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Abstract

We develop the framework of a-largeness introduced by Ketonen and
Solovay, by proving a partition theorem for a-large sets with a < ep which
generalizes theorems from Ketonen and Solovay and from Bigorajska and
Kotlarski. We also prove that for every w™**3-large set X with min X >
18, every coloring f : [X]? — k admits an w™-large f-homogeneous subset.
This bound is tight, up to an additive constant.

1 Introduction

The celebrated Paris-Harrington theorem states that Peano arithmetics does
not prove the existence of w-large homogeneous sets for arbitrary instances of
Ramsey’s theorem. Here, a finite set X is w-large if card X > min X. Ketonen
and Solovay [12] defined a notion of a-largeness for a < ¢y to quantify the
size of finite sets over weak theories, and related it to the Wainer hierarchy of
fast-growing functions [27]. More precisely, any fundamental sequence system
({a}(n))nen for the ordinals o < €y induces a notion of largeness defined as
follows: a finite set of integers {zg < -+ < xp_1} is a-large if, letting ap = «
and asy1 = {as}(zs), the ordinal a1 equals 0.

Since then, variants of Ketonen and Solovay’s notion of largeness have been
extensively studied, both from a combinatorial [3} [I, [16] 2| [5] and a proof-
theoretic perspective [24, [T5] 22l T3] 23] 26], to prove partial conservation the-
orems over subsystems of second-order arithmetic for VX9-sentences and non-
speedup theorems, where a VX0 -formula is of the form VX p(X) where p(X)
is 30, More recently, parameterized versions of largeness have been defined to
prove partial conservation theorems over RCAq +BX for VX9-sentences [17, [18].

The framework of a-largeness is however relatively scattered: Ketonen and
Solovay [12] first proved some general structural theorems about a-largeness for
a < €. Then Bigorajska and Kotlarski [2] [15] [3] [I] published a series of articles
on a variant of a-largeness, say a-largeness®, introduced by Ratajczyk [24] based
on the Hardy hierarchy of fast-growing functions [I0]. They proved in particular



a general pigeonhole theorem for a-largeness* with a < ¢y. A framework for
proving lower bounds for a-largeness* was developed by multiple authors [3] [16].
Both notions of largeness are related (in particular, any a-large set is a-large* for
a > w), but the translation of structural theorems from one notion to the author
yields sub-optimal statements. Independently, the study of partial conservation
theorems over 1¥; motivated the development of the framework of a-largeness
for a < w® [22, 13, 23 26]. In particular, Kolodziejczyk and Yokoyama [14]
proved that for every w!*("*+D large set F and every 2-coloring f : [F]? — 2,
there exists an w”-large f-homogeneous set. For this, they proved multiple
structural theorems in the restricted setting of o < w®.

In this article, we pursue the general study of Ketonen and Solovay’s notion
of largeness, by proving the following general partition theorem, where & denotes
the natural (or Hessenberg) sum over ordinals, and a set F' is at most a-large if
F\ {max F'} is a-small.

Main Theorem 1.1. Let 8,v < €y be two ordinals, and B,C C N be at most
B-large and ~y-large respectively. Then B U C' is at most (8 @ )-large.

This theorem has several consequences, including a generalization of Ketonen
and Solovay [12, Lemma 4.6] and pigeonhole generalizations of Bigorajska and
Kotlarski [T, Theorem 12] for a-largeness. For this, we introduce a Hardy-like
hierarchy of fast-growing functions, and adapt and generalize the techniques of
Bigorajska and Kotlarski.

Our second contribution is a tight upper bound (up to additive constant) of
the closure of a-largeness under Ramsey’s theorem for pairs, for a < w*. We
say that a set I is RT% -a-large if for every k-coloring of the pairs [F]?, there is
an a-large f-homogeneous subset. We prove the following theorem:

Main Theorem 1.2. Letn,k > 1. If X Csip Nois wk”"’?’-large and min X > 17,
then it is RT% -w™-large.

Note that in the case k = 2, we obtain w?"*3-largeness, improving over
the w'4(»*+ 1) largeness upper bound of Kolodziejczyk and Yokoyama [T4]. This
bound is tight, in the sense that Kotlarski et al. [I6l Theorem 5.4] proved that
if a set is RTi—w"—large*7 then it is w*?-large*. Translating in the a-largeness
framework, this shows that every RTi—w”—large is wkn~ I large.

The proof of Main Theorem [I.2] goes through the computation of upper
bounds of closure for two intermediate combinatorial theorems, namely, the
restriction of Ramsey’s theorem for pairs to transitive colorings (trRT3) and a
generalization of the Erdés-Moser theorem to k-colorings (fEM) due to Towsner
and Yokoyama [26]. We prove in particular that trRTi is solely responsible
for the lower bound of RTi—w"—largeneSS, in that every w"*3-large set X with
min X > 7 is fEM-w™-large (Corollary [3.15)). This later result improves the
w' - largeness upper bound of Towsner and Yokoyama, for fEM-w™-largeness.

The remainder of this article is divided into two parts, as follows: In Sec-
tion 2| we define and study Ketonen and Solovay’s notion of a-largeness for
a < € and prove Main Theorem and its consequences. Then, in Sec-
tion [3] we restrict ourselves to a-largeness for a < € and study the closure of



a-largeness under multiple combinatorial statements, including Ramsey’s theo-
rem for pairs. The section culminates with the proof of Main Theorem

2 Largeness below ¢
Every ordinal a < ¢y admits a unique Cantor normal form
Oé:was .as+...+wa0 - ag

for some g < a3 < -+ < ay < a and ag,...,as € N\ {0}. Given two ordinals
a, B < €, we write 8 > « if either « or § equals 0, or if the smallest exponent
of [ is at least the largest exponent of « in their Cantor normal form. If a # 0,
we shall also use its short Cantor normal form a = 8+ w” with g > w?7.

Definition 2.1. Given a non-zero ordinal o < €y with short Cantor normal
forma=p+wY, and x € N, let

B ify=0,
{a} (@)= B+w't-x ify is successor,
B4+ wi@ if s limit.

Finally, let {0}(x) = 0.

The > relation admits two desirable properties. First, if 8 > «, then
the sum « 4 8 coincides with the natural sum (or Hessenberg sum) a &
corresponding to the component-wise sum of the multiplicative factors. Second,
if > « and a # 0, then the operation {8 + a}(z) can be reduced to a
computation of {a}(z):

Lemma 2.2 (Ketonen and Solovay [12]). Let o, 8 < eo be such that > o and
a#0. Then {8+ a}(z) =8+ {a}(x).

In general, fundamental sequences are not compatible with ordinal inequal-
ity, in the sense that there exist some ordinals f > « and some z € N such
that {8}(x) < {a}(x). For instance, if § = w and o = 10, then {w}(1) =
1 < {10}(1) = 9. However, this is the case if x is larger than every coefficient
appearing in the Cantor normal form of a. This motivates the definition of the
pseudo-norm:

Definition 2.3. The pseudo-norm psn(«) of «a of cantor normal form w®s -
as + -+ w* - aq is defined as

psn(a) = max(psn(ag), . . .,psn(as), ag, - - ., as)

The following lemma is an immediate consequence of Bigorajska and Kot-
larski [3, Lemma 2.1].

Lemma 2.4 (Bigorajska and Kotlarski [3]). Let a < 8 < €y and z € N such
that psn(a) < x. Then {B}(z) > a (with equality if only if =a+1).



The following easy lemma relates psn({a}(n)) to psn(a) for any n € N.

Lemma 2.5. Let o < ¢y and let n € N. Then psn(a) — 1 < psn({a}(n)) <
max{psn(a),n}

Proof. The result is clear for « = 0, then, if o # 0, the operation {a}(n) can
only add n’s and decrease coefficients by 1 in the (recursive) Cantor normal
form of a.

