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Abstract

We develop the framework of α-largeness introduced by Ketonen and
Solovay, by proving a partition theorem for α-large sets with α < ϵ0 which
generalizes theorems from Ketonen and Solovay and from Bigorajska and
Kotlarski. We also prove that for every ωnk+3-large set X with minX ≥
18, every coloring f : [X]2 → k admits an ωn-large f -homogeneous subset.
This bound is tight, up to an additive constant.

1 Introduction

The celebrated Paris-Harrington theorem states that Peano arithmetics does
not prove the existence of ω-large homogeneous sets for arbitrary instances of
Ramsey’s theorem. Here, a finite set X is ω-large if cardX > minX. Ketonen
and Solovay [12] defined a notion of α-largeness for α < ϵ0 to quantify the
size of finite sets over weak theories, and related it to the Wainer hierarchy of
fast-growing functions [27]. More precisely, any fundamental sequence system
({α}(n))n∈N for the ordinals α < ϵ0 induces a notion of largeness defined as
follows: a finite set of integers {x0 < · · · < xk−1} is α-large if, letting α0 = α
and αs+1 = {αs}(xs), the ordinal αk−1 equals 0.

Since then, variants of Ketonen and Solovay’s notion of largeness have been
extensively studied, both from a combinatorial [3, 1, 16, 2, 5] and a proof-
theoretic perspective [24, 15, 22, 13, 23, 26], to prove partial conservation the-
orems over subsystems of second-order arithmetic for ∀Σ0

2-sentences and non-
speedup theorems, where a ∀Σ0

n-formula is of the form ∀Xφ(X) where φ(X)
is Σ0

n. More recently, parameterized versions of largeness have been defined to
prove partial conservation theorems over RCA0+BΣ0

2 for ∀Σ0
3-sentences [17, 18].

The framework of α-largeness is however relatively scattered: Ketonen and
Solovay [12] first proved some general structural theorems about α-largeness for
α < ϵ0. Then Bigorajska and Kotlarski [2, 15, 3, 1] published a series of articles
on a variant of α-largeness, say α-largeness∗, introduced by Ratajczyk [24] based
on the Hardy hierarchy of fast-growing functions [10]. They proved in particular
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a general pigeonhole theorem for α-largeness∗ with α < ϵ0. A framework for
proving lower bounds for α-largeness∗ was developed by multiple authors [3, 16].
Both notions of largeness are related (in particular, any α-large set is α-large∗ for
α ≥ ω), but the translation of structural theorems from one notion to the author
yields sub-optimal statements. Independently, the study of partial conservation
theorems over IΣ1 motivated the development of the framework of α-largeness
for α < ωω [22, 13, 23, 26]. In particular, Ko lodziejczyk and Yokoyama [14]
proved that for every ω144(n+1)-large set F and every 2-coloring f : [F ]2 → 2,
there exists an ωn-large f -homogeneous set. For this, they proved multiple
structural theorems in the restricted setting of α < ωω.

In this article, we pursue the general study of Ketonen and Solovay’s notion
of largeness, by proving the following general partition theorem, where ⊕ denotes
the natural (or Hessenberg) sum over ordinals, and a set F is at most α-large if
F \ {maxF} is α-small.

Main Theorem 1.1. Let β, γ < ϵ0 be two ordinals, and B,C ⊆ N be at most
β-large and γ-large respectively. Then B ∪ C is at most (β ⊕ γ)-large.

This theorem has several consequences, including a generalization of Ketonen
and Solovay [12, Lemma 4.6] and pigeonhole generalizations of Bigorajska and
Kotlarski [1, Theorem 12] for α-largeness. For this, we introduce a Hardy-like
hierarchy of fast-growing functions, and adapt and generalize the techniques of
Bigorajska and Kotlarski.

Our second contribution is a tight upper bound (up to additive constant) of
the closure of α-largeness under Ramsey’s theorem for pairs, for α < ωω. We
say that a set F is RT2

k-α-large if for every k-coloring of the pairs [F ]2, there is
an α-large f -homogeneous subset. We prove the following theorem:

Main Theorem 1.2. Let n, k ≥ 1. If X ⊆fin N is ωkn+3-large and minX ≥ 17,
then it is RT2

k-ω
n-large.

Note that in the case k = 2, we obtain ω2n+3-largeness, improving over
the ω144(n+1)-largeness upper bound of Ko lodziejczyk and Yokoyama [14]. This
bound is tight, in the sense that Kotlarski et al. [16, Theorem 5.4] proved that
if a set is RT2

k-ωn-large∗, then it is ωkn-large∗. Translating in the α-largeness
framework, this shows that every RT2

k-ωn-large is ωkn−1-large.
The proof of Main Theorem 1.2 goes through the computation of upper

bounds of closure for two intermediate combinatorial theorems, namely, the
restriction of Ramsey’s theorem for pairs to transitive colorings (trRT2

k) and a
generalization of the Erdős-Moser theorem to k-colorings (fEM) due to Towsner
and Yokoyama [26]. We prove in particular that trRT2

k is solely responsible
for the lower bound of RT2

k-ωn-largeness, in that every ωn+3-large set X with
minX ≥ 7 is fEM-ωn-large (Corollary 3.15). This later result improves the
ω18n-largeness upper bound of Towsner and Yokoyama for fEM-ωn-largeness.

The remainder of this article is divided into two parts, as follows: In Sec-
tion 2, we define and study Ketonen and Solovay’s notion of α-largeness for
α < ϵ0 and prove Main Theorem 1.1 and its consequences. Then, in Sec-
tion 3, we restrict ourselves to α-largeness for α < ϵ0 and study the closure of
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α-largeness under multiple combinatorial statements, including Ramsey’s theo-
rem for pairs. The section culminates with the proof of Main Theorem 1.2.

2 Largeness below ϵ0

Every ordinal α < ϵ0 admits a unique Cantor normal form

α = ωαs · as + · · · + ωα0 · a0

for some α0 < α1 < · · · < αs < α and a0, . . . , as ∈ N \ {0}. Given two ordinals
α, β < ϵ0, we write β ≫ α if either α or β equals 0, or if the smallest exponent
of β is at least the largest exponent of α in their Cantor normal form. If α ̸= 0,
we shall also use its short Cantor normal form α = β + ωγ with β ≫ ωγ .

Definition 2.1. Given a non-zero ordinal α < ϵ0 with short Cantor normal
form α = β + ωγ , and x ∈ N, let

{α}(x) =


β if γ = 0,

β + ωγ−1 · x if γ is successor ,

β + ω{γ}(x) if γ is limit.

Finally, let {0}(x) = 0.

The ≫ relation admits two desirable properties. First, if β ≫ α, then
the sum α + β coincides with the natural sum (or Hessenberg sum) α ⊕ β
corresponding to the component-wise sum of the multiplicative factors. Second,
if β ≫ α and α ̸= 0, then the operation {β + α}(x) can be reduced to a
computation of {α}(x):

Lemma 2.2 (Ketonen and Solovay [12]). Let α, β < ϵ0 be such that β ≫ α and
α ̸= 0. Then {β + α}(x) = β + {α}(x).

In general, fundamental sequences are not compatible with ordinal inequal-
ity, in the sense that there exist some ordinals β > α and some x ∈ N such
that {β}(x) < {α}(x). For instance, if β = ω and α = 10, then {ω}(1) =
1 < {10}(1) = 9. However, this is the case if x is larger than every coefficient
appearing in the Cantor normal form of α. This motivates the definition of the
pseudo-norm:

Definition 2.3. The pseudo-norm psn(α) of α of cantor normal form ωαs ·
as + · · · + ωα0 · a0 is defined as

psn(α) = max(psn(α0), . . . ,psn(αs), a0, . . . , as)

The following lemma is an immediate consequence of Bigorajska and Kot-
larski [3, Lemma 2.1].

Lemma 2.4 (Bigorajska and Kotlarski [3]). Let α < β < ϵ0 and x ∈ N such
that psn(α) < x. Then {β}(x) ≥ α (with equality if only if β = α + 1).
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The following easy lemma relates psn({α}(n)) to psn(α) for any n ∈ N.

Lemma 2.5. Let α < ϵ0 and let n ∈ N. Then psn(α) − 1 ≤ psn({α}(n)) ≤
max{psn(α), n}

Proof. The result is clear for α = 0, then, if α ̸= 0, the operation {α}(n) can
only add n′s and decrease coefficients by 1 in the (recursive) Cantor normal
form of α.

The notion of fundamental sequence generalizes to finite sets as follows:

Definition 2.6 (Ketonen and Solovay). Given an ordinal α < ϵ0 and a finite
set X = {x0 < · · · < xs}, let

{α}(X) = {· · · {{α}(x0)}(x1) · · · }(xs)

A set X is α-large if {α}(X) = 0, otherwise, it is α-small.

