C is a c.e. set. Then either C ‘X ěT H1, or X ěT C.

Thus, letting D0 be a incomplete non-computable c.e. set, D1 “ H1 and
P be a non-empty Π0

1 class of only PA degrees, there is no X P P satisfying
simultaneously X ğT D0 and D0 ‘X ğT D1.

5 Γ-hyperimmunity

Theorem 3.13 can be instantiated by considering the cross-constraint ideal of
all arithmetic sets and letting f be a Cohen arithmetically-generic 3-coloring of
the integers. However, to obtain a separation of D2

3 from pD2
2q˚ over computable

reduction, one needs to build a ∆0
2 such coloring f . Liu [22] designed a new

invariance property called preservation of Γ-hyperimmunity, which is satisfied
by weak König’s lemma and the cross-constraint problem, but not by D2

2. We
re-define this notion and prove that it is preserved by COH, which is a new
result, enabling to separate D2

3 from pRT2
2q˚ over computable reduction.

The notion of Γ-hyperimmunity might seem ad-hoc at first sight, but be-
comes clearer when looking at the proof of preservation of Γ-hyperimmunity of
the cross-constraint problem (Liu [22, Lemma 4.2]) for which it was specifically
designed.

Recall that an instance f of RT1
k is hyperimmune relative to D Ď N if for

every D-computable sequence g0, g1, . . . of partial functions from N to k with
finite support, such that min dom gn ą n, there is some N P N such that gn is
compatible with f . Γ-hyperimmunity is a strengthening of this notion of hyper-
immunity, between H-hyperimmunity and H1-hyperimmunity, by considering
computable approximations of sequences of partial functions with finite mind
changes, for a very specific family of approximations. They seem to be closely
related to the Ershov hierarchy [14].

The following series of definitions (Definitions 5.1 to 5.3 and 5.5 to 5.7 yield
the notion of Γ-approximation, from which Γ-hyperimmunity is derived.

Definition 5.1. A tree T1 Ď NăN is a one-step variation of T0 Ď NăN if there
is a node ξ P T0 and a non-empty finite set F Ď N such that

• either ξ P ℓpT0q and T1 “ T0 Y ξ ¨ F

• or ξ P T0 ´ ℓpT0q, T1 “ pT0 ´ rξsăq Y ξ ¨ F and F Ĺ tn P N : ξ ¨ n P T0u

In other words, a one-step variation of a tree consists of either extending a
leaf with finitely many immediate children, or backtracking by removing a node,
and making all its siblings leaves again. This is a non-reflexive relation. The
notion of one-step variation can be reminiscent of the Hydra game [19].
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Definition 5.2. Fix a partial order pW,ďq which is a tree of root ζ. A com-
putation path on pW,ďq is a finite sequence pT0, φ0q, pT1, φ1q, . . . , pTu´1, φu´1q

where, for all j ă u, Tj Ď NăN is a finite tree such that

• T0 “ tεu

• j P N, Tj`1 is a one-step variation of Tj

And, for all j ă u, φj : Tj Ñ W is a function such that

• φjpεq “ ζ

• φj is non-decreasing

• φj`1 and φj are compatible, i.e. φj`1 “ φj on the domain Tj`1 X Tj

We shall consider exclusively well-founded trees pW,ďq, in which case any
computation path is of finite length. The notion of computation path can be
used as an operator to define an infinite hierarchy of well-founded trees.

Definition 5.3 (Gamma spaces). By induction, we define the partial orders
pΓm,ďmq that are trees of root ζm

• Γ0 :“ tf : N Ñ 3 : dom f is finiteu, forming a tree of depth 1, with the
empty map ζ0 as its root, and every other element as an immediate child
of the root.

• Γm`1 is the set of computation paths on pΓm,ďmq, its root ζm`1 is the
computation path ptεu, ε ÞÑ ζmq, and ďm`1 is the prefix relation on se-
quences.

Intuitively, the root of Γ1 is the nowhere-defined function, the immediate
children are finite sets of functions with finite support, and the sub-branches
consist of removing elements from this finite set.

Lemma 5.4 (Liu [22, Lemma 4.12]). For all m P N, the tree Γm is well-founded.

Proof. By induction on m, we show that the structure of Γm is the following:
there are infinitely many nodes of height 1, and for each node of height 1, the
subtree above it is finite. In particular, it is a well-founded tree.