O
The notion of fundamental sequence generalizes to finite sets as follows:

Definition 2.6 (Ketonen and Solovay). Given an ordinal a < €y and a finite
set X ={xo < -+ < as}, let

{a}(X) = {--- {{a}(zo)} (1) - - }(zs)
A set X is a-large if {a}(X) = 0, otherwise, it is a-small.

Accordingly, a finite set X is ezactly a-large if it is a-large and X \ {max X'}
is a-small. A finite set X is at most a-large if X \ {max X} is a-small. By
convention, we consider that ) is at most 0-large.

Example 2.7. Any finite set X C N is card X -large. A finite set X is w-large
if card X > min X. A finite set X is wP - n-large iff X contains n w®-large
subsets Xo < --- < X1 C X, where X <Y means Vx € XVy € Yz < y.

Note that a set X might be a-large, a + 1-small, but not at most a-large.
For instance, {3, 5,6, 7,8} is w-large, not w + 1-large, and not at most w-large.

2.1 Hardy-like hierarchy

Ratajezyk [24, Section 5] defined a notion of largeness based on the Hardy hier-
archy of functions [I0]. As noted by Ratajczyk, this notion is slightly different
from Ketonen and Solovay’s a-largeness, and was extensively studied by Big-
orajska and Kotlarski [Il B [I5]. We now define a Hardy-like hierarchy whose
induced notion of largeness corresponds exactly to Ketonen and Solovay’s defi-
nition.

Definition 2.8. Fiz an increasing function h : A — N for some A C N with
h(a) > a for every a € A. We define inductively a sequence of partial functions
ha for every a < € as follows: for x € N and o > 0, let ho(z) = x and let
ha(x) = hiay(@)(h(7)) if h(z) € dom(hfay(x)) and x € dom(h), otherwise let
ha(x) undefined. We write ho(z) | is * € domhy and ho(x) T otherwise.

Note that for every a < ¢y and = € dom h,, there is some n € N such that
ho(z) = hM(x). However, this n depends on z: if a > w, there is no n such
that he = h(™).



Remark 2.9. In the definition of the original Hardy hierarchy [10] based on h, if
 is limit, then ho (x) = hia}(z)(z), while in our Hardy-like hierarchy, we define
ha(x) = hiay(@)(h(x)). This variation reflects the main difference between the
notion of largeness from Ratajczyk [24), Section 5] and the one of Ketonen and
Solovay [12]. In the former case, a set A is a-large for a limit ordinal « if it
is {a}(min A)-large, while in the latter case, a set A is a-large if A\ {min A}
is {a}(min A)-large. Some further differences exist: in the finite case, a set A
1s n-large in the sense of Ratajczyk if card A > n + 1 while in Ketonen and
Solovay’s sense, a set A is n-large iff card A > n. As a consequence, under both
definitions, a set A is w-large iff card A > min A.

Lemma 2.10. If ho(x) | for some o < €9 and x € N, then hqo(z) > psn(a) +z.

Proof. By induction on «. For o« = 0, let € N be such that hg(z) |, then
ho(z) = = = psn(0) + . Let o < €y and assume the property to hold for
every o/ < a. Let € N be such that ho(z) |, then ho(2) = hiay@) (h(2)).
By the inductive hypothesis, we have ha} ) (h(x)) > psn({a}(z)) + h(z), but,
as h(xz) > x + 1 and as psn({a}(z)) > psn(a) — 1 by Lemma we have
hiay (@) (h(x)) > psn(a) + . O

Fix an increasing function h : A — N for some A C N, with h(z) > z for
every € A. The Hardy-like iterations of h yield faster-growing functions on a
restricted domain, that is, if & > 0, then dom h, C dom h and h, dominates h
on dom h,, (see Lemma [2.14(4)).

On the other hand, given two ordinals o < 8 < €y and some x € dom hg,
it is not true in general that z € dom h,, nor that if x € domhg N dom h,,
then hg(xz) > ho(x). However, if z is sufficiently large — > psn(a) suffices
—, then this is the case (see Lemmas and [2.14). However, the z > psn(«)
hypothesis is too strong for our purpose, so we will use a more general relation
B =, a which depends on both 8 and «, and such that if 8 =, «, then 8 > «
and hg(z) > ho(z).

Definition 2.11 (Ketonen and Solovay). Given two ordinals o, 8 < €y and
x>0, let =, « if either = a, or {B}(z) =, a.

Bigorajska and Kotlarski [I, Lemma 2(viii)] proved that the definition is
unchanged if one replaces {8}(z) by {8}(y) for some y < x. As one expects
from the previous discussion, the relation g =, « coincides with the inequality
B > a whenever x > psn(«). The whole interest of this relation is therefore in
the case z < psn(a).

The following lemma strengthens Ketonen and Solovay [12, Proposition
2.8.1] and is an immediate consequence of Bigorajska and Kotlarski [3] Lemma
2.1]. Tt appears in this form in the posthumous book of Kotlarski [15, Lemma 1.4.3].

Lemma 2.12 (Kotlarski [I5]). Let o < 8 < €9 and = € N such that psn(a) < z,
then B =, a.

Ketonen and Solovay [12] proved many properties about the relation =,.
The following lemma compiles a list of basic facts that shall be useful to prove
our main theorem.



Lemma 2.13 (Ketonen and Solovay [12]). Let o, 8, A < €p and x > 0.
(1) If x> a and a =4 B, then (A + a) =, (A + B);
(2) If k <l €N, then w* - £ =, w* - k;
(3) Ifa=, B and a > [+ 1, then « =41 B+ 1.
(4) If « =, B and x > 1, then w® =, W’;
(5) If t > 1 and k < £ € N, then {a}(¥) =, {a}(k).

Proof. (1) is [12, Lemma 1, part 2.4], (2) is [I2, Lemma 3, part 2.4], (3) is [12]
Lemma 2, part 2.6], (4) is [I2, Lemma 5, part 2.4], (5) is [12], Theorem 2.4] for
a limit. If « is 0 or successor, then {a}(¢) = {a}(k). O

The following lemma states that the =, relation is a sufficient hypothesis
for the Hardy-like hierarchy of functions to behave nicely. Lemma 1,3) is
a Ketonen-Solovay counterpart of Bigorajska and Kotlarski [I, Lemma 4]:

Lemma 2.14. Let h be as above. Let 0 < o, 8 < ¢g and x € N. Then:
(1) hg is increasing
(2) if x € domh and h(z) € domhg then x € dom hg
(8) if 8 =4 a and x € domhg then x € domh, and ho(x) < hg(x)
(4) if x € dom hg, then hg(z) > h(z)

Proof. We prove (1),(2) and (3) by mutual induction on . If § = 1 then the
property holds as h; = h is increasing and the only 0 < a < €g such that § =, «
isa=1.

Let 8 > 1 and assume that (1), (2) and (3) hold for every 0 < 3’ < . Let
z,y € domhg such that z < y, then hg(y) = hygy) (h(y)). As {B}(y) < S
and as, by Lemma [2.13(5), {6}(y) =, {8}(x), then by (3) for {5}(y) we
have h(y) € dom h{B}(w) and h{ﬁ}(y)(h(y)) > h{ﬂ}(m)(h(y)) From x € domhg
we get h(z) € domhygy(,, hence, by (1) for {B}(x), we get hygy)(h(y)) >
higy(z)(h(x)). Thus, hg(y) > hg(x) and hg is increasing. Thus (1) holds for 3.