Accordingly, a finite set X is exactly α-large if it is α-large and X \{maxX}
is α-small. A finite set X is at most α-large if X \ {maxX} is α-small. By
convention, we consider that ∅ is at most 0-large.

Example 2.7. Any finite set X ⊆ N is cardX-large. A finite set X is ω-large
if cardX > minX. A finite set X is ωβ · n-large iff X contains n ωβ-large
subsets X0 < · · · < Xn−1 ⊆ X, where X < Y means ∀x ∈ X∀y ∈ Y x < y.

Note that a set X might be α-large, α + 1-small, but not at most α-large.
For instance, {3, 5, 6, 7, 8} is ω-large, not ω + 1-large, and not at most ω-large.

2.1 Hardy-like hierarchy

Ratajczyk [24, Section 5] defined a notion of largeness based on the Hardy hier-
archy of functions [10]. As noted by Ratajczyk, this notion is slightly different
from Ketonen and Solovay’s α-largeness, and was extensively studied by Big-
orajska and Kotlarski [1, 3, 15]. We now define a Hardy-like hierarchy whose
induced notion of largeness corresponds exactly to Ketonen and Solovay’s defi-
nition.

Definition 2.8. Fix an increasing function h : A → N for some A ⊆ N with
h(a) > a for every a ∈ A. We define inductively a sequence of partial functions
hα for every α < ϵ0 as follows: for x ∈ N and α > 0, let h0(x) = x and let
hα(x) = h{α}(x)(h(x)) if h(x) ∈ dom(h{α}(x)) and x ∈ dom(h), otherwise let
hα(x) undefined. We write hα(x) ↓ is x ∈ domhα and hα(x) ↑ otherwise.

Note that for every α < ϵ0 and x ∈ domhα, there is some n ∈ N such that
hα(x) = h(n)(x). However, this n depends on x: if α ≥ ω, there is no n such
that hα = h(n).
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Remark 2.9. In the definition of the original Hardy hierarchy [10] based on h, if
α is limit, then hα(x) = h{α}(x)(x), while in our Hardy-like hierarchy, we define
hα(x) = h{α}(x)(h(x)). This variation reflects the main difference between the
notion of largeness from Ratajczyk [24, Section 5] and the one of Ketonen and
Solovay [12]. In the former case, a set A is α-large for a limit ordinal α if it
is {α}(minA)-large, while in the latter case, a set A is α-large if A \ {minA}
is {α}(minA)-large. Some further differences exist: in the finite case, a set A
is n-large in the sense of Ratajczyk if cardA ≥ n + 1 while in Ketonen and
Solovay’s sense, a set A is n-large iff cardA ≥ n. As a consequence, under both
definitions, a set A is ω-large iff cardA > minA.

Lemma 2.10. If hα(x) ↓ for some α < ϵ0 and x ∈ N, then hα(x) ≥ psn(α)+x.

Proof. By induction on α. For α = 0, let x ∈ N be such that h0(x) ↓, then
h0(x) = x = psn(0) + x. Let α < ϵ0 and assume the property to hold for
every α′ < α. Let x ∈ N be such that hα(x) ↓, then hα(x) = h{α}(x)(h(x)).
By the inductive hypothesis, we have h{α}(x)(h(x)) ≥ psn({α}(x)) + h(x), but,
as h(x) ≥ x + 1 and as psn({α}(x)) ≥ psn(α) − 1 by Lemma 2.5, we have
h{α}(x)(h(x)) ≥ psn(α) + x.

Fix an increasing function h : A → N for some A ⊆ N, with h(x) > x for
every x ∈ A. The Hardy-like iterations of h yield faster-growing functions on a
restricted domain, that is, if α > 0, then domhα ⊆ domh and hα dominates h
on domhα (see Lemma 2.14(4)).

On the other hand, given two ordinals α ≤ β < ϵ0 and some x ∈ domhβ ,
it is not true in general that x ∈ domhα, nor that if x ∈ domhβ ∩ domhα,
then hβ(x) ≥ hα(x). However, if x is sufficiently large – x > psn(α) suffices
–, then this is the case (see Lemmas 2.12 and 2.14). However, the x > psn(α)
hypothesis is too strong for our purpose, so we will use a more general relation
β ⇒x α which depends on both β and α, and such that if β ⇒x α, then β ≥ α
and hβ(x) ≥ hα(x).

Definition 2.11 (Ketonen and Solovay). Given two ordinals α, β < ϵ0 and
x ≥ 0, let β ⇒x α if either β = α, or {β}(x) ⇒x α.

Bigorajska and Kotlarski [1, Lemma 2(viii)] proved that the definition is
unchanged if one replaces {β}(x) by {β}(y) for some y ≤ x. As one expects
from the previous discussion, the relation β ⇒x α coincides with the inequality
β ≥ α whenever x > psn(α). The whole interest of this relation is therefore in
the case x ≤ psn(α).

The following lemma strengthens Ketonen and Solovay [12, Proposition
2.8.1] and is an immediate consequence of Bigorajska and Kotlarski [3, Lemma
2.1]. It appears in this form in the posthumous book of Kotlarski [15, Lemma 1.4.3].

Lemma 2.12 (Kotlarski [15]). Let α ≤ β < ϵ0 and x ∈ N such that psn(α) < x,
then β ⇒x α.

Ketonen and Solovay [12] proved many properties about the relation ⇒x.
The following lemma compiles a list of basic facts that shall be useful to prove
our main theorem.
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Lemma 2.13 (Ketonen and Solovay [12]). Let α, β, λ < ϵ0 and x ≥ 0.

(1) If λ ≫ α and α ⇒x β, then (λ + α) ⇒x (λ + β);

(2) If k < ℓ ∈ N, then ωα · ℓ ⇒x ωα · k;

(3) If α ⇒x β and α > β + 1, then α ⇒x+1 β + 1.

(4) If α ⇒x β and x ≥ 1, then ωα ⇒x ωβ;

(5) If x ≥ 1 and k < ℓ ∈ N, then {α}(ℓ) ⇒x {α}(k).

Proof. (1) is [12, Lemma 1, part 2.4], (2) is [12, Lemma 3, part 2.4], (3) is [12,
Lemma 2, part 2.6], (4) is [12, Lemma 5, part 2.4], (5) is [12, Theorem 2.4] for
α limit. If α is 0 or successor, then {α}(ℓ) = {α}(k).

The following lemma states that the ⇒x relation is a sufficient hypothesis
for the Hardy-like hierarchy of functions to behave nicely. Lemma 2.14(1,3) is
a Ketonen-Solovay counterpart of Bigorajska and Kotlarski [1, Lemma 4]:

Lemma 2.14. Let h be as above. Let 0 < α, β < ϵ0 and x ∈ N. Then:

(1) hβ is increasing

(2) if x ∈ domh and h(x) ∈ domhβ then x ∈ domhβ

(3) if β ⇒x α and x ∈ domhβ then x ∈ domhα and hα(x) ≤ hβ(x)

(4) if x ∈ domhβ, then hβ(x) ≥ h(x)

Proof. We prove (1),(2) and (3) by mutual induction on β. If β = 1 then the
property holds as h1 = h is increasing and the only 0 < α < ϵ0 such that β ⇒x α
is α = 1.

Let β > 1 and assume that (1), (2) and (3) hold for every 0 < β′ < β. Let
x, y ∈ domhβ such that x < y, then hβ(y) = h{β}(y)(h(y)). As {β}(y) < β
and as, by Lemma 2.13(5), {β}(y) ⇒h(y) {β}(x), then by (3) for {β}(y) we
have h(y) ∈ domh{β}(x) and h{β}(y)(h(y)) ≥ h{β}(x)(h(y)). From x ∈ domhβ

we get h(x) ∈ domh{β}(x), hence, by (1) for {β}(x), we get h{β}(x)(h(y)) >
h{β}(x)(h(x)). Thus, hβ(y) > hβ(x) and hβ is increasing. Thus (1) holds for β.

Let x ∈ domh be such that h(x) ∈ domhβ . Then we have hβ(h(x)) =
h{β}(h(x))(h(h(x))) hence h(h(x)) ∈ domh{β}(h(x)). By (2) for {β}(h(x)) we
have h(x) ∈ domh{β}(h(x)). Then, as Lemma 2.13(5) {β}(h(x)) ⇒h(x) {β}(x),
we also have h(x) ∈ domh{β}(x) by (3) for {β}(h(x)), hence x ∈ domhβ . Thus
(2) holds for β.