The tree Γ0 satisfies the statement, by construction. Now suppose Γm has
the above structure for some m P N. A computation path on Γm will first select
finitely many nodes, say ξ0, . . . , ξn´1, of height 1.

Since the function in a computation path is an embedding into Γm, it means
that the subtree above ξi (for any i ă n) is finite. Furthermore, the “either”
case can only be applied finitely many times to a node. Indeed, the “or” case
can turn an inner node back into a leaf, but it can only do so finitely many
times, because it strictly decreases the cardinal of the set of direct successors of
the node it is applied to. Hence, there can only be finitely many computation
paths.
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Due to the inductive nature of the definition of Γ-spaces, its elements are
relatively abstract. One must think of a computation path in Γm-space as a
finite set of partial functions from N to k with finite support.

Definition 5.5. The interpretation JγK of a computation path γ P Γm is a finite
non-empty subset of Γ0 defined inductively as follows:

• if m “ 0, JγK “ tγu

• if m ą 0 and γ :“ ppT0, φ0q, . . . , pTu´1, φu´1qq, then JγK “
Ť

ζPℓpTu´1qJζK

Definition 5.6. For n P N, a set F Ď Γ0 is over n if for every g P F , dom g Ď

sn,8r. By extension, for m,n P N, we say γ P Γm is over n if JγK is over n.

Based on the interpretation of a computation path γ P Γm as a subset of Γ0,
a Γm-approximation is a ∆0

2-approximation of a list of finite subsets of Γ0, for
which the finite mind changes is ensured by an increasing sequence in a well-
founded tree, or equivalently as a decreasing sequence of ordinals.

Definition 5.7. For m P N, a Γm-approximation is a function f : N ˆ N Ñ Γm

(for some m) if for all n P N

• fpn, 0q “ ζm

• fpn,´q is non-decreasing

• @s P N, fpn, sq is over n

We also define its interpretation as

JfK : N ˆ N Ñ PfinpΓ0q

n, s ÞÑ Jfpn, sqK

It is often useful to consider enumerations of Turing functionals which fur-
thermore satisfy some decidable syntactic constraint. We shall see that one can
computably list all the Turing functionals behaving as Γm-approximations.

Definition 5.8. For any m P N, a Turing functional Ψ is a Γm-functional if
and only if it is total and ΨX is a Γm-approximation for every oracle X.

Lemma 5.9. For every m P N and every Turing functional Ξ, there is a Γm-
functional Ψ such that, for any oracle X, if ΞX is a Γm-approximation, then
ΨX has the same limit function.

Proof. The functional Ψ proceeds as follows. Fix an oracle X and some n P N.
Define ΨXpn, 0q :“ ζm. Now to define ΨXpn, tq for t ą 0, consider s ă t the
biggest integer (if it exists) such that ΞXpn, sqrts Ó and such that ΞXpn, sqrts ą

ΨXpn, t ´ 1q. If s exists then ΨXpn, tq :“ ΞXpn, sqrts. Otherwise, ΨXpn, tq :“
ΨXpn, t´ 1q.
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As mentioned, a Γ-approximation should be thought of as a ∆0
2-approximation

of sequences of finite subsets of Γ0 of a special shape, and such that the mini-
mum of the support of its elements is unbounded. We are now ready to define
the notion of Γ-hyperimmunity. Given a Γ-approximation, it is sufficient to be
compatible with any partial function of the limit to satisfy it.

Definition 5.10. A function f : N Ñ 3 (potentially partial) is compatible
with a set F Ď Γ0 if f extends some element in F , i.e. Dg P F,dom f Ě

dom g and fædom g “ g. By extension, for m P N, a partial 3-coloring f is
compatible with γ P Γm, if it is compatible with JγK.

Definition 5.11. A 3-coloring f is Γ-hyperimmune relative to D Ď N if, for
every m P N and for every D-computable Γm-approximation g, there is an n P N

such that f is compatible with lims gpn, sq.

The following lemma shows that Γ-hyperimmunity is a stronger notion than
hyperimmunity. It simply comes from the fact that a computable list of el-
ements of Γ0 with unbounded minimum support is a particular case of Γ0-
approximation.

Lemma 5.12. If a 3-coloring f is Γ-hyperimmune relative to D Ď N, then it
is also hyperimmune relative to D.