Let z € domh be such that h(z) € domhg. Then we have hg(h(z)) =
hi}(n()) (h(h(z))) hence h(h(z)) € domhsy(n))- By (2) for {B}(h(z)) we
have h(x) € dom h{B}(h(m)) Then, as Lemma #5) {B}(h(:z:)) = h(z) {6}(.%),
we also have h(z) € dom hygy(,y by (3) for {B}(h(z
(2) holds for 3.

Let x € N and 0 < a be such that 8 =, « and hg(x) J. Since 8 =, «,
either 8 = a or {B}(z) =, a. If 8 = «a then hy(z) | and ho(z) = hg(x),
in which case (3) holds. If {8}(z) =, «, then as hg(x) = hygya)(h(x)), we
have x € dom h{/g}(L) by (2) for {ﬂ}(l’) and h{/@}(l)(h(l’)) > h{B}(l) (33’) by (1)
for {8}(z). From {8}(z) =, « and (3) for {8}(x), we get € domh, and
higya) (@) = ha(x). So hg(x) = hipy(a)(h(x)) > hipy()(x) = ha(x), Thus (3)
holds for 3.

Last, since 8 =, 1 for every 8 > 0 and = € N, then (4) follows from (3). O

)), hence « € dom hg. Thus



The following lemma is the Ketonen-Solovay counterpart of Bigorajska and
Kotlarski [I, Lemma 7]. Formulated in terms of largeness, it corresponds to
Ketonen and Solovay [12, Lemma 4.6].

Lemma 2.15. Let o < 8 and v € N, if hgyq(x) | then hg(ha(x)) | and
hgta(@) = hg(ha(z)).
Proof. By induction on «. If o = 0 then, for z € N and 8 > « such that
hgta(z) |, we have hg(z) |, then, as ho(x) = = we have hg(x) = hg(ha(x)) |
and hg(ha(z)) = hgta() -

Let a > 0 and assume the property to hold for every o/ < a. Let xz €
N and 8 > «, if hgya(x) | then higiarz)(h(z)) | and higiay(m) (h(z))
hora(z). By Lemma B3 {8+ a}(s) = § + {a}(z), 50 hat gy (hlx)) =
hgta(x). As {a}(r) < o and {a}(x) < B, by the induction hypothesis we have
hs(hiay(z)(h(2))) | and hg(hiay(z)(h(2))) = hgifat@) (M(z)) = hptalz). And,
as hiay(z)(h(z)) = ha(z), we have hgio(x) = hg(ha(z)). O

We now prove our core proposition. The intuition goes as follows: Suppose
0 < A <€ and z > 0. The evaluation of hy(z) unfolds into hyry ) (h(x)), then
Riiad(2)}(h(z)) (A(R(x)), and so on. Thus, the ith iteration of the evaluation of
hx(z), if defined, corresponds to hy, (x;), where x; and \; are defined inductively
by g = x, Ao = A and x;41 = h(x;), Aix1 = {A\i}(x;). Note that since the
function A is increasing, so is the sequence z¢ < 1 < ...

The definition of {A}(z) is done by considering the short Cantor normal
form, by reducing first the smallest component of the Cantor normal form. The
evaluation either decreases a successor ordinal by one, or replaces a limit ordinal
by a smaller one, with coefficient . Since the sequence A\g > A1 > ... is defined
by successive evaluations with an increasing sequence zy < x; < ..., the higher
components will be evaluated with larger values than the smaller components,
and therefore this evaluation order ensures that the sequence Ag > Ay > ---
decreases as slowly as possible.

Based on this evaluation order, if A = 8 4+ a, with § > «, the sequence
Ao > A1 > - - corresponds to evaluating a successively with g, 1, ... until we
reach a stage ¢ such that a; = 0. Then we evaluate f with x;41, 249, . ...

One could consider other evaluation orders, in which one would alternate
some evaluation steps of 4, and some of «. In terms of the Hardy-like hierarchy,
one evaluation step of 3 corresponds to hgy(z)@a(h(x)) while one evaluation
step of a corresponds to Mg {a}(x)(h(7)). Since the standard evaluation order
is the one making the sequence Ay > A; > ... decrease as slowly as possible,
this translates into the following inequality:

hgta(®) = hpi(ay@) (M(T)) > higy(e)@a(h(T))

The following proposition formalizes this intuition in the case 8 > «. It will
then be proven in its most general form in Theorem [2.18

Proposition 2.16. Let 0 < o, < € with 8 > « and x > 0 an inte-
ger. If hgia(x) L, then higyzyea(h(x)) I and hpia(r) = hgi(ay@)(h(x)) >
hig}@ywa(h(z)).



Proof. The proof is by case analysis on the Cantor normal forms, and not by
induction. Write o = w® -a,, +---+w® -ag and B = wP* - by, +...wPo - by their
Cantor normal form. From the assumption S > a, we have 5y > a,.

Case 1: n =0 and «, = . In that case, 5+ {a}(x) = {8} (x) ® o, hence

higy@ysa(h(x)) L and hgi(ar)(h(x)) = hig)a)@a(h(2)).

If we are not in this case, we can freely assume that «, < [y in the
Cantor normal form of o and 3. Indeed, if a,, = B9, we can consider o/ =
W la, 1 + -+ wag and B = Wby 4 -+ 4+ W (by + a,), we then have
0<ap <e, o <p,f+a=p+a, 6+ {a}(z) =p +{a'}(x) and
{8} (z)®a ={8}Hx)® o, making it sufficient to prove the result for o’ and 3.

Case 2: «, < fp and fy is successor. Let §)) be such that o = )+ 1. In
that case, write 8 = d+w”*! and o = y+w®°. By our assumption that a,, < Sy,
we have w#+! > o and w% > a. By Lemma , letting ¢ = hyay(a) (h(7)),
we have

hgt{a}@) (M(@)) = hg(c) = hy s (h(c))

By Lemma 4), ¢ > h(z) > x, so by Lemma 2), we have w - ¢ =,
WP . (z + 1) for every y € N, and as § > w® - ¢, we have § + wf - ¢ =,
6+ wP - (x4 1) for every y € N by Lemma [2.13(1). Thus, by Lemma [2.14(3),
h5+w56-(z+1)(h(c)) J and by Lemma , letting d = h{w%}(h(c))(h(h(c))),

h5+wﬁ{)_c(h(c)) > h5+wﬁ()_($+1)(h(6)) = h(;er/i(),m(hwﬁ() (h(c))) = h5+wﬁ(’)_w(d)

By Lemma ¢ > psn({a}(z)) + hﬁ hence by Lemma ¢ > psn(a)
and h(c) > psn({a}(h(x))). By Lemma we get {w}(h(c)) > {a}(h(z))

from the fact that w® > {a}(h(z)) and h(c) > psn({a}(h(z))), hence, by
Lemma m we have {w?}(h(c)) =n(e) 1a}(h(z)). By Lemma (1), since

6+ who - x> {whoY(h(c)), we have
8+ w0 -z + {0} (h(c)) Znee) 0+ W -z + {a}(h(z))

Thus, by Lemma 2,3) and Lemma [2.15 hé_w%_w(h{a}(h(x))(h(h(x)))) l
and

s b o) 2 N, oy (gad ey (R(R(2)))
by, (hah(2)))
hy, s ()
= higy@)@al(h(z))

Putting altogether,

hgtfar@) (M(@)) = hy sy (A(c)) = hy sy (d) = higym)@alh(T))



Case 3: o, < By and Sy limit. In that case, write § = 6 + w” and o =

~ + w®. Similarly, by Lemma and Lemma letting ¢ = hiay(a) (h(2)),
we have

hpta(®) = hpi(ay@ (M(x)) = hglc) = hsyyis0) @ (h(c))

Since ¢ > x, we have {5 }(c) = {Bo}(z)+1 for every y > 2 by Lemma/|2.13(3,5).
Note that = > 1, hence h(z) > 2, so by Lemma 4), ¢ > 2 and h(c) > 3.
Thus by Lemma )

wiBo}() = (o) wiBo}(@)+1 = (o) wibo}(@) . 3

Since ¢ 3> wtfo} ) by Lemma mu),
§ + wibol(e) S 0+ wibot(@) . 3
Therefore, by Lemma|2.14{(3), hs. 501 3(h(c)) | and, letting d = h(s01) (h(c)),
s ywtsore (R(€)) 2 hsyts0y@r.3(h(€)) = Mg yis0y@).2(d)

By Lemma d > psn({w?}(z)) + h(c) > psn({w®}(z)) +3 and d > ¢ >
psn({a}(x)) + h(xz) > psn({a}(z)) + 2. Thus, by Lemma d > psn(a) + 1
and d > max(psn(w{#}®) psn(a) + 1)) > psn(wifol®@) g o).