Let x ∈ N and 0 < α be such that β ⇒x α and hβ(x) ↓. Since β ⇒x α,
either β = α or {β}(x) ⇒x α. If β = α then hα(x) ↓ and hα(x) = hβ(x),
in which case (3) holds. If {β}(x) ⇒x α, then as hβ(x) = h{β}(x)(h(x)), we
have x ∈ domh{β}(x) by (2) for {β}(x) and h{β}(x)(h(x)) > h{β}(x)(x) by (1)
for {β}(x). From {β}(x) ⇒x α and (3) for {β}(x), we get x ∈ domhα and
h{β}(x)(x) ≥ hα(x). So hβ(x) = h{β}(x)(h(x)) > h{β}(x)(x) ≥ hα(x), Thus (3)
holds for β.

Last, since β ⇒x 1 for every β > 0 and x ∈ N, then (4) follows from (3).
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The following lemma is the Ketonen-Solovay counterpart of Bigorajska and
Kotlarski [1, Lemma 7]. Formulated in terms of largeness, it corresponds to
Ketonen and Solovay [12, Lemma 4.6].

Lemma 2.15. Let α ≪ β and x ∈ N, if hβ+α(x) ↓ then hβ(hα(x)) ↓ and
hβ+α(x) = hβ(hα(x)).

Proof. By induction on α. If α = 0 then, for x ∈ N and β ≫ α such that
hβ+α(x) ↓, we have hβ(x) ↓, then, as h0(x) = x we have hβ(x) = hβ(hα(x)) ↓
and hβ(hα(x)) = hβ+α(x) .

Let α > 0 and assume the property to hold for every α′ < α. Let x ∈
N and β ≫ α, if hβ+α(x) ↓ then h{β+α}(x)(h(x)) ↓ and h{β+α}(x)(h(x)) =
hβ+α(x). By Lemma 2.2, {β + α}(x) = β + {α}(x), so hβ+{α}(x)(h(x)) =
hβ+α(x). As {α}(x) < α and {α}(x) ≪ β, by the induction hypothesis we have
hβ(h{α}(x)(h(x))) ↓ and hβ(h{α}(x)(h(x))) = hβ+{α}(x)(h(x)) = hβ+α(x). And,
as h{α}(x)(h(x)) = hα(x), we have hβ+α(x) = hβ(hα(x)).

We now prove our core proposition. The intuition goes as follows: Suppose
0 < λ < ϵ0 and x > 0. The evaluation of hλ(x) unfolds into h{λ}(x)(h(x)), then
h{{λ}(x)}(h(x))(h(h(x)), and so on. Thus, the ith iteration of the evaluation of
hλ(x), if defined, corresponds to hλi

(xi), where xi and λi are defined inductively
by x0 = x, λ0 = λ and xi+1 = h(xi), λi+1 = {λi}(xi). Note that since the
function h is increasing, so is the sequence x0 < x1 < . . .

The definition of {λ}(x) is done by considering the short Cantor normal
form, by reducing first the smallest component of the Cantor normal form. The
evaluation either decreases a successor ordinal by one, or replaces a limit ordinal
by a smaller one, with coefficient x. Since the sequence λ0 > λ1 > . . . is defined
by successive evaluations with an increasing sequence x0 < x1 < . . . , the higher
components will be evaluated with larger values than the smaller components,
and therefore this evaluation order ensures that the sequence λ0 > λ1 > · · ·
decreases as slowly as possible.

Based on this evaluation order, if λ = β + α, with β ≫ α, the sequence
λ0 > λ1 > · · · corresponds to evaluating α successively with x0, x1, . . . until we
reach a stage i such that αi = 0. Then we evaluate β with xi+1, xi+2, . . . .

One could consider other evaluation orders, in which one would alternate
some evaluation steps of β, and some of α. In terms of the Hardy-like hierarchy,
one evaluation step of β corresponds to h{β}(x)⊕α(h(x)) while one evaluation
step of α corresponds to hβ+{α}(x)(h(x)). Since the standard evaluation order
is the one making the sequence λ0 > λ1 > . . . decrease as slowly as possible,
this translates into the following inequality:

hβ+α(x) = hβ+{α}(x)(h(x)) ≥ h{β}(x)⊕α(h(x))

The following proposition formalizes this intuition in the case β ≫ α. It will
then be proven in its most general form in Theorem 2.18.

Proposition 2.16. Let 0 < α, β < ϵ0 with β ≫ α and x > 0 an inte-
ger. If hβ+α(x) ↓, then h{β}(x)⊕α(h(x)) ↓ and hβ+α(x) = hβ+{α}(x)(h(x)) ≥
h{β}(x)⊕α(h(x)).
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Proof. The proof is by case analysis on the Cantor normal forms, and not by
induction. Write α = ωαn ·an + · · ·+ωα0 ·a0 and β = ωβk · bk + . . . ωβ0 · b0 their
Cantor normal form. From the assumption β ≫ α, we have β0 ≥ αn.

Case 1: n = 0 and αn = β0. In that case, β + {α}(x) = {β}(x)⊕α, hence
h{β}(x)⊕α(h(x)) ↓ and hβ+{α}(x)(h(x)) = h{β}(x)⊕α(h(x)).

If we are not in this case, we can freely assume that αn < β0 in the
Cantor normal form of α and β. Indeed, if αn = β0, we can consider α′ =
ωαn−1an−1 + · · · + ωα0a0 and β′ = ωβkbk + · · · + ωβ0(b0 + an), we then have
0 < α′, β′ < ϵ0, α′ ≪ β′, β + α = β′ + α′, β + {α}(x) = β′ + {α′}(x) and
{β}(x)⊕α = {β′}(x)⊕α′, making it sufficient to prove the result for α′ and β′.

Case 2: αn < β0 and β0 is successor. Let β′
0 be such that β0 = β′

0 +1. In
that case, write β = δ+ωβ′

0+1 and α = γ+ωα0 . By our assumption that αn < β0,
we have ωβ′

0+1 > α and ωβ′
0 ≫ α. By Lemma 2.15, letting c = h{α}(x)(h(x)),

we have
hβ+{α}(x)(h(x)) = hβ(c) = h

δ+ωβ′
0 ·c(h(c))

By Lemma 2.14(4), c ≥ h(x) > x, so by Lemma 2.13(2), we have ωβ′
0 · c ⇒y

ωβ′
0 · (x + 1) for every y ∈ N, and as δ ≫ ωβ′

0 · c, we have δ + ωβ′
0 · c ⇒y

δ + ωβ′
0 · (x + 1) for every y ∈ N by Lemma 2.13(1). Thus, by Lemma 2.14(3),

h
δ+ωβ′

0 ·(x+1)
(h(c)) ↓ and by Lemma 2.15, letting d = h{ωβ′

0}(h(c))(h(h(c))),

h
δ+ωβ′

0 ·c(h(c)) ≥ h
δ+ωβ′

0 ·(x+1)
(h(c)) = h

δ+ωβ′
0 ·x(h

ωβ′
0
(h(c))) = h

δ+ωβ′
0 ·x(d)

By Lemma 2.10, c ≥ psn({α}(x)) + h(x), hence by Lemma 2.5, c ≥ psn(α)
and h(c) > psn({α}(h(x))). By Lemma 2.4, we get {ωβ′

0}(h(c)) > {α}(h(x))
from the fact that ωβ′

0 > {α}(h(x)) and h(c) > psn({α}(h(x))), hence, by
Lemma 2.12 we have {ωβ′

0}(h(c)) ⇒h(c) {α}(h(x)). By Lemma 2.13(1), since

δ + ωβ′
0 · x ≫ {ωβ′

0}(h(c)), we have

δ + ωβ′
0 · x + {ωβ′

0}(h(c)) ⇒h(c) δ + ωβ′
0 · x + {α}(h(x))

Thus, by Lemma 2.14(2,3) and Lemma 2.15, h
δ+ωβ′

0 ·x(h{α}(h(x))(h(h(x)))) ↓
and

h
δ+ωβ′

0 ·x(d) ≥ h
δ+ωβ′

0 ·x(h{α}(h(x))(h(h(x)))

= h
δ+ωβ′

0 ·x(hα(h(x)))

= h
δ+ωβ′

0 ·x+α
(h(x))

= h{β}(x)⊕α(h(x))

Putting altogether,

hβ+{α}(x)(h(x)) = h
δ+ωβ′

0 ·c(h(c)) ≥ h
δ+ωβ′

0 ·x(d) ≥ h{β}(x)⊕α(h(x))
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Case 3: αn < β0 and β0 limit. In that case, write β = δ + ωβ0 and α =
γ + ωα0 . Similarly, by Lemma 2.2 and Lemma 2.15, letting c = h{α}(x)(h(x)),
we have

hβ+α(x) = hβ+{α}(x)(h(x)) = hβ(c) = hδ+ω{β0}(c)(h(c))

Since c > x, we have {β0}(c) ⇒y {β0}(x)+1 for every y ≥ 2 by Lemma 2.13(3,5).
Note that x ≥ 1, hence h(x) ≥ 2, so by Lemma 2.14(4), c ≥ 2 and h(c) ≥ 3.
Thus by Lemma 2.13(4),

ω{β0}(c) ⇒h(c) ω
{β0}(x)+1 ⇒h(c) ω

{β0}(x) · 3

Since δ ≫ ω{β0}(c), by Lemma 2.13(1),

δ + ω{β0}(c) ⇒h(c) δ + ω{β0}(x) · 3

Therefore, by Lemma 2.14(3), hδ+ω{β0}(x)·3(h(c)) ↓ and, letting d = hω{β0}(x)(h(c)),

hδ+ω{β0}(c)(h(c)) ≥ hδ+ω{β0}(x)·3(h(c)) = hδ+ω{β0}(x)·2(d)

By Lemma 2.10, d ≥ psn({ωβ0}(x)) +h(c) ≥ psn({ωβ0}(x)) + 3 and d > c ≥
psn({α}(x)) + h(x) ≥ psn({α}(x)) + 2. Thus, by Lemma 2.5, d > psn(α) + 1
and d > max(psn(ω{β0}(x), psn(α) + 1)) ≥ psn(ω{β0}(x) ⊕ α).