Proof. Let pFn,0, Fn,1, Fn,2qnPN be aD-computable sequence of mutually disjoint
finite sets pFn,0, Fn,1, Fn,2qnPN such that min

Ť

jă3 Fn,j ą n.
For any n P N, consider we define a 3-coloring with finite support

γn : x ÞÑ

#

j if x P Fn,j

Ò otherwise

It is well defined since the finite sets Fn,j are mutually disjoint. And consider
the function

g : N2 Ñ Γ0

n, s ÞÑ

#

H if s “ 0

γn otherwise

It is a D-computable Γ0-approximation, thus by Γ-hyperimmunity of f there
is N P N such that f is compatible with lims gpN, sq, i.e. f extends γN , i.e.
@j ă 3, FN,j Ď f´1pjq.

Liu [22] proved the following lemma, which we reprove with more details.

Proposition 5.13 (Liu [22, Lemma 4.17]). There is a ∆0
2 coloring which is

Γ-hyperimmune.

Proof. First, it is possible to computably list all computable Γm-approximations,
where m is any integer. Indeed, given a computable partial order pW,ďq, the
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set of its computation paths is uniformly computable. This is because they
are finite sequences composed of finite trees, so all the constraints listed in the
definition can be computed. From there, the set of Γm-spaces is uniformly com-
putable in m. Hence, we fix an enumeration pΦe,mqePN of all the computable
Γm-approximations, for any m.

We wish to construct f : N Ñ 3 such that, for any e,m P N, the following
requirement is satisfied.

Re,m :“ f is compatible with Φe,m

Suppose we have so far constructed ρ P 3ăN, we now consider the Γm-
approximation Φe,m, and we are going to use H1 to find an integer s such that
Φe,mp|ρ|, sq is the limit value for Φe,mp|ρ|,´q. Then either JΦe,mp|ρ|, sqK “ H,
in which case Re,m is satisfied. Or JΦe,mp|ρ|, sqK ‰ H, in which case Re,m

is satisfied for ρ Y τ where τ P Φe,mp|ρ|, sq. Because, by definition of a Γm-
approximation, τ is over |ρ|, i.e. min dom τ ą |ρ|

To find s P N, build a sequence of integers, starting with s0 :“ 0. If
sk is the latest integer we have defined, then use H1 to know whether Dy ą

sk,Φe,mp|ρ|, yq ąm Φe,mp|ρ|, skq. If the answer is yes then sk`1 is defined by
such a witness, otherwise we stop defining the sequence and s :“ sk.

The above procedure must end at some point, because Φe,mp|ρ|, s0q ăm

Φe,mp|ρ|, s1q ăm . . . is a strictly increasing sequence in the space Γm, which is
well-founded (by Lemma 5.4). And so Φe,mp|ρ|, sq is the limit value we were
looking for, because the case that defines s ensures that @y ą s,Φe,mp|ρ|, yq “

Φe,mp|ρ|, sq.

The following two theorems by Liu state that WKL and CC both admit
preservation of Γ-hyperimmunity. Their proofs are quite technical but essen-
tially follow from the above combinatorics of the cross-constraint problem. We
therefore do not include them.

Theorem 5.14 (Liu [22, Lemma 4.18]). Let f : N Ñ 3 be Γ-hyperimmune. For
every non-empty Π0

1 class P Ď 2N, there is a member X P P such that f is
Γ-hyperimmune relative to X.

Theorem 5.15 (Liu [22, Lemma 4.2]). Let f : N Ñ 3 be Γ-hyperimmune.
For every computable instance of CC, there is a solution X such that f is Γ-
hyperimmune relative to X.

5.1 Preservation of Γ-hyperimmunity for COH

We now prove that COH admits preservation of Γ-hyperimmunity, which is a
new result, and yields in particular that D2

3 is not computably reducible to
pRT2

2q˚ (Theorem 5.21).

Theorem 5.16. Let g P 3N be a Γ-hyperimmune function and R0, R1, . . . be a
uniformly computable sequence of sets. Then there is an R⃗-cohesive set G such
that g is Γ-hyperimmune relative to G.
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Proof. We proceed by forcing, using Mathias conditions pF,Xq such that X is
computable.

For a Γm-functional Ψ, define the requirement RΨ,m :“ there is n P N such
that g is compatible with lims Ψ

Gpn, sq.