From w{fo}@) . 9 > ({F}@) g o and Lemma we have w{fo}@) .9 =,
wifo}(®) @ o and by Lemma 1)7 S4wlfot@) .9 = ) 54 u{Po}) g . Finally,
by Lemma 2,3),

R tuwitor@.o(d) 2 by 0y @ ga(M(@) = hipy@)@a(h(z))
This completes our proof of Proposition O

Lemma 2.17. Let o, 8 < €y, then there exists o/, < eg with o <« ' and
such that B @ a= 0"+ o and {8} (z) ® a={f'}(z)® o for every x € N

Proof. If B = 0 then take o/ = a and 8/ = 8. If 8 # 0, then write o =
wm-ap+---+w?-ag and « = Wb, +- - -+w?°-bg with ag, ..., a,,b0,...,b, € N
and v < -+ < v, < €9. Let i < n be the smallest index such that b; # 0, and
let 8/ =w™ (b, +an)+- - +w (bj+a;) and o = w1 - (bi—1 +a;—1) +
cee o (b0+a0).

We have fda = f/+a’ =wi (by+a,)+---F+w?(bg+ap) and {8’} (z)Pa’ =
(W (bptan)+- - +wi (bi+a;—1)+- - -+w (bo+ao))B{w }(z) = {B}(z)Pa O

The following theorem informally states that the evaluation order of the
fundamental sequences is the one which makes the Hardy-like hierarchy grow the
fastest. In the case a < B, B+ a = 8& «, hence it generalizes Proposition [2.16

Theorem 2.18 (Optimal growth). Let a, 8 < €y with 8 > 0 and x > 0 an
integer. If hpoa(x) | then hygy(z)@a(h(@)) I and hpga(v) = higea}(z)(h(z)) =
hig}(@)@a(h(T)).



Proof. Let o/,3 < ¢y be obtained from Lemma [2.17 applied on «,3. As
B@a=p0 +a and {f}(z) @ a = {f'}Hz) ® o/, it is sufficient to show that
hig@ea (M(@)) | and that hgea () = higgart@) (M) = higy@ea (M(z)).
If o/ = 0, then the result holds by definition of hg.
If o’ # 0, then the result is that of Proposition [2.16 O

2.2 Partition theorem

We now translate this abstract study of the Hardy-like hierarchy into the frame-
work of a-largeness, to prove Main Theorem

Definition 2.19. Let A = {z¢,...,7,1} C N a finite set. We define h* :
A\ {max A} — A by h(z;) = xi41 for every i < n — 1. In other words, h* is
the successor operation on the ordered set (A, <y).

The following lemma, is the heart of the correspondence between Hardy-like
hierarchies and of Ketonen and Solovay’s «a-largeness.

Lemma 2.20. Let 0 < a < €, then A is at most a-large iff h’ (min A) 1.

Proof. By induction on a. The result holds for a = 1, as hZ(min A) 1 if and
only if |[A] < 1. Let 1 < a < ¢p and assume the property holds for every 8 < a.
Let A = {xg,21,...,2,} C N be such that h2(z¢) 1, then, hfa}(wo)(xl) 1 and

therefore h?gféfo}) (z1) 1. By the inductive hypothesis, A\ {zo} is therefore at

most {a}(xzp)-large, hence A is at most a-large. O

The following theorem is an iterated counterpart of Theorem [2.18]in the lan-
guage of a-largeness. It has several consequences, such as the splitting property
(Theorem [2.21)) and multiple versions of the pigeonhole principle (Theorems

and

Main Theorem Let B,v < €9 be two ordinals, and B,C C N be at most
B-large and ~-large respectively. Then B U C' is at most (8 @ v)-large.

Proof. By assumption we have hBB (min B) 1 and hg(min C) 1. We want to show
that hggg(min{min B,minC}) 1.

Write BUC = {zp < 21 < -+ < xp_1} and consider the sequences of
ordinals (8;)i<k and (7;)i<k defined inductively as follows: Gy = 8 and 9 =
and if 3; and ~y; have been defined, let 8,11 = {B;}(z;) and ;41 =; if z; € B
and Biy1 = B and vip1 = {7y} (@) if x; € C.

Since B is at most S-large, then {8} (B \ {max B}) > 0, thus, if z; € B then
Bi # 0, similarly, if z; € C then ~; # 0. Hence, if 21 € B then f;_; # 0 and
if xx_1 € C then ;1 # 0, in every case Sx_1 ® Yr_1 # 0.

If hBYC (z0) |, then, by induction on i < k, using Theorem we claim

Bo®vo _
that for every ¢ < k, we have hﬁ%c,;i (z;) } and hgi%%i (z;) > hg’l;il®7i+l(xi+1).

Thus, if hBYC (z0) | then h5YC (xk_1) {, which is only possible if 8;_1 @

Bo®vo Br—1DVk—1
iyk_l = 0, contradiction. Thus th%%O (xo) T and BUC is at most (3 @ 7)-
arge. U

10



The following splitting property generalizes [12] Lemma 4.6]. Note that the
reversal holds if 5 > «.

Theorem 2.21 (Splitting property). Let X be (a @ f)-large for a, f < €o, then
there exists Xog < X1 C X such that Xy is a-large and X1 is B-large.

Proof. Let X be the prefix of X that is exactly a-large, i.e., if X = {xo,...,2x-1},
we let Xo = {zo,...,z;} for i < k the smallest index such that {a}(xo,...,z;) =
0. Such a set X exists, as every coefficient in the Cantor normal form of a @
is bigger than the corresponding one in the Cantor normal form of «.

Let X7 = X\ Xo, x = max X +1 and let X’ = XU{x}. By the contrapositive
of Main Theorem since X' = Xy U (X7 U {*}) is not at most (a & §)-large,
either Xy is not at most a-large or X; U {x} is not at most S-large. Thus,
X1 U {*} is not at most S-large, and X is therefore S-large. O

We now deduce two versions of the pigeonhole principle.

Theorem 2.22 (First pigeonhole principle). Let X = XqU X5 be (a® B)-large
for some «a, B < €y, then either Xy \ {max Xo} is a-large or X1 \ {max X;} is
B-large or Xo and X1 are exactly a-large and exactly B-large, respectively.

Proof. Suppose X is at most a-large, otherwise X \ {max X} is a-large and
we are done. Similarly, suppose X7 is at most S-large, otherwise X; \ {max X1}
is p-large and we are done. Let * = max X + 1. The set X U (X7 U {x}) is
not at most (a @ B)-large, hence, by the contrapositive of Main Theorem [1.1}
X1 U {x} is not at most S-large. Since X; is at most S-large, it is exactly S-
large. By applying the contrapositive of Main Theorem on the partition
(XoU{*})U Xy, we get that XU {x} is not at most a-large, hence since Xy is
at most a-large, Xy is exactly a-large and we are also done since both Xy and
X, are exactly f-large. O

Theorem 2.23 (Second pigeonhole principle). Let X = XqUX;U{*} be (a®f)-
large for some a, B < €y and some * > Xog U X;y. Then either Xy is a-large or
X4 is B-large.

