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Abstract

Le Houérou, Patey and Yokoyama defined a parameterized version of
a-largeness to prove that WKLo + RT3 is a VX3-conservative extension of
RCA; + BXY, where VX§ is the universal set-closure of the class of %3-
formulas. We introduce a variant of this notion of largeness and obtain
polynomial bounds, using a tree partition theorem based on Milliken’s
tree theorem. Thanks to the framework of forcing interpretation, this
yields that any proof of a VE3-sentence in the theory WKLo + RT# can be
translated into a proof in RCAg +BXS at the cost of a polynomial increase
in size.

1 Introduction

If a decidable theory Tj is a conservative extension of another decidable the-
ory T3 for a syntactical class of sentences I', there is an algorithmic procedure
which translates any Typ-proof p of a I'-sentence into its shortest T7-proof p. It
is natural to wonder whether the translation p — p yields significantly longer
proofs. If there exists a Ty-proof p of a I'-sentence such that the length |p| of
its translated Tj-proof is super-polynomial with respect to the length |p|, we
say that Ty admits non-trivial speedup over Ty for I'-formulas. In this case,
the theory Ty is arguably useful for I'-sentences, in that it sometimes produces
significantly shorter proofs than 77 for such sentences. If on the other hand,
there exists a polynomial @ such that |p| < Q(|p|) for every Ty-proof p of any
I'-sentence, then we consider that Ty admits no significant speedup over T for
I-formulas, since the various proof systems are mutually polynomially simu-
lated.

The study of proof size and proof speedups traces back to Godel [9] and
belonged for a long time solely to the realm of syntactic manipulations (see
Pudlék [37] for a survey) until Avigad [I] showed that model-theoretic conserva-
tion theorems based on forcing could formalized into proof-theoretic arguments



and yield proof size analysis, using the notion of forcing interpretation. He
proved in particular that WKLg is ITi-conservative over RCA with no signifi-
cant increase in the length of proofs. The technique was later used to formalize
[I}-conservation theorems over RCAg + 1X0 [I8, [19] and VX3-conservation the-
orems over RCAg [22] and over RCA; [27], where a VX0-formula is of the form
VX p(X) where ¢ is X0.

We are particularly interested in the first-order consequences of Ramsey’s
theorem for pairs and two colors (RT3). Patey and Yokoyama [36] proved that
WKL + RT3 is VX9-conservative over RCAq using the notion of a-largeness from
Ketonen and Solovay [20]. The proof was later simplified by Kolodziejczyk and
Yokoyama [23] to give explicit polynomial bounds for this notion of largeness.
Kolodziejezyk, Wong and Yokoyama [22] then formalized the construction to
prove that the conservation proof does not increase significantly the length of
proofs. This constrasts with the fact that WKL{ + RT% yields a non-elementary
speedup over RCA{ even for Xj-sentences [22]. More recently, Le Houérou,
Levy Patey and Yokoyama [28] defined a parameterized version of Ketonen and
Solovay’s notion of largeness and proved that WKLy + RT% is VX9-conservative
over RCAg+BX9, with explicit bounds computation. However, these bounds are
exponential, leaving open whether the conservation theorem yields a significant
proof speedup.

In this article, we define a variant of the parameterized version of a-largeness
[28] and prove that Ramsey’s theorem for pairs admits polynomial bounds with
respect to this notion of largeness. Then, using the notion of forcing interpre-
tation introduced by Avigad [I] and developed in the context of a-largeness by
Kolodziejezyk, Wong and Yokoyama [22], we prove that the conservation the-
orem for WKLy + RT3 over RCA, + BX for VX9-sentences does not yield any
significant proof speedup. The polynomial bounds computation for this new
notion of largeness is non-trivial, and require to prove a partition theorem for
trees based on a finite version of Milliken’s tree theorem [34] 1] with primitive
recursive bounds. Our main theorem is therefore the following:

Main Theorem 1.1. RCA, + BXY polynomially simulates WKLg + RT% with
respect to VX9 sentences.

The article is divided into three parts : in Section[2] we survey and compare
three related notions of largeness, namely, Ketonen and Solvay’s a-largeness, Le
Houérou, Levy Patey and Yokoyama’s a-largeness(6), and our new notion of a-
largeness* (), for a of the form ™-k. In Section we develop the framework of
a-largeness* () and prove polynomial upper bounds for RT3- "-largeness* ().
Last, in Section |4l we combine this upper bound with the framework of forcing
interpretation to prove Main Theorem (1.1

1.1 Notation

Most of the proofs are over a weak subsystem of second-order arithmetic. We
therefore distinguish the formal set of integers N from the theory from the
standard set of integers w from the meta-theory. For instance, if M = (M, S)



is a non-standard model of second-order arithmetic, NM = M and wM =
{oM 1M ...} C M. Similarly, we distinguish the formal ordinals of the theory
and the ordinals from the meta-theory. We therefore write for instance for
the formal counter-part of w*. Indeed, since =sup,cy ' if w & M, then
and a fortiori are not well-founded from the viewpoint of the meta-theory.