Lemma 5.17. For each condition pF,Xq, m P N, and Γm-functional Ψ, there
is an extension forcing RΨ,m

Proof. We define a computable Γm-approximation f : N2 Ñ Γm as follows.
First, for every n, fpn, 0q :“ ζm. Suppose that at step s, we have defined
fpn, sq for every n. Then for each n, if there is some F 1 Ď X with maxF 1 ă s
and some t ď s such that ΨFYF 1

pn, tq Ó and ΨFYF 1

pn, tq ą fpn, sq, then let
fpn, s` 1q :“ ΨFYF 1

pn, tq. Otherwise, let fpn, s` 1q :“ fpn, sq. Then go to the
next stage.

By construction, f is a Γm-approximation. Since g is Γ-hyperimmune,
there is n P N such that g is compatible with lims fpn, sq. Now by defini-
tion of f , there is a finite (possibly empty) F 1 Ď X and t P N such that
lims fpn, sq “ ΨFYF 1

pn, tq. We claim that pF Y F 1, X ´ t0, . . . ,maxF 1uq forces
RΨ,m. Indeed, by construction of f and since we considered the limit, we
have that, for every F 2 Ď X ´ t0, . . . ,maxF 1u and cofinitely many t1 P N,
ΨFYF 1

YF2

pn, t1q “ ΨFYF 1

pn, tq.

Let F be a sufficiently generic filter for computable Mathias forcing and let
G “

Ť

pF,XqPF F . By genericity, G is R⃗-cohesive, since given a condition pF,Xq

and a computable set Rx, either pF,XXRxq or pF,XXRxq is a valid extension.
By Lemma 5.17, for every m and Γm-functional Γ, g diagonalizes against ΓG.
Thus, by Lemma 5.9, g is Γ-hyperimmune relative to G.

Corollary 5.18. For every Γ-hyperimmune function f : N Ñ 3, there exists
a cross-constraint ideal M |ù COH such that f is Γ-hyperimmune relative to
every element of M.

Proof. We construct a sequence of sets Z0 ďT Z1 ďT . . . such that for any
integer n “ xi, k, ey,

• f is Γ-hyperimmune relative to Zn.

• if n “ x0, k, ey, and if ΦZk
e is an instance of CC, then Zn`1 computes a

solution.

• if n “ x1, k, ey, and if ΦZk
e is an instance of COH, then Zn`1 computes a

solution.

Define Z0 :“ H. Suppose Zn has been defined. If n “ x0, k, ey and ΦZk
e is not

a left-full cross-tree, then Zn`1 :“ Zn. Otherwise, by Theorem 5.15 relativized
to Zn, there is a pair of paths P0 and P1, such that f is Γ-hyperimmune relative
to P0 ‘P1 ‘Zn. In which case Zn`1 :“ P0 ‘P1 ‘Zn. If n “ x1, k, ey and ΦZk

e is
not a countable sequence of sets, then Zn`1 :“ Zn. Otherwise, by Theorem 5.16
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relativized to Zn, there is a ΦZk
e -cohesive set C, such that f is Γ-hyperimmune

relative to C ‘ Zn. In which case Zn`1 :“ C ‘ Zn.
By construction, the class M :“ tX P 2N : Dn,X ďT Znu is a cross-

constraint ideal such that f is Γ-hyperimmune relative to every element of M.

5.2 Reducibility results

Definition 5.19. A problem P is strongly omnisciently computably reducible
to a problem Q, noted P ďsoc Q, if for every P-instance X, there exists a Q-
instance pX such that, for every Q-solution pY of pX, pY computes a P-solution
to X.

Contrary to computable reduction, no effectiveness is imposed on the com-
plexity of the Q-instance pX to solve the P-instance X. Moreover, the solution to
the P-instance has to be computable from the solution pY to the Q-instance pX,
without the help of X.

Theorem 5.20 (Liu [22, Theorem 2.1]). RT1
3 ęsoc pRT1

2q˚

Proof. Let M be a countable cross-constraint ideal (such an ideal exists thanks
to Corollary 4.7), and let f P X p0q be hyperimmune relative to any set in M.

For any g P X p1q, by Theorem 3.13, there are sets G⃗ witnessing the inequality
RT1

3 ęsoc pRT1
2q˚.