Proof. Let ¥ = max X + 1. The set X U {x'} = (Xo U {*}) U (X1 U{¥'}) is not
at most (a @ )-large, hence, by the contrapositive of Main Theorem either
Xo U{x} is not at most a-large, in which case Xy is a-large, or X; U {x’} is not
at most (-large, in which case X; is §-large. O

Since a-largeness is closed under supersets, if XoU X5 is (a @ §)-large, then
s0 is XoU X7 U{*} for any * > max X, in which case either X is a-large or X;
is B-large. This formulation of the pigeonhole principle, although more natural,
is less optimal than Theorem [2.23

11



3 Largeness below w*

We now turn to the study of a-largeness in the restricted setting of o < w®. We
shall give a particular focus to ordinals of the form w™ -k for n, k > 1. Thanks to
Ketonen and Solovay [12] Lemma 4.6], there exists a simple inductive definition
of a-largeness for ordinals of this form:

Proposition 3.1 (Ketonen and Solovay [12]). A set F Cgin N is
(1) wOlarge iff F # 0
(2) w D large iff F\ min F is (w™ - min F)-large
(3) w™ - k-large iff there are k w™-large subsets of F'

Fo<Fi << Fr_4

Proof. (1) and (2) are simply unfolding of the definition. (3) is by induction on k:
The case k = 1 is trivial. Assuming (3) holds for k, by Ketonen and Solovay [12]
Lemma 4.6], a set X is w” - (k 4 1)-large iff there exist two sets Xo < X; C X
such that X is w™-large and X is w™ - k-large. Apply the induction hypothesis
on X;j. O

3.1 Construction and deconstruction

Thanks to Proposition any w"1-large set X can be seen as an increasing
sequence of min X many w™-large blocks. In this section, we prove two impor-
tant propositions: a construction property, which quantifies how many w”-large
blocks a sufficient to produce an w™™™-large set, and a deconstruction property,
which counts the number of w™-large blocks which can be extracted from an
wnt™_large set.

The quantification is expressed in terms of a-largeness. There are multiple
ways to give a meaning to the sentence “the sequence of blocks Xy < -+ < Xg_1
is a-large”. One could ask that {max X; : ¢ < d} is a-large, or that any sequence
in Xogx---xX4_1 is a-large. Thanks to the regularity of a-largeness ([12, Lemma
2]), the two definitions are equivalent.

Proposition 3.2 (Construction). For every n,m,d € N and for every sequence
of w"-large sets Xog < -+ < Xg—1 such that {max X; : i < d} is w™-large, then
XoU---UXg_q is ™™ -large.

Proof. By induction on m. The case m = 0 is immediate, since any w’-large
set is non-empty, so d > 1 and Xy is w™large. Suppose it holds for m. If
Y = {max X; : i < d} is w™*!-large, then Y \ {minY} is w™ - min Y-large. By
Proposition there are minY many w™-large subsets Yy < -+ < Yminy—1
of Y\ {minY}. For every i < minY, let Z; = UjeYi X;. By induction hypoth-
esis, each Z; is w"T™-large, so {minY}U Zy U+ - U Zpiny—1 is w" "l large.
By upward-closure of a-largeness, Xo U --- U Xy4_1 is w™ ™1 large. O

12



The following deconstruction proposition is an adaptation of Kolodziejczyk
and Yokoyama [I4] Lemma 2.1]. Note that the hypothesis requires an extra
w"-large set, while the conclusion also contains some extra w”-large set. This
might seem sub-optimal but the w™-large set of the hypothesis is on the left
part of X, while the one from the conclusion is on the right, which is weaker.

Proposition 3.3 (Deconstruction). For every n,m € N and for every w™™™ +
w"-large set X, there are some d € N and some w™-large subsets Xg < --- < X4
of X such that {max X, : i < d} is w™-large.

Proof. By induction on m. The case m = 0 is immediate by Ketonen and
Solovay [12] Lemma 4.6], as X is w” - 2-large, so there are two w™-large sets
Xo < X; C X. Note that {max X} is non-empty, hence w-large.

Suppose it holds for m. Let X be w"t™*+! 4 wm-large. By Ketonen and
Solovay [12, Lemma 4.6] (or by Theorem [2.21]), there are some A < B C X such
that A is w™-large and B is w™t™* 1 large. By Proposition there are min B
many w"T"-large sets Zy < -+ < Zming—1 C B\ {min B}.

Let d_y = 0 and Xd_fl = Zy. Note that Xd_}l is w™T™-large, hence w™-large.
We are going to build inductively for every ¢ < min B — 1 a family of w™-large
sets X < -+ < Xéi such that

(1) Xju---UX) €X' uZ;
(2) {max X} :j < d;} is w™-large.

Assuming X;:_ll < Z; is defined, the set Xfl:_ll U Z; is w™t™ 4 w"-large, so by
induction hypothesis, there is a sequence X, ... ,Xfli of w™-large sets satisfying
(1) and (2). Tt follows that {max X! : i <min B—1,j < d;} is w™ - (min B —1)-
large. Since max A < min B, then {max A} U {maxX; ci<minB—1,j <d;}
is wm™tl-large, so altogether, these w™-large sets form the desired sequence. [

Corollary 3.4 (Generalized deconstruction). For every n,k,¢ > 1 and m >0,
for every w"t™ . (kl + 1)-large set X such that k(¢ + 1) < min X, there are
some d € N and some w" - k-large subsets Xg < --- < X4_1 of X such that
{max X; : i < d} is w™ - L-large.

Proof. Suppose m = 0. Then X is w™ - (kf 4+ 1)-large, and a fortiori w” - k¢-
large hence there is a sequence Xy < -+ < Xgp—1 of w™-large subsets of X.
For every i < {, let Z; = Xp; U+ U Xp(i41)—1- Each Z; is w™ - k-large, and
{max Z; : i < ¢} is {-large.

Suppose m > 0. In particular, X is w™t™ .kl 4 w" T large. Since k(£ +1) <
min X, then X is w"*t™ - kf + w™ - k(¢ + 1)-large. By Theorem there is a
sequence X_; < X < -+ < Xgg—1 of subsets of X such that X_; is w”™ - k-large
and Xo,..., Xge_1 are w™™ 4 w™-large. By Proposition for each ¢ such
that 0 < i < k¢, there is a sequence X? < --- < X?’i_l of w™-large subsets of X;
such that {max Xij 1 j < d;} is w™-large. Let Wy,...,Wp_1 be the sequence
(X7 )icktj<d,- In particular, the set Z = {max W : i < p} is w™ - kf-large. Let
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g : Z — k be such that g(z) is the remainder of the euclidean division of ¢ by k,
where x = max W;. By Theorem there is an w™ - f-large g-homogeneous
subset H = {9 < - < xq-1} € Z. For each s < d, let i5; be such that
maxWis = Tg. Let HO = X_1 U Wio and HS+1 = Ui5<j§i5+1 Wj. Note that
for each s < d, max Hy = x5, so {max H : s < d} is w™ - ¢-large. Since X_;
is w" - k-large, so is Hy. By g-homogeneity of H, is41 > is + k, so Hgqq is
w” - k-large. O

3.2 Sparsity
The notion of a-largeness induces a dual notion of a-sparsity as follows:

Definition 3.5. A set X C N is a-sparse if for every x,y € X such that x < vy,
(z,y]|n is a-large.