From ω{β0}(x) · 2 > ω{β0}(x) ⊕ α and Lemma 2.12 we have ω{β0}(x) · 2 ⇒d

ω{β0}(x)⊕α and by Lemma 2.13(1), δ+ω{β0}(x) ·2 ⇒d δ+ω{β0}(x)⊕α. Finally,
by Lemma 2.14(2,3),

hδ+ω{β0}(x)·2(d) ≥ hδ+ω{β0}(x)⊕α(h(x)) = h{β}(x)⊕α(h(x))

This completes our proof of Proposition 2.16.

Lemma 2.17. Let α, β < ϵ0, then there exists α′, β′ < ϵ0 with α′ ≪ β′ and
such that β ⊕ α = β′ + α′ and {β}(x) ⊕ α = {β′}(x) ⊕ α′ for every x ∈ N

Proof. If β = 0 then take α′ = α and β′ = β. If β ̸= 0, then write α =
ωγn ·an+· · ·+ωγ0 ·a0 and α = ωγn ·bn+· · ·+ωγ0 ·b0 with a0, . . . , an, b0, . . . , bn ∈ N
and γ0 < · · · < γn < ϵ0. Let i ≤ n be the smallest index such that bi ̸= 0, and
let β′ = ωγn · (bn + an) + · · · + ωγi · (bi + ai) and α′ = ωγi−1 · (bi−1 + ai−1) +
· · · + ωγ0 · (b0 + a0).

We have β⊕α = β′+α′ = ωγn(bn+an)+· · ·+ωγ0(b0+a0) and {β′}(x)⊕α′ =
(ωγn(bn+an)+· · ·+ωγi(bi+ai−1)+· · ·+ωγ0(b0+a0))⊕{ωγi}(x) = {β}(x)⊕α

The following theorem informally states that the evaluation order of the
fundamental sequences is the one which makes the Hardy-like hierarchy grow the
fastest. In the case α ≪ β, β+α = β⊕α, hence it generalizes Proposition 2.16.

Theorem 2.18 (Optimal growth). Let α, β < ϵ0 with β > 0 and x > 0 an
integer. If hβ⊕α(x) ↓ then h{β}(x)⊕α(h(x)) ↓ and hβ⊕α(x) = h{β⊕α}(x)(h(x)) ≥
h{β}(x)⊕α(h(x)).
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Proof. Let α′, β′ < ϵ0 be obtained from Lemma 2.17 applied on α, β. As
β ⊕ α = β′ + α′ and {β}(x) ⊕ α = {β′}(x) ⊕ α′, it is sufficient to show that
h{β′}(x)⊕α′(h(x)) ↓ and that hβ′⊕α′(x) = h{β′⊕α′}(x)(h(x)) ≥ h{β′}(x)⊕α′(h(x)).

If α′ = 0, then the result holds by definition of hβ′ .
If α′ ̸= 0, then the result is that of Proposition 2.16.

2.2 Partition theorem

We now translate this abstract study of the Hardy-like hierarchy into the frame-
work of α-largeness, to prove Main Theorem 1.1.

Definition 2.19. Let A = {x0, . . . , xn−1} ⊆ N a finite set. We define hA :
A \ {maxA} → A by hA(xi) = xi+1 for every i < n− 1. In other words, hA is
the successor operation on the ordered set (A,<N).

The following lemma is the heart of the correspondence between Hardy-like
hierarchies and of Ketonen and Solovay’s α-largeness.

Lemma 2.20. Let 0 < α < ϵ0, then A is at most α-large iff hA
α (minA) ↑.

Proof. By induction on α. The result holds for α = 1, as hA
α (minA) ↑ if and

only if |A| ≤ 1. Let 1 < α < ϵ0 and assume the property holds for every β < α.
Let A = {x0, x1, . . . , xn} ⊆ N be such that hA

α (x0) ↑, then, hA
{α}(x0)

(x1) ↑ and

therefore h
A\{x0}
{α}(x0)

(x1) ↑. By the inductive hypothesis, A \ {x0} is therefore at

most {α}(x0)-large, hence A is at most α-large.

The following theorem is an iterated counterpart of Theorem 2.18 in the lan-
guage of α-largeness. It has several consequences, such as the splitting property
(Theorem 2.21) and multiple versions of the pigeonhole principle (Theorems 2.22
and 2.23)

Main Theorem 1.1. Let β, γ < ϵ0 be two ordinals, and B,C ⊆ N be at most
β-large and γ-large respectively. Then B ∪ C is at most (β ⊕ γ)-large.

Proof. By assumption we have hB
β (minB) ↑ and hC

γ (minC) ↑. We want to show

that hB∪C
β⊕γ (min{minB,minC}) ↑.

Write B ∪ C = {x0 < x1 < · · · < xk−1} and consider the sequences of
ordinals (βi)i<k and (γi)i<k defined inductively as follows: β0 = β and γ0 = γ
and if βi and γi have been defined, let βi+1 = {βi}(xi) and γi+1 = γi if xi ∈ B
and βi+1 = βi and γi+1 = {γi}(xi) if xi ∈ C.

Since B is at most β-large, then {β}(B \ {maxB}) > 0, thus, if xi ∈ B then
βi ̸= 0, similarly, if xi ∈ C then γi ̸= 0. Hence, if xk−1 ∈ B then βk−1 ̸= 0 and
if xk−1 ∈ C then γk−1 ̸= 0, in every case βk−1 ⊕ γk−1 ̸= 0.

If hB∪C
β0⊕γ0

(x0) ↓, then, by induction on i < k, using Theorem 2.18, we claim

that for every i < k, we have hB∪C
βi⊕γi

(xi) ↓ and hB∪C
βi⊕γi

(xi) ≥ hB∪C
βi+1⊕γi+1

(xi+1).

Thus, if hB∪C
β0⊕γ0

(x0) ↓ then hB∪C
βk−1⊕γk−1

(xk−1) ↓, which is only possible if βk−1 ⊕
γk−1 = 0, contradiction. Thus hB∪C

β0⊕γ0
(x0) ↑ and B ∪ C is at most (β ⊕ γ)-

large.
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The following splitting property generalizes [12, Lemma 4.6]. Note that the
reversal holds if β ≫ α.

Theorem 2.21 (Splitting property). Let X be (α⊕β)-large for α, β < ϵ0, then
there exists X0 < X1 ⊆ X such that X0 is α-large and X1 is β-large.

Proof. Let X0 be the prefix of X that is exactly α-large, i.e., if X = {x0, . . . , xk−1},
we let X0 = {x0, . . . , xi} for i < k the smallest index such that {α}(x0, . . . , xi) =
0. Such a set X0 exists, as every coefficient in the Cantor normal form of α⊕ β
is bigger than the corresponding one in the Cantor normal form of α.

Let X1 = X\X0, ⋆ = maxX+1 and let X ′ = X∪{⋆}. By the contrapositive
of Main Theorem 1.1, since X ′ = X0 ∪ (X1 ∪ {⋆}) is not at most (α⊕ β)-large,
either X0 is not at most α-large or X1 ∪ {⋆} is not at most β-large. Thus,
X1 ∪ {⋆} is not at most β-large, and X1 is therefore β-large.

We now deduce two versions of the pigeonhole principle.

Theorem 2.22 (First pigeonhole principle). Let X = X0 ∪X1 be (α⊕β)-large
for some α, β < ϵ0, then either X0 \ {maxX0} is α-large or X1 \ {maxX1} is
β-large or X0 and X1 are exactly α-large and exactly β-large, respectively.