Liu [22, Theorem 4.1] proved that SRT2
3 ęc pSRT2

2q˚. We strengthen his
result by proving that it holds even for non-stable instances of RT2

2.

Theorem 5.21. SRT2
3 ęc pRT2

2q˚

Proof. By proposition 5.13 there exists a ∆0
2 coloring f : N Ñ 3 which is Γ-

hyperimmune. Using Shoenfield’s limit lemma, there is a stable computable
function h : rNs2 Ñ 3 such that for every x, limy hpx, yq “ fpxq. Consider
h as a computable instance of SRT2

3. Fix any r-tuple of computable colorings
g0, . . . , gr´1 : rNs2 Ñ 2 for some r P N. It suffices to show the existence of
gi-homogeneous sets Hi for every i ă r such that

À

jărHj does not compute
any infinite h-homogeneous set.

By Corollary 5.18, there is a countable cross-constraint ideal M |ù COH
for which f is Γ-hyperimmune relative to any set in M. In particular, since
g0, . . . , gr´1 are computable, they belong to M. Moreover, by Lemma 5.12, f is
hyperimmune relative to every element of M. By Theorem 3.16, there exists gi-
homogeneous sets Hi for every i ă r, such that

À

jărHj does not compute any
infinite f -homogeneous set. Since any h-homogeneous set is f -homogeneous,
then

À

jărHj does not compute any infinite h-homogeneous set.

Definition 5.22. A setH Ď N is pre-homogeneous for a coloring f : rNsn`1 Ñ k
if @σ P rHsn,@ząyąmaxσ, fpσ, yq “ fpσ, zq
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Jockusch [17, Lemma 5.4] proved that for every computable coloring f :
rNsn`1 Ñ k, every PA degree relative to H1 computes an infinite pre-homogeneous
set for f . Moreover, for n ě 2, Hirschfeldt and Jocksuch [15, Theorem 2.1]
proved a reversal.

Theorem 5.23. For every n ě 2, SRTn
3 ęc pRTn

2 q˚

Proof. We prove by induction on n ě 2 that for every set P , there exists a
∆0

npP q coloring f : N Ñ 3 such that for every r ě 1 every r-tuple of P -
computable colorings g0, . . . , gr´1 : rNsn Ñ 2, there are infinite g⃗-homogeneous

sets G0, . . . , Gr´1 such that G⃗‘P does not compute any infinite f -homogeneous
set.

The case n “ 2 corresponds to a relativized form of Theorem 5.21. Now
suppose the hypothesis holds for some n P N. Fix some set P , and let Q " P 1

be such that Q1 ďT P 2 (which exists by relativization of the low basis theorem
(Jockusch and Soare [18])).

By induction hypothesis relativized toQ, there exists a ∆0
npQq (i.e. ∆0

n`1pP q)
coloring f : N Ñ 3 such that for every r ě 1 every r-tuple ofQ-computable color-
ings g0, . . . , gr´1 : rNsn Ñ 2, there are infinite g⃗-homogeneous sets G0, . . . , Gr´1

such that G⃗‘Q does not compute any infinite f -homogeneous set.
Now, consider an r-tuple of P -computable colorings h0, . . . , hr´1 : rNsn`1 Ñ

2. By Jockusch [17, Lemma 5.4], Q computes infinite sets C0, . . . , Cr´1 Ď N

pre-homogeneous for rh0, . . . ,rhr´1. For s ă r, let gs : rNsn Ñ 2 be the Q-
computable coloring defined by gspi0, . . . , in´1q “ hspxsi0 , . . . , x

s
in´1

, yq, where
Cs “ txs0 ă xs1 ă . . . u and y P Cs is any element bigger than xsin´1

.
By choice of f , there are infinite g⃗-homogeneous sets G0, . . . , Gr´1 such that

G⃗‘Q does not compute any infinite f -homogeneous set. In particular, letting
Hs “ txsi : i P Gsu, Hs is hs-homogeneous, and since H⃗ ‘ P ďT G⃗ ‘ Q, then

H⃗ ‘ P does not compute any infinite f -homogeneous set. This completes our
induction.

Finally, by Shoenfield’s limit lemma, for every n ě 2, there exists a stable
computable coloring pf : rNsn Ñ 3 such that any infinite pf -homogeneous set is
f -homogeneous, where f : N Ñ 3 is the function witnessed by the inductive
proof.
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