Theorem 3.6 (Ketonen and Solovay [12]). For every primitive recursive func-
tion g : N — N, there is some n € N such that for every w™-large set F,
max F' > g(min F).

In particular, y > 2z whenever (z,y] is w-large and y > x2* whenever (z, y]
is w?-large. We shall be particularly interested in w? - 3-sparse sets as it provides
sufficient sparsity to bound Ramsey numbers.

Let Ri(d) be the least number R such that for every coloring f : [R]? — k,
there is an f-homogeneous set of size d. The standard upper bound for the finite
Ramsey’s theorem for pairs and two colors, obtained by Erdés and Szekeres in
[¥], is that Ra(d) < (2{;1_—11) < 44, The upper bound generalizes to Ry (d) < k*¢
(see Graham, Rothschild and Spencer [9, Section 1.1]).

Lemma 3.7. If X is w? - 3-sparse and min X > 7, then it is (x s xf(2+2)).
sparse.

Proof. Any w?-sparse set is (z — 22%)-sparse, so any w? - 3-sparse set is (z
x z4x2% . . 2T
p2ete2 +a2 )-sparse, and in particular (z ~ 2%2" )-sparse. Whenever x >

7, then z(2x + 2) < 27, so0 902" > g2 e > 2" Thus Y is (x —
x”mmﬂ))—sparse.

Since R, (2x+2) < 2%(2*+2) (see Graham, Rothschild and Spencer [9, Section
1.1]), zRa(e42) < 22" g X ig (2 > 2B (2242)) gparse. O

Thanks to the deconstruction proposition Corollary [3.4] one can relate large-
ness to sparsity. The following lemma specializes this relation in the case of
w? - 3-sparsity.

Lemma 3.8. For every £ > 1 and m > 0, for every w™3-large set X such that
30 + 2 < min X, there is some w? - 3-sparse w™ - £ + 1-large subset of X.

Proof. Since 3¢ 4+ 2 < min X, then X \ {min X} is w™%2 . (3¢ + 2)-large, hence
w2 . (30 4+ 1) + wmT2large. Then there are two subsets A < B C X such
that A is w™*2-large and B is w™*2 - (3¢ + 1)-large. Since 3/ + 2 < min A4,
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then 3(¢ + 1) < max B, so by Corollary applied to B, there is a sequence
Xo < -+ < Xg_1 of w? - 3-large subsets of B such that Z = {max X, : i < d} is
w™ - (-large. The set {min X} U Z is w™ - £ + 1-large, and w? - 3-sparse.

O

3.3 Largeness for combinatorial theorems

We are particularly interested in the closure of notions of largeness under combi-
natorial statements coming from Ramsey theory. Given a coloring f : [N]™ — k,
aset H C Nis f-homogeneous if f is constant on [H]".

Statement (Ramsey’s theorem). Given n,k € N, RT} is the statement “For
every coloring f : [N]™ — k, there is an infinite f-homogeneous set”.

Ramsey’s theorem for pairs is a central subject of study in reverse mathe-
matics, a foundational program whose goal is to find optimal axioms to prove
ordinary theorems [6l [25]. Tts first-order consequences are closely related to the
computation of bounds for its largeness counterpart:

Definition 3.9. A set X Cgiy N is RTy -a-large if for every coloring f : [X]™ —
k, there is an a-large f-homogeneous subset H C X.

Whenever a parameter is omitted, it is taken to be min X. For instance, a
set X is RT™-a-large if it is RT},,;,, x-a-large, in other words, if for every coloring
£+ [X]" — min X, there is an a-large f-homogeneous subset H C X. Bounds
largeness for Ramsey’s theorem for pairs were extensively studied. Ketonen
and Solovay [I2] proved that every w**4-large is RTi—w-large set when £ > 2.
Patey and Yokoyama [22] proved that for every k € N, there is some n € N
such that every w™-large set is RT3-w"-large. Kolodziejczyk and Yokoyama [14]
computed some explicit bounds, a proved that every w4 ("1 large set is RT%—
w™-large. Our goal is to give a tight bound to RTi—w”—largeness, up to an
additive constant.

In order to better understand its computational and proof-theoretic strength,
Bovykin and Weiermann [4] decomposed Ramsey’s theorem for pairs and two
colors (RT32) into two statements: the Erdés-Moser theorem (EM) and the
Ascending Descending Sequence (ADS). The Erdés-Moser theorem [7] is a
statement from graph theory about tournaments, that is, complete oriented
graphs, which says that any infinite tournaments admits an infinite transitive
sub-tournament. The Ascending Descending Sequence principle [I1] is a theo-
rem from order theory, stating that every infinite linear order admits an infinite
ascending or descending sequence. Both statements can be formulated as par-
ticular cases of Ramsey’s theorem for pairs, thanks to the notion of transitivity.

Definition 3.10. Given a coloring f : [N]> — k, a set H C N is f-transitive
if for every x <y < z € H such that f(z,y) = f(y,2), then f(z,y) = (x,2).
Whenever H = N, we simply say that the coloring f is transitive.

Tournaments are in one-to-one correspondence with 2-colorings of pairs, and
transitive tournaments with transitive colorings. Similarly, linear orders can be
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coded as transitive 2-colorings of pairs, in which case ascending or descending
sequences correspond to homogeneous sets. Therefore, given any instance of
Ramsey’s theorem for pairs and two colors, one can apply EM to obtain an
infinite transitive subset, and then ADS to obtain a homogeneous subset. Both
statements were extensively studied in computability theory and reverse math-
ematics [4, 20, 111 19).

When trying to extend the decomposition of RT% into EM and ADS to more
colors, there are two natural generalizations of the notion of transitivity: a
weak one, given in Definition [3.10] and a stronger one, formally introduced by
Towsner and Yokoyama [26], but already used in Patey [21, Theorem 8.2.1].

Definition 3.11. Given a coloring f : [N]?> — k, a set H C N is f-fallow if for
everyx <y <z€H, f(z,2) € {f(z,y), f(y,2)}.

Clearly, any f-fallow set is f-transitive, but the converse is not true. Both
EM and ADS therefore admit two generalized statements, based on transitivity
and fallowness. We shall only consider the stronger version of each statements,
that is, the fallow version of the Erdés-Moser theorem and transitive Ramsey’s
theorem for pairs.

Statement (Fallow Erdds-Moser theorem). Given k € N, fEMy, is the statement
“For every coloring f : [N]?2 — k, there is an infinite f-fallow set”.

Statement (Transitive Ramsey’s theorem for pairs). Given k € N, trRT; is
the statement “For every transitive coloring f : [N]? — k, there is an infinite
f-homogeneous set”.

The statements fEMj, and trRTi admit largeness counterparts, as Ramsey’s
theorem. In the remainder of this article, we shall compute bounds for fEM-w™-
largeness and trRT:-w"-largeness, and deduce bounds for RT3-w”-largeness.

3.4 Pigeonhole principle

We already studied a-large versions of the pigeonhole principle for a < €p in Sec-
tion[2] The following proposition is an immediate consequence of Theorem [2.23]
restricted to the setting of w™-largeness. It is however useful to state it under
this form as it will be used all over the remainder of the article. This strength-
ens Kotodziejezyk and Yokoyama [I4, Lemma 2.2] by improving the bounds and
removing the sparsity assumptions.

Proposition 3.12. Fixn >0 and a,k > 1.
(1) If X is w™ - ak-large, then it is RT,-w" - a-large.
(2) If X is w™t -large, then it is RT'-w™-large.