Proof. Suppose X0 is at most α-large, otherwise X0 \ {maxX0} is α-large and
we are done. Similarly, suppose X1 is at most β-large, otherwise X1 \{maxX1}
is β-large and we are done. Let ⋆ = maxX + 1. The set X0 ∪ (X1 ∪ {⋆}) is
not at most (α ⊕ β)-large, hence, by the contrapositive of Main Theorem 1.1,
X1 ∪ {⋆} is not at most β-large. Since X1 is at most β-large, it is exactly β-
large. By applying the contrapositive of Main Theorem 1.1 on the partition
(X0 ∪ {⋆})∪X1, we get that X0 ∪ {⋆} is not at most α-large, hence since X0 is
at most α-large, X0 is exactly α-large and we are also done since both X0 and
X1 are exactly β-large.

Theorem 2.23 (Second pigeonhole principle). Let X = X0∪X1∪{⋆} be (α⊕β)-
large for some α, β < ϵ0 and some ⋆ > X0 ∪X1. Then either X0 is α-large or
X1 is β-large.

Proof. Let ⋆′ = maxX + 1. The set X ∪ {⋆′} = (X0 ∪ {⋆}) ∪ (X1 ∪ {⋆′}) is not
at most (α⊕β)-large, hence, by the contrapositive of Main Theorem 1.1, either
X0 ∪ {⋆} is not at most α-large, in which case X0 is α-large, or X1 ∪ {⋆′} is not
at most β-large, in which case X1 is β-large.

Since α-largeness is closed under supersets, if X0 ∪X1 is (α⊕ β)-large, then
so is X0∪X1∪{⋆} for any ⋆ > maxX1, in which case either X0 is α-large or X1

is β-large. This formulation of the pigeonhole principle, although more natural,
is less optimal than Theorem 2.23.
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3 Largeness below ωω

We now turn to the study of α-largeness in the restricted setting of α < ωω. We
shall give a particular focus to ordinals of the form ωn ·k for n, k ≥ 1. Thanks to
Ketonen and Solovay [12, Lemma 4.6], there exists a simple inductive definition
of α-largeness for ordinals of this form:

Proposition 3.1 (Ketonen and Solovay [12]). A set F ⊆fin N is

(1) ω0-large iff F ̸= ∅

(2) ω(n+1)-large iff F \ minF is (ωn · minF )-large

(3) ωn · k-large iff there are k ωn-large subsets of F

F0 < F1 < · · · < Fk−1

Proof. (1) and (2) are simply unfolding of the definition. (3) is by induction on k:
The case k = 1 is trivial. Assuming (3) holds for k, by Ketonen and Solovay [12,
Lemma 4.6], a set X is ωn · (k + 1)-large iff there exist two sets X0 < X1 ⊆ X
such that X0 is ωn-large and X1 is ωn · k-large. Apply the induction hypothesis
on X1.

3.1 Construction and deconstruction

Thanks to Proposition 3.1, any ωn+1-large set X can be seen as an increasing
sequence of minX many ωn-large blocks. In this section, we prove two impor-
tant propositions: a construction property, which quantifies how many ωn-large
blocks a sufficient to produce an ωn+m-large set, and a deconstruction property,
which counts the number of ωn-large blocks which can be extracted from an
ωn+m-large set.

The quantification is expressed in terms of α-largeness. There are multiple
ways to give a meaning to the sentence “the sequence of blocks X0 < · · · < Xd−1

is α-large”. One could ask that {maxXi : i < d} is α-large, or that any sequence
in X0×· · ·×Xd−1 is α-large. Thanks to the regularity of α-largeness ([12, Lemma
2]), the two definitions are equivalent.

Proposition 3.2 (Construction). For every n,m, d ∈ N and for every sequence
of ωn-large sets X0 < · · · < Xd−1 such that {maxXi : i < d} is ωm-large, then
X0 ∪ · · · ∪Xd−1 is ωn+m-large.

Proof. By induction on m. The case m = 0 is immediate, since any ω0-large
set is non-empty, so d ≥ 1 and X0 is ωn-large. Suppose it holds for m. If
Y = {maxXi : i < d} is ωm+1-large, then Y \ {minY } is ωm · minY -large. By
Proposition 3.1, there are minY many ωm-large subsets Y0 < · · · < YminY−1

of Y \ {minY }. For every i < minY , let Zi =
⋃

j∈Yi
Xi. By induction hypoth-

esis, each Zi is ωn+m-large, so {minY } ∪ Z0 ∪ · · · ∪ ZminY−1 is ωn+m+1-large.
By upward-closure of α-largeness, X0 ∪ · · · ∪Xd−1 is ωn+m+1-large.
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The following deconstruction proposition is an adaptation of Ko lodziejczyk
and Yokoyama [14, Lemma 2.1]. Note that the hypothesis requires an extra
ωn-large set, while the conclusion also contains some extra ωn-large set. This
might seem sub-optimal but the ωn-large set of the hypothesis is on the left
part of X, while the one from the conclusion is on the right, which is weaker.

Proposition 3.3 (Deconstruction). For every n,m ∈ N and for every ωn+m +
ωn-large set X, there are some d ∈ N and some ωn-large subsets X0 < · · · < Xd

of X such that {maxXi : i < d} is ωm-large.

Proof. By induction on m. The case m = 0 is immediate by Ketonen and
Solovay [12, Lemma 4.6], as X is ωn · 2-large, so there are two ωn-large sets
X0 < X1 ⊆ X. Note that {maxX0} is non-empty, hence ω0-large.

Suppose it holds for m. Let X be ωn+m+1 + ωn-large. By Ketonen and
Solovay [12, Lemma 4.6] (or by Theorem 2.21), there are some A < B ⊆ X such
that A is ωn-large and B is ωn+m+1-large. By Proposition 3.1, there are minB
many ωn+m-large sets Z0 < · · · < ZminB−1 ⊆ B \ {minB}.

Let d−1 = 0 and X−1
d−1

= Z0. Note that X−1
d−1

is ωn+m-large, hence ωn-large.
We are going to build inductively for every i < minB − 1 a family of ωn-large
sets Xi

0 < · · · < Xi
di

such that

(1) Xi
0 ∪ · · · ∪Xi

di
⊆ Xi−1

di−1
∪ Zi;

(2) {maxXi
j : j < di} is ωm-large.

Assuming Xi−1
di−1

< Zi is defined, the set Xi−1
di−1

∪ Zi is ωn+m + ωn-large, so by

induction hypothesis, there is a sequence Xi
0, . . . , X

i
di

of ωn-large sets satisfying

(1) and (2). It follows that {maxXi
j : i < minB−1, j < di} is ωm · (minB−1)-

large. Since maxA < minB, then {maxA} ∪ {maxXi
j : i < minB − 1, j < di}

is ωm+1-large, so altogether, these ωn-large sets form the desired sequence.

Corollary 3.4 (Generalized deconstruction). For every n, k, ℓ ≥ 1 and m ≥ 0,
for every ωn+m · (kℓ + 1)-large set X such that k(ℓ + 1) ≤ minX, there are
some d ∈ N and some ωn · k-large subsets X0 < · · · < Xd−1 of X such that
{maxXi : i < d} is ωm · ℓ-large.

Proof. Suppose m = 0. Then X is ωn · (kℓ + 1)-large, and a fortiori ωn · kℓ-
large hence there is a sequence X0 < · · · < Xkℓ−1 of ωn-large subsets of X.
For every i < ℓ, let Zi = Xki ∪ · · · ∪ Xk(i+1)−1. Each Zi is ωn · k-large, and
{maxZi : i < ℓ} is ℓ-large.

Suppose m > 0. In particular, X is ωn+m ·kℓ+ωn+1-large. Since k(ℓ+ 1) ≤
minX, then X is ωn+m · kℓ + ωn · k(ℓ + 1)-large. By Theorem 2.21, there is a
sequence X−1 < X0 < · · · < Xkℓ−1 of subsets of X such that X−1 is ωn ·k-large
and X0, . . . , Xkℓ−1 are ωn+m + ωn-large. By Proposition 3.3, for each i such
that 0 ≤ i < kℓ, there is a sequence X0

i < · · · < Xdi−1
i of ωn-large subsets of Xi

such that {maxXj
i : j < di} is ωm-large. Let W0, . . . ,Wp−1 be the sequence

(Xj
i )i<kℓ,j<di

. In particular, the set Z = {maxWi : i < p} is ωm · kℓ-large. Let
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g : Z → k be such that g(x) is the remainder of the euclidean division of i by k,
where x = maxWi. By Theorem 2.23, there is an ωm · ℓ-large g-homogeneous
subset H = {x0 < · · · < xd−1} ⊆ Z. For each s < d, let is be such that
maxWis = xs. Let H0 = X−1 ∪ Wi0 and Hs+1 =

⋃
is<j≤is+1

Wj . Note that

for each s < d, maxHs = xs, so {maxHs : s < d} is ωm · ℓ-large. Since X−1

is ωn · k-large, so is H0. By g-homogeneity of H, is+1 ≥ is + k, so Hs+1 is
ωn · k-large.

3.2 Sparsity

The notion of α-largeness induces a dual notion of α-sparsity as follows:

Definition 3.5. A set X ⊆ N is α-sparse if for every x, y ∈ X such that x < y,
(x, y]N is α-large.

Theorem 3.6 (Ketonen and Solovay [12]). For every primitive recursive func-
tion g : N → N, there is some n ∈ N such that for every ωn-large set F ,
maxF > g(minF ).

In particular, y > 2x whenever (x, y] is ω-large and y > x2x whenever (x, y]
is ω2-large. We shall be particularly interested in ω2 ·3-sparse sets as it provides
sufficient sparsity to bound Ramsey numbers.

Let Rk(d) be the least number R such that for every coloring f : [R]2 → k,
there is an f -homogeneous set of size d. The standard upper bound for the finite
Ramsey’s theorem for pairs and two colors, obtained by Erdős and Szekeres in
[8], is that R2(d) ≤

(
2d−1
d−1

)
≤ 4d. The upper bound generalizes to Rk(d) ≤ kkd

(see Graham, Rothschild and Spencer [9, Section 1.1]).

Lemma 3.7. If X is ω2 · 3-sparse and minX ≥ 7, then it is (x 7→ xRx(2x+2))-
sparse.

Proof. Any ω2-sparse set is (x 7→ x2x)-sparse, so any ω2 · 3-sparse set is (x 7→
x2x+x2x+x2x+x2x

)-sparse, and in particular (x 7→ 2x2
x2x

)-sparse. Whenever x ≥
7, then x(2x + 2) ≤ 2x, so 2x2

x2x ≥ x2x
2(2x+2) ≥ xxx(2x+2)

. Thus Y is (x 7→
xxx(2x+2)

)-sparse.
Since Rx(2x+2) ≤ xx(2x+2) (see Graham, Rothschild and Spencer [9, Section

1.1]), xRx(2x+2) ≤ xxx(2x+2)

, so X is (x 7→ xRx(2x+2))-sparse.

Thanks to the deconstruction proposition Corollary 3.4, one can relate large-
ness to sparsity. The following lemma specializes this relation in the case of
ω2 · 3-sparsity.

Lemma 3.8. For every ℓ ≥ 1 and m ≥ 0, for every ωm+3-large set X such that
3ℓ + 2 ≤ minX, there is some ω2 · 3-sparse ωm · ℓ + 1-large subset of X.

Proof. Since 3ℓ + 2 ≤ minX, then X \ {minX} is ωm+2 · (3ℓ + 2)-large, hence
ωm+2 · (3ℓ + 1) + ωm+2-large. Then there are two subsets A < B ⊆ X such
that A is ωm+2-large and B is ωm+2 · (3ℓ + 1)-large. Since 3ℓ + 2 ≤ minA,

14



then 3(ℓ + 1) ≤ maxB, so by Corollary 3.4 applied to B, there is a sequence
X0 < · · · < Xd−1 of ω2 · 3-large subsets of B such that Z = {maxXi : i < d} is
ωm · ℓ-large. The set {minX} ∪ Z is ωm · ℓ + 1-large, and ω2 · 3-sparse.

3.3 Largeness for combinatorial theorems

We are particularly interested in the closure of notions of largeness under combi-
natorial statements coming from Ramsey theory. Given a coloring f : [N]n → k,
a set H ⊆ N is f -homogeneous if f is constant on [H]n.

Statement (Ramsey’s theorem). Given n, k ∈ N, RTn
k is the statement “For

every coloring f : [N]n → k, there is an infinite f -homogeneous set”.

Ramsey’s theorem for pairs is a central subject of study in reverse mathe-
matics, a foundational program whose goal is to find optimal axioms to prove
ordinary theorems [6, 25]. Its first-order consequences are closely related to the
computation of bounds for its largeness counterpart:

Definition 3.9. A set X ⊆fin N is RTn
k -α-large if for every coloring f : [X]n →

k, there is an α-large f-homogeneous subset H ⊆ X.

Whenever a parameter is omitted, it is taken to be minX. For instance, a
set X is RTn-α-large if it is RTn

minX -α-large, in other words, if for every coloring
f : [X]n → minX, there is an α-large f -homogeneous subset H ⊆ X. Bounds
largeness for Ramsey’s theorem for pairs were extensively studied. Ketonen
and Solovay [12] proved that every ωk+4-large is RT2

k-ω-large set when k ≥ 2.
Patey and Yokoyama [22] proved that for every k ∈ N, there is some n ∈ N
such that every ωn-large set is RT2

2-ωn-large. Ko lodziejczyk and Yokoyama [14]
computed some explicit bounds, a proved that every ω144(n+1)-large set is RT2

2-
ωn-large. Our goal is to give a tight bound to RT2

k-ωn-largeness, up to an
additive constant.

In order to better understand its computational and proof-theoretic strength,
Bovykin and Weiermann [4] decomposed Ramsey’s theorem for pairs and two
colors (RT2

2) into two statements: the Erdős-Moser theorem (EM) and the
Ascending Descending Sequence (ADS). The Erdős-Moser theorem [7] is a
statement from graph theory about tournaments, that is, complete oriented
graphs, which says that any infinite tournaments admits an infinite transitive
sub-tournament. The Ascending Descending Sequence principle [11] is a theo-
rem from order theory, stating that every infinite linear order admits an infinite
ascending or descending sequence. Both statements can be formulated as par-
ticular cases of Ramsey’s theorem for pairs, thanks to the notion of transitivity.

Definition 3.10. Given a coloring f : [N]2 → k, a set H ⊆ N is f -transitive
if for every x < y < z ∈ H such that f(x, y) = f(y, z), then f(x, y) = (x, z).
Whenever H = N, we simply say that the coloring f is transitive.

Tournaments are in one-to-one correspondence with 2-colorings of pairs, and
transitive tournaments with transitive colorings. Similarly, linear orders can be
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coded as transitive 2-colorings of pairs, in which case ascending or descending
sequences correspond to homogeneous sets. Therefore, given any instance of
Ramsey’s theorem for pairs and two colors, one can apply EM to obtain an
infinite transitive subset, and then ADS to obtain a homogeneous subset. Both
statements were extensively studied in computability theory and reverse math-
ematics [4, 20, 11, 19].

When trying to extend the decomposition of RT2
2 into EM and ADS to more

colors, there are two natural generalizations of the notion of transitivity: a
weak one, given in Definition 3.10, and a stronger one, formally introduced by
Towsner and Yokoyama [26], but already used in Patey [21, Theorem 8.2.1].

Definition 3.11. Given a coloring f : [N]2 → k, a set H ⊆ N is f -fallow if for
every x < y < z ∈ H, f(x, z) ∈ {f(x, y), f(y, z)}.

Clearly, any f -fallow set is f -transitive, but the converse is not true. Both
EM and ADS therefore admit two generalized statements, based on transitivity
and fallowness. We shall only consider the stronger version of each statements,
that is, the fallow version of the Erdős-Moser theorem and transitive Ramsey’s
theorem for pairs.

Statement (Fallow Erdős-Moser theorem). Given k ∈ N, fEMk is the statement
“For every coloring f : [N]2 → k, there is an infinite f -fallow set”.

Statement (Transitive Ramsey’s theorem for pairs). Given k ∈ N, trRT2
k is

the statement “For every transitive coloring f : [N]2 → k, there is an infinite
f -homogeneous set”.

The statements fEMk and trRT2
k admit largeness counterparts, as Ramsey’s

theorem. In the remainder of this article, we shall compute bounds for fEM-ωn-
largeness and trRT2

k-ωn-largeness, and deduce bounds for RT2
k-ωn-largeness.

3.4 Pigeonhole principle

We already studied α-large versions of the pigeonhole principle for α < ϵ0 in Sec-
tion 2. The following proposition is an immediate consequence of Theorem 2.23,
restricted to the setting of ωn-largeness. It is however useful to state it under
this form as it will be used all over the remainder of the article. This strength-
ens Ko lodziejczyk and Yokoyama [14, Lemma 2.2] by improving the bounds and
removing the sparsity assumptions.

Proposition 3.12. Fix n ≥ 0 and a, k ≥ 1.

(1) If X is ωn · ak-large, then it is RT1
k-ω

n · a-large.

(2) If X is ωn+1-large, then it is RT1-ωn-large.