Proof. (1) By induction on k. The case k = 1 is trivial. Suppose it holds for k.
Let X be w™ - a(k + 1)-large and (x — 2z + 1)-sparse, and let f: X — k+ 1.
Let Yo = {z € X : f(z) <k} and Y, = {z € X : f(z) = k}. By Theorem [2.23]
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either Yy is w™ - ak-large, and which case by induction hypothesis, there is an f-
homogeneous set which is w™-a-large, or Y7 is w™-a-large, and is f-homogeneous
for color k by definition.

(2) Let f: X — min X. Since X is w" ™ -large, X \ {min X} is w™ - min X-
large. By (1), X \ {min X} is RT.. y-w"-large, so there is an w"-large f-
homogeneous subset. O

3.5 Grouping principle

The inductive proofs of Kolodziejczyk and Yokoyama for largeness for EM heav-
ily depended on the notion of grouping. We shall only us the following lemma,
which, in the terminology of grouping, means that every w™ - Ry(2d)-large
(z — x2%)-sparse set admits an (w™ + 1, d)-grouping. This is an improvement
of their bound, which used an w"*3-large set [14) Lemma 2.6].

Lemma 3.13. Let k > 0 and let X Cy;p N be w™ - R (2d)-large and (x — xk)-
sparse, for some d € N such that k™% < min X and let f : [X]?> = k be a
coloring. Then, there exists a sequence Yo < --+ < Yg_1 of w™ + 1-large subsets
of X and some color ¢ < k such that f(x,y) = ¢ for every x € Yy and y € Y}
fors <t <d.

Proof. If n = 0, the results holds by definition of R and w®-largeness. Indeed, let
f:[X]? = k be a coloring. Since |X| > Ry(2d), by finite Ramsey’s theorem for
pairs, there is an f-homogeneous set {yo < y1 < -+ < yag—1} C X. Since any
singleton element is w®-large, the set Y; = {y2i, y2i+1} 18 w? 4 1-large. Assume
from now on that n > 0.

Let Xg < -+ < Xpg,(24y—1 be a decomposition of X into w"-large sets.
Consider the sequence (f;)i<r, (24) of colorings and the sequence Zy < --- <
ZR,(24)—1 of sets defined inductively as follows:

Assume that Zii1,...,Zp, (2q)—1 have been defined for some i < Ry(2d),

and consider the coloring f; : X; — TR G =1=i422, < 1551 defined by
fil@) = (f (g, %))yey,_, x; U (f(@,9))yefmin 2;:i<j<Ri(2d)}

As min Xy > Ry (2d) and as the X; are disjoint, we get that for i > 0, Ry (2d) +
Zj<i |X;| < maxX;_1. By (z — xk")-sparsity of X, EmaxXi-1  max X;_1 <
min X, so D+ 156 max X;_; < min X;. By Proposition 1), there
exists some w™ ! - (max X;_1)-large and f;-homogeneous subset Z; C X;. For
i =0, since k229 < min X, by Proposition 1), there exists some w"~!-
large and fy-homogeneous subset Zy C Xj.

The (Z;)i<Rr, (24) are defined such that, for every i < j < Ry(2d) and = € Z;,
y € Z;, we have f(z,y) = f(min Z;, min Z;). By definition of Ry(2d), there
exists some subset {ig < -+ < d24—1} C {0,..., Rx(2d) — 1} and some color
¢ < k such that, for every j <k < 2d, x € Z;; and y € Z;,, f(x,y) = c.

Finally, let Y; = {25, 23, } U Zz; 1 for every j < d, where 29; and z;; are the
two last elements of Zy;. Every Y; is w™ 4 1-large. O
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3.6 Erdés-Moser theorem

The goal of this section is to prove that every w”t3-large set X with min X > 5
is EM-w™-large. The previous known bound of Kolodziejczyk and Yokoyama [14]
was w304 largeness.

Proposition 3.14. Letn >0, let X Csin N be and (x — me(QI))—sparse,
(1) If X is w™ + 1-large with 2 < min X, then it is fEM-w”-large.
(2) If X is w™- Ry(2d)-large with k™29 < min X, then it is fEM},-w™ - d-large.
(3) If X is w™ - 4-large, then it is fEM-w™ + 1-large.

Proof. We prove (1) and (2) by mutual induction on n. (1) holds trivially for
n = 0, as any w-large set is non-empty, and any singleton is EM-w’-large.

Suppose (1) holds for n. Let us show that (2) holds for n. Let k,d €
N, let X Csin N be (2 + 2(2%))-sparse, (w™ - Ry(2d))-large and such that
kfs(2d) < min X and fix some coloring f : [X]? — k. As k(D) < min X
we have k < min X, hence X is (x — zk®)-sparse, and by Lemma there
exists some sequence Zy < --- < Zy_1 of w™ + 1-large subsets of X and some
color ¢ < k such that f(z,y) = c for every x € Z; and y € Z; for s <t < d. By
(1) for n, for each ¢ < d, there is an f-fallow w™-large subset W; C Z;. Then,
the set W = {J,_, Wi is w™ - d-large and f-fallow.

Indeed, pick by contradiction some 2z < y < z € W such that f(z,z) ¢
{f(z,y), f(y,2)}. We cannot have Z; N {z,y,z} = {x} or Z; N {zx,y,z} = {z}
for some i < d as it would imply f(z,y) = f(z,2) = cor f(x,2) = f(y,z) = ¢ by
our application of Lemma Similarly we cannot have Z;N{z,y, z} = {y} for
some i < d as it implies the existence of some j < d such that Z;N{z,y, z} = {2},
since < y < z. And finally, we cannot have Z;, N {z,y, 2z} = {z,y, 2z} for some
1 < d by our application of the inductive hypothesis.

Suppose (2) holds for n. Let us show (1) holds for n + 1. Let X Cgin N
be (z — z%=(2%))sparse and (w"t! 4 1)-large and let 2y = min X. Fix some
coloring f : [X]? — o, then, X \ {zo} is w™ - 2R, (2z¢)-large as 2R, (27() <
xORmo(sz) when zg > 2 and xf”o(%) < min X \ {z¢}. By Proposition (1),
there exists some w™ - Ry, (2x¢)-large subset Y C X \ {x¢} such that f(zo,y) =
f(zo,2) for every y,z € Y. By (2) for n, there is some f-fallow w™ - xp-large
subset Z C Y. Then, the set W = {x¢} U Z is f-fallow and w"*!-large.

Indeed, pick by contradiction some z < y < z € W such that f(z,2) ¢
{f(z,y), f(y,2)}. We cannot have x = z¢ as f(xo,y) = f(xo,2) for every
y,z € Y. And we cannot have zg € Z, otherwise {z,y, 2z} C Z, contradicting
the fact that Z is f-fallow.

(3) For n = 0, if X is w® - 4-large, then card X > 4. In particular, any

two-element subset of X is fEM-w® + 1-large. Suppose n > 0. Fix a coloring
f N2 - minX. Let 0 = min X and g : X — x¢ be defined by g(zo) = 0
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and ¢(y) = f(zg,y) for y # x¢. By Proposition 1), there is an w™ - 2-large
g-homogeneous subset Y C X. Let Yy < Y] be its decomposition into w”-large
sets. Let 1 = maxYp. Since n > 0, cardYy > 2, so 1 > x¢ and {z1} UY7 is
w" + 1-large. By (1), there is a w™-large f-fallow subset Z C {z1} U Y7. Since
Z is g-homogeneous, then {zo} U Z is f-fallow, and w™ + 1-large. O

Corollary 3.15. Let n > 0. If X Csin N is w™3-large and min X > 7, then it
1s fEM-w™-large.