Proof. (1) By induction on k. The case k = 1 is trivial. Suppose it holds for k.
Let X be ωn · a(k + 1)-large and (x 7→ 2x + 1)-sparse, and let f : X → k + 1.
Let Y0 = {x ∈ X : f(x) < k} and Y1 = {x ∈ X : f(x) = k}. By Theorem 2.23,
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either Y0 is ωn ·ak-large, and which case by induction hypothesis, there is an f -
homogeneous set which is ωn ·a-large, or Y1 is ωn ·a-large, and is f -homogeneous
for color k by definition.

(2) Let f : X → minX. Since X is ωn+1-large, X \ {minX} is ωn · minX-
large. By (1), X \ {minX} is RT1

minX -ωn-large, so there is an ωn-large f -
homogeneous subset.

3.5 Grouping principle

The inductive proofs of Ko lodziejczyk and Yokoyama for largeness for EM heav-
ily depended on the notion of grouping. We shall only us the following lemma,
which, in the terminology of grouping, means that every ωn · R2(2d)-large
(x 7→ x2x)-sparse set admits an (ωn + 1, d)-grouping. This is an improvement
of their bound, which used an ωn+3-large set [14, Lemma 2.6].

Lemma 3.13. Let k > 0 and let X ⊆fin N be ωn ·Rk(2d)-large and (x 7→ xkx)-
sparse, for some d ∈ N such that kRk(2d) ≤ minX and let f : [X]2 → k be a
coloring. Then, there exists a sequence Y0 < · · · < Yd−1 of ωn + 1-large subsets
of X and some color c < k such that f(x, y) = c for every x ∈ Ys and y ∈ Yt

for s < t < d.

Proof. If n = 0, the results holds by definition of R and ω0-largeness. Indeed, let
f : [X]2 → k be a coloring. Since |X| ≥ Rk(2d), by finite Ramsey’s theorem for
pairs, there is an f -homogeneous set {y0 < y1 < · · · < y2d−1} ⊆ X. Since any
singleton element is ω0-large, the set Yi = {y2i, y2i+1} is ω0 + 1-large. Assume
from now on that n > 0.

Let X0 < · · · < XRk(2d)−1 be a decomposition of X into ωn-large sets.
Consider the sequence (fi)i<Rk(2d) of colorings and the sequence Z0 < · · · <
ZRk(2d)−1 of sets defined inductively as follows:

Assume that Zi+1, . . . , ZRk(2d)−1 have been defined for some i < Rk(2d),

and consider the coloring fi : Xi → kRk(2d)−1−i+
∑

j<i |Xj | defined by

fi(x) = (f(y, x))y∈
⋃

j<i Xi
⊔ (f(x, y))y∈{minZj :i<j<Rk(2d)}

As minX0 ≥ Rk(2d) and as the Xi are disjoint, we get that for i > 0, Rk(2d) +∑
j<i |Xj | ≤ maxXi−1. By (x 7→ xkx)-sparsity of X, kmaxXi−1 · maxXi−1 ≤

minXi, so kRk(2d)+
∑

j<i |Xj | ·maxXi−1 ≤ minXi. By Proposition 3.12(1), there
exists some ωn−1 · (maxXi−1)-large and fi-homogeneous subset Zi ⊆ Xi. For
i = 0, since kR2(2d) ≤ minX0, by Proposition 3.12(1), there exists some ωn−1-
large and f0-homogeneous subset Z0 ⊆ X0.

The (Zi)i<Rk(2d) are defined such that, for every i < j < Rk(2d) and x ∈ Zi,
y ∈ Zj , we have f(x, y) = f(minZi,minZj). By definition of Rk(2d), there
exists some subset {i0 < · · · < i2d−1} ⊆ {0, . . . , Rk(2d) − 1} and some color
c < k such that, for every j < k < 2d, x ∈ Zij and y ∈ Zik , f(x, y) = c.

Finally, let Yj = {z02j , z12j}∪Z2j+1 for every j < d, where z02j and z12j are the
two last elements of Z2j . Every Yj is ωn + 1-large.
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3.6 Erdős-Moser theorem

The goal of this section is to prove that every ωn+3-large set X with minX ≥ 5
is EM-ωn-large. The previous known bound of Ko lodziejczyk and Yokoyama [14]
was ω36n+4-largeness.

Proposition 3.14. Let n ≥ 0, let X ⊆fin N be and (x 7→ xRx(2x))-sparse,

(1) If X is ωn + 1-large with 2 ≤ minX, then it is fEM-ωn-large.

(2) If X is ωn ·Rk(2d)-large with kRk(2d) ≤ minX, then it is fEMk-ω
n ·d-large.

(3) If X is ωn · 4-large, then it is fEM-ωn + 1-large.

Proof. We prove (1) and (2) by mutual induction on n. (1) holds trivially for
n = 0, as any ω0-large set is non-empty, and any singleton is EM-ω0-large.

Suppose (1) holds for n. Let us show that (2) holds for n. Let k, d ∈
N, let X ⊆fin N be (x 7→ xRx(2x))-sparse, (ωn · Rk(2d))-large and such that
kRk(2d) ≤ minX and fix some coloring f : [X]2 → k. As kRk(2d) ≤ minX,
we have k ≤ minX, hence X is (x 7→ xkx)-sparse, and by Lemma 3.13, there
exists some sequence Z0 < · · · < Zd−1 of ωn + 1-large subsets of X and some
color c < k such that f(x, y) = c for every x ∈ Zs and y ∈ Zt for s < t < d. By
(1) for n, for each i < d, there is an f -fallow ωn-large subset Wi ⊆ Zi. Then,
the set W =

⋃
i<d Wi is ωn · d-large and f -fallow.

Indeed, pick by contradiction some x < y < z ∈ W such that f(x, z) /∈
{f(x, y), f(y, z)}. We cannot have Zi ∩ {x, y, z} = {x} or Zi ∩ {x, y, z} = {z}
for some i < d as it would imply f(x, y) = f(x, z) = c or f(x, z) = f(y, z) = c by
our application of Lemma 3.13. Similarly we cannot have Zi∩{x, y, z} = {y} for
some i < d as it implies the existence of some j < d such that Zj∩{x, y, z} = {z},
since x < y < z. And finally, we cannot have Zi ∩ {x, y, z} = {x, y, z} for some
i < d by our application of the inductive hypothesis.

Suppose (2) holds for n. Let us show (1) holds for n + 1. Let X ⊆fin N
be (x 7→ xRx(2x))-sparse and (ωn+1 + 1)-large and let x0 = minX. Fix some
coloring f : [X]2 → x0, then, X \ {x0} is ωn · 2Rx0

(2x0)-large as 2Rx0
(2x0) ≤

x
Rx0

(2x0)
0 when x0 ≥ 2 and x

Rx0
(2x0)

0 ≤ minX \ {x0}. By Proposition 3.12(1),
there exists some ωn ·Rx0(2x0)-large subset Y ⊆ X \ {x0} such that f(x0, y) =
f(x0, z) for every y, z ∈ Y . By (2) for n, there is some f -fallow ωn · x0-large
subset Z ⊆ Y . Then, the set W = {x0} ∪ Z is f -fallow and ωn+1-large.

Indeed, pick by contradiction some x < y < z ∈ W such that f(x, z) /∈
{f(x, y), f(y, z)}. We cannot have x = x0 as f(x0, y) = f(x0, z) for every
y, z ∈ Y . And we cannot have x0 ∈ Z, otherwise {x, y, z} ⊆ Z, contradicting
the fact that Z is f -fallow.

(3) For n = 0, if X is ω0 · 4-large, then cardX ≥ 4. In particular, any
two-element subset of X is fEM-ω0 + 1-large. Suppose n > 0. Fix a coloring
f : [N]2 → minX. Let x0 = minX and g : X → x0 be defined by g(x0) = 0
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and g(y) = f(x0, y) for y ̸= x0. By Proposition 3.12(1), there is an ωn · 2-large
g-homogeneous subset Y ⊆ X. Let Y0 < Y1 be its decomposition into ωn-large
sets. Let x1 = maxY0. Since n > 0, cardY0 ≥ 2, so x1 > x0 and {x1} ∪ Y1 is
ωn + 1-large. By (1), there is a ωn-large f -fallow subset Z ⊆ {x1} ∪ Y1. Since
Z is g-homogeneous, then {x0} ∪ Z is f -fallow, and ωn + 1-large.

Corollary 3.15. Let n ≥ 0. If X ⊆fin N is ωn+3-large and minX ≥ 7, then it
is fEM-ωn-large.

Proof. Since minX ≥ 5, then by Lemma 3.8, there is an ω2 ·3-sparse ωn+1-large
subset Y ⊆ X. By Lemma 3.7, since minX ≥ 7, Y is (x 7→ xRx(2x+2))-sparse,
so by Proposition 3.14, Y is fEM-ωn-large.

3.7 Transitive colorings

The strategy to compute bounds for transitive Ramsey’s theorem for pairs and
k-colors is different from the one for fallow Erdős-Moser theorem. Patey and
Yokoyama [22, Lemma 4.4] proved that every ω2n+6-large set is ADS-ωn-large,
using a slightly modified notion of largeness. The proof consisted in defining
a coloring f : [N]2 → 2n + 2 and applying Ketonen and Solovay’s bound [12].
Ko lodziejczyk and Yokoyama [14, Theorem 2.11] gave a more direct but less
optimal proof by getting rid of the intermediate notion of largeness, and showed
that any ω4n+4-large set X with minX ≥ 3 is trRT2

2-ωn-large.
In this section, we give a direct and optimal proof, by generalizing the

bound of Ketonen and Solovay to ω-g-largeness. Given an increasing func-
tion g : N → N, a set X is ω-g-large if cardX > g(minX). Whenever g is the
identity function, this yields the standard notion of ω-largeness. The following
proposition is a generalization of Ketonen and Solovay [12, Lemma 6.3] and of
Ko lodziejczyk and Yokoyama [14, Theorem 1.5]:

Proposition 3.16. Fix a primitive recursive function g : N → N. If X is
(ωk + 1)-large and g-sparse for k = 1 and (x 7→ kRk(2g(x)))-sparse for k ≥ 2,
then it is RT2

k-ω-g-large.

Proof. By induction on k. Suppose k = 1. Let f : X → 1 be the trivial
constant coloring. Then X is f -homogeneous. Since X is ωk + 1-large, then,
letting X = {x0 < x1}⊔Y , then cardY ≥ x1 and by g-sparsity of X, x1 > g(x0),
so cardX > g(minX).

Assume the property to be true for some k > 0. Let X be (ωk+1 + 1)-large
and (x 7→ (k + 1)Rk+1(2g(x)))-sparse and consider a coloring f : [X]2 → k + 1.
Let x0 = minX, by sparsity, min(X \ {x0}) ≥ (k + 1)Rk+1(2g(x0)) and X \ {x0}
is (ωk · (k + 1) ×Rk+1(2g(x0)))-large set.

Consider the coloring h : X \ {x0} → k + 1 defined by h(y) = f(x0, y).
By Proposition 3.12(1), there exists some (ωk · Rk+1(2g(x0)))-large and h-
homogeneous subset Y of X \ {x0}, and let c0 ≤ k be the corresponding color.

By Lemma 3.13, as minY ≥ (k + 1)Rk+1(2g(x0)), there exists a sequence
Y0 < · · · < Yg(x0)−1 of ωk + 1-large subsets of Y and some color c1 such that
f(x, y) = c1 for every x ∈ Ys and y ∈ Yt for s < t < g(x0).
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If c0 = c1, then the set {x0}∪{minY0 < · · · < minYg(x0)−1} is f -homogeneous
and ω-g-large and we are done. So assume c0 ̸= c1 and consider the coloring
f ′ : [X]2 → k to be the same coloring as f , except that the colors c0 and c1 are
fuse into one. By the inductive hypothesis, there exists some f ′-homogeneous
subsets Z1 ⊆ Y1.

If Z1 is f homogeneous, then we are done. Otherwise, f([Z1]2) = {c0, c1},
and, since minZ1 > R2(g(minZ0)) by sparsity of X, there exists some f -
homogeneous subset W ⊆ Z1 of size ≥ g(minZ0). If f([W ]2) = {c0}, then
{x0} ∪ W is f -homogeneous, and if f([W ]2) = {c1}, then {minZ0} ∪ W is
f -homogeneous, and both of these sets are ω-g-large.

By generalizing the proof of Patey and Yokoyama [22, Lemma 4.4] to trRT2
k

and replacing the bound of Ketonen and Solovay by Proposition 3.16, we obtain
the following proposition:

Proposition 3.17. Let n ∈ N, k ≥ 1 and let X ⊆ N be (ωkn + 1)-large and
(x 7→ (kn)Rkn(2x+2))-sparse, then it is trRT2

k-ω
n-large.

Proof. Consider a transitive coloring f : [X]2 → k and let f̄ : [X]2 → kn be
defined by f̄(x, y) = kj + i if f(x, y) = i and if j is the smallest index such that
there is no ωj+1-large subset H ⊆ [x, y)∩X with x ∈ H and such that H ∪ {y}
is f -homogeneous for color i, or, if no such index exists, take j = n− 1.

By Proposition 3.16, take Y ⊆ X such that Y is ω-(x 7→ x + 1)-large and
f̄ -homogeneous. Write Y = {y0 < y1 < · · · < yℓ} for some ℓ > y0 and let
f̄([Y ]2) = kj+i. For every s < ℓ, let Hs ⊆ [ys, ys+1) be ωj-large, f -homogeneous

for the color i and such that ys ∈ Hs. Let H = {y0}∪
⋃ℓ−1

s=1 Hs, then, as ℓ > y0,
H is ωj+1-large and H ∪ {yℓ} is f -homogeneous for the color i. Thus, we have
j = n as f̄(y0, yℓ) = nj + i, hence H is f -homogeneous and ωn-large.

Corollary 3.18. Let n ∈ N, k ≥ 1. If X ⊆fin N is ωnk+3-large and minX ≥ 8,
then it is trRT2

k-ω
n-large.

Proof. Since minX ≥ 8, then by Lemma 3.8, there is an ω2 ·3-sparse ωnk ·2+1-
large subset Y ⊆ X. By regularity, there are two subsets Y0 < Y1 of Y such
that Y0 is ωnk-large and Y1 is ωnk + 1-large.

By Lemma 3.7, since Y1 is ω2 · 3-sparse and minX ≥ 7, then it is (x 7→
xxx(2x+2)

)-sparse. Since Y0 is ωnk-large, then cardY0 ≥ nk, so minY1 ≥ nk. It

follows that Y1 is (x 7→ (kn)(kn)
kn(2x+2)

)-sparse, so by Proposition 3.17, Y1 is
trRT2

k-ωn-large.

Corollary 3.19. Let n ∈ N. If X ⊆fin N is ω2n+3-large and minX ≥ 9, then
it is ADS-ωn-large.

Proof. Immediate by Corollary 3.18.

Note that this bound is optimal, up to an additive constant, in that the
coloring witnessing the lower bound of RT2

2 by Kotlarski et al. [16, Theorem
5.4] is transitive.
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3.8 Ramsey’s theorem for pairs

We now have all the necessary ingredients to prove our optimal bounds for
RT2

k-ωn-largeness, using the bounds for the fallow Erdős-Moser theorem and
for transitive Ramsey’s theorem for pairs. We first state it with largeness and
sparsity assumptions, and then use Section 3.2 to compute purely largeness
bounds.

Theorem 3.20. Let n, k ≥ 1. If X ⊆fin N is ωkn ·4-large and (x 7→ xRx(2x+2))-
sparse with kn ≤ minX, then it is RT2

k-ω
n-large.

Proof. Let f : [X]2 → k be a coloring. X is ωkn · 4-large and (x 7→ xRx(2x))-
sparse, hence, by Proposition 3.14(3), there exists some ωkn + 1-large and f -
fallow subset Y ⊆ X \ {minX}. In particular, Y is f -transitive.

As kn ≤ minX, Y is (x 7→ (kn)Rkn(2x+2))-sparse, and by Proposition 3.17
there exists some ωn-large f -homogeneous subset Z ⊆ Y .

Note that if we applied fEM and trRT2
k under their explicit largeness as-

sumptions (Corollaries 3.15 and 3.18) instead of their hybrid sparsity/largeness
versions (Propositions 3.14 and 3.17), this would have yielded significantly worse
bounds. It is therefore useful to keep a sparsity version of the statements in case
of their use as an intermediate object in the proof of a stronger combinatorial
statement. When translating the sparsity assumptions into largeness ones, we
obtain our main theorem.

Main Theorem 1.2. Let n, k ≥ 1. If X ⊆fin N is ωkn+3-large and minX ≥ 17,
then it is RT2

k-ω
n-large.

Proof. Since minX ≥ 17, then by Lemma 3.8, there is an ω2 ·3-sparse ωnk ·5+1-
large subset Y ⊆ X. In particular, there are two subsets X0 < X1 of X
such that X0 is ωnk-large and X1 is ωnk · 4-large. Since X0 is ωnk-large, then
cardX0 ≥ nk, so minX1 ≥ nk. Since X1 is ω2 · 3-large, then by Lemma 3.7,
it is (x 7→ xRx(2x+2))-sparse. It follows by Theorem 3.20 that X1 is RT2

k-ωn-
large.
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