Proof. Since min X > 5, then by Lemma there is an w?-3-sparse w™ 4 1-large
subset Y C X. By Lemma since min X > 7, Y is (z + z%=(22+2))gparse,
so by Proposition Y is fEM-w™-large. O

3.7 Transitive colorings

The strategy to compute bounds for transitive Ramsey’s theorem for pairs and
k-colors is different from the one for fallow Erdés-Moser theorem. Patey and
Yokoyama [22, Lemma 4.4] proved that every w?"*6-large set is ADS-w"-large,
using a slightly modified notion of largeness. The proof consisted in defining
a coloring f : [N]?2 — 2n + 2 and applying Ketonen and Solovay’s bound [12].
Kolodziejezyk and Yokoyama [I4, Theorem 2.11] gave a more direct but less
optimal proof by getting rid of the intermediate notion of largeness, and showed
that any w?"t4-large set X with min X > 3 is trRT%—w"—large.

In this section, we give a direct and optimal proof, by generalizing the
bound of Ketonen and Solovay to w-g-largeness. Given an increasing func-
tion g : N — N, a set X is w-g-large if card X > ¢g(min X). Whenever ¢ is the
identity function, this yields the standard notion of w-largeness. The following
proposition is a generalization of Ketonen and Solovay [12, Lemma 6.3] and of
Kolodziejezyk and Yokoyama [14, Theorem 1.5]:

Proposition 3.16. Fiz a primitive recursive function g : N — N. If X is
(w* + 1)-large and g-sparse for k = 1 and (x — k9@ sparse for k > 2,
then it is RT% -w-g-large.

Proof. By induction on k. Suppose k = 1. Let f : X — 1 be the trivial
constant coloring. Then X is f-homogeneous. Since X is w® + 1-large, then,
letting X = {x¢ < 1 }UY, then card Y > z; and by g-sparsity of X, 1 > g(z),
so card X > g(min X).

Assume the property to be true for some k > 0. Let X be (w1 + 1)-large
and (z — (k + 1)f%+129())_gparse and consider a coloring f : [X]?> — k + 1.
Let zo = min X, by sparsity, min(X \ {zo}) > (k4 1)#+1(29@0)) and X \ {2}
is (w* - (k+1) x R1(2g(w0)))-large set.

Consider the coloring h : X \ {zo} — k + 1 defined by h(y) = f(xo,y).
By Proposition 1), there exists some (w® - Rpy1(2g(wo)))-large and h-
homogeneous subset Y of X \ {z¢}, and let ¢y < k be the corresponding color.

By Lemma as minY > (k 4 1)F+1(29(0)) " there exists a sequence
Yo < -0 < Ygze)—1 of w* + 1-large subsets of Y and some color ¢; such that
f(z,y) = ¢y for every x € Yy and y € Y; for s <t < g(xp).
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If cg = ¢y, then the set {20 }U{minYy < --- < min Yy (,,)—1} is f-homogeneous
and w-g-large and we are done. So assume ¢y # ¢; and consider the coloring
f":[X]? = k to be the same coloring as f, except that the colors ¢y and ¢; are
fuse into one. By the inductive hypothesis, there exists some f’-homogeneous
subsets Z; C Y;.

If Z; is f homogeneous, then we are done. Otherwise, f([Z1]?) = {co,c1},
and, since minZ; > Ra(g(min Zy)) by sparsity of X, there exists some f-
homogeneous subset W C Z; of size > g(min Zy). If f([W]?) = {co}, then
{z0} UW is f-homogeneous, and if f([W]?) = {c1}, then {minZy} U W is
f-homogeneous, and both of these sets are w-g-large. O

By generalizing the proof of Patey and Yokoyama [22 Lemma 4.4] to trRTz
and replacing the bound of Ketonen and Solovay by Proposition [3.16] we obtain
the following proposition:

Proposition 3.17. Letn € N, k > 1 and let X C N be (wk" + 1)-large and
(z — (kn)fen(2+2)) _sparse, then it is trRT3-w"-large.

Proof. Consider a transitive coloring f : [X]?> — k and let f : [X]?> — kn be
defined by f(x,y) = kj +1i if f(x,y) =i and if j is the smallest index such that
there is no w’*!-large subset H C [z,y) N X with x € H and such that H U {y}
is f-homogeneous for color i, or, if no such index exists, take j = n — 1.

By Proposition take Y C X such that Y is w-(z — x + 1)-large and
f-homogeneous. Write Y = {yg < y; < --- < y,} for some £ > yo and let
f([Y]?) = kj+i. Forevery s < £, let H, C [ys,yst+1) be w’-large, f-homogeneous
for the color ¢ and such that y, € Hs. Let H = {yo} UUﬁ: Hy, then, as £ > yq,
H is w/*llarge and H U {y,} is f-homogeneous for the color i. Thus, we have
j=mnas f(yo,ye) = nj +1i, hence H is f-homogeneous and w"-large. O

Corollary 3.18. Letn € N, k> 1. If X Csin N is w"k+3-large and min X > 8,
then it is trRT; -w"-large.

Proof. Since min X > 8, then by Lemma there is an w? - 3-sparse w™ - 24 1-
large subset Y C X. By regularity, there are two subsets Yy < Y7 of Y such
that Y is w™ -large and Y] is w™* + 1-large.

By Lemma since Y} is w? - 3-sparse and min X > 7, then it is (x

mxw(hﬁ))-sparse. Since Yy is w™*-large, then card Yy > nk, so minY; > nk. It

follows that Yy is (z — (k:n)(’m)m(mz))—spaurse7 so by Proposition Y] is
trRT7-w"-large. 0

Corollary 3.19. Let n € N. If X Csin N is w??3-large and min X > 9, then
it is ADS-w™-large.

Proof. Immediate by Corollary O

Note that this bound is optimal, up to an additive constant, in that the
coloring witnessing the lower bound of RT% by Kotlarski et al. [I6, Theorem
5.4] is transitive.
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3.8 Ramsey’s theorem for pairs

We now have all the necessary ingredients to prove our optimal bounds for
RTi—w"—largeness, using the bounds for the fallow Erdés-Moser theorem and
for transitive Ramsey’s theorem for pairs. We first state it with largeness and
sparsity assumptions, and then use Section to compute purely largeness
bounds.

Theorem 3.20. Letn,k > 1. If X Csin N is wb™-4-large and (x — wa(szrz))_
sparse with kn < min X, then it is RT-w"-large.

Proof. Let f : [X]? = k be a coloring. X is w*” - 4-large and (z + x%=(2))-
sparse, hence, by Proposition 3), there exists some w*™ + 1-large and f-
fallow subset Y C X \ {min X }. In particular, Y is f-transitive.

As kn < min X, Y is (z — (kn)f»(2+2)_sparse, and by Proposition
there exists some w™-large f-homogeneous subset Z C Y. O

Note that if we applied fEM and trRTi under their explicit largeness as-
sumptions (Corollaries [3.15|and [3.18)) instead of their hybrid sparsity /largeness
versions (Propositions ﬁandthis would have yielded significantly worse
bounds. It is therefore useful to keep a sparsity version of the statements in case
of their use as an intermediate object in the proof of a stronger combinatorial
statement. When translating the sparsity assumptions into largeness ones, we
obtain our main theorem.

Main Theorem Letn,k > 1. If X Csin Nis w3 large and min X > 17,
then it is RTz—w"—large.

Proof. Since min X > 17, then by Lemma there is an w? - 3-sparse w™F -5+ 1-
large subset ¥ C X. In particular, there are two subsets X, < X; of X
such that Xy is w™-large and X, is w™* - 4-large. Since X is w™*-large, then
card Xo > nk, so min X; > nk. Since X; is w? - 3-large, then by Lemma
it is (z +— 2f=(*+2)) gparse. It follows by Theorem that X; is RTj-w"-
large. O
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