We often identify an integer k with its ordinal {0,...,k — 1}. Given a set
X C N and an integer n € N, we write [X]™ for the collection of all subsets
of X of size n. The set [X]" is in one-to-one correspondence with the set of
all increasing ordered n-tuples over X. Therefore, for simplicity of notation,
given a coloring f : [X]|™ — k, we write f(zo,...,2n—1) for f({zo,...,2n-1})
assuming that xg < -+ < xp_1.

2 Notions of largeness

Partial conservation theorems are closely related to ordinal computation for
appropriate notions of largeness. In this section, we survey three notions of
largeness related to our polytime translation.

2.1 Largeness and sparsity

Definition 2.1. A family £ C [N]<N is a largeness notion if any infinite set has
a finite subset in L and L is closed under supersets. A finite set F' is L-large if
Fel.

We are particularly interested in the closure of notions of largeness under
combinatorial statements coming from Ramsey theory. Given a function f :
[N]" — k and a finite set G = {zg < --- < zy_1}, let fg : [{]" — k be defined

by fG(i()7 e ,in_l) = f(xim . ’xin—l)'

Definition 2.2. Given n,k € N, an RT-like statement is a I13-formula of the
form
(Vf: [N]" = k)[®(f,N) — (3Y)(Yis infinite AN U(f,Y))]

where ®(f,Y) and V(f,Y) are of the form (VG Csin Y)O(fg) with © a AY-
formula.

Ramsey’s theorem for n-tuples and k-colors is the most obvious example
of an RT-like statement: Given a coloring f : [N|* — k, a set H C Nis f-
homogeneous if f is constant on [H|™.

Statement (Ramsey’s theorem). Given n,k € N, RTy is the statement “For
every coloring f : [N]™ — k, there is an infinite f-homogeneous set”.

In this case, ®rrp(f,Y) is always true, and Wgrr(f,Y) means “Y is f-
homogeneous”. Ramsey’s theorem for pairs and its consequences is a cen-
tral subject of study in reverse mathematics [40, 6, B3]. In particular, the
understanding of its first-order consequences is one of the main open ques-
tions [24] [36 [28].



Our main focus in this article will be to study of largeness closure under
applications of RT%. It is however often useful to decompose combinatorial
statements into simpler ones. We shall therefore also be interested in the fol-
lowing RT-like statements: Given a coloring f : [N]> — 2, a set H C N is
f-transitive if for every i < 2 and z <y < z € H, if f(z,y) = f(y,2) = i, then
f(z,z) =i. If Nis f-transitive, we simply say that the coloring f is transitive.

Statement (Erdés-Moser theorem). EM is the statement “For every coloring
f:[N]2 = 2, there is an infinite f-transitive set”.

Statement (Ascending Descending Sequence). ADS is the statement “For ev-
ery transitive coloring f : [N]? — 2, there is an infinite f-homogeneous set”.

The Erdés-Moser theorem is originally a statement from graph theory [12]
formulated in terms of tournaments, that is, complete oriented graphs. Infinite
graphs are one-to-one correspondence with colorings f : [N]2 — 2. Similarly,
the Ascending Descending Sequence is a statement from order theory, stat-
ing that every infinite linear order admits an infinite ascending or descending
sub-sequence. Here again, linear orders are in one-to-one correspondence with
transitive 2-colorings of pairs.

Both statements have been extensively studied in computability theory and
reverse mathematics [5], 32, 31} [I7]. In particular, the first-order part of ADS is
well-understood, as RCAg+ADS is a IT}-conservative extension of RCAq+BX3 [7]
and by applying the techniques of [I8], one can prove that RCAy + ADS is
polynomially simulated by RCAq + BXS.

Definition 2.3. Let P be an RT-like statement with witnesses n,k, ® and ¥,
and let L be a largeness notion. A finite set F' is P-L-large if for every coloring
f: [F]™ = k such that ®(f,N) holds, there is L-large subset E C F such that
U(f, E) holds.

By extension, if (Pg)xen is a family of RT-like statements, then we say that
a finite set F' is P-L-large if it is Py-L-large for every k < min F'. For instance,
a set I is RT'-L-large if for every k < min F and every coloring f : N — k,
there is an L-large f-homogeneous subset of F'. Equivalently, since £ is closed
under supersets, F is RTl—E—large if for every £ < min F' and every k-partition
EglU---UE;_1 = F, there is some i < k such that F; is L-large.

Sparsity. Every notion of largeness induces a dual notion of sparsity.

Definition 2.4. Let £ C [N]<N be a largeness notion. A set X C N is L-sparse
if for every x,y € X such that x <y, (x,y|n € L.

By closure of largeness notions under supersets, any subset of an L-sparse
set is again L-sparse. Any increasing function g : N — N induces a notion
of largeness £, = {F : g(min F — 1) < maxF}. Then, an Lj-sparse set X
is such that for z,y € X with < gy, g(z) < y. We simply say that X is
g-sparse. We will be particularly interested in g-sparsity for primitive recursive



functions g. Indeed, by adaptations of Ketonen and Solovay [20], one can assume
that the sets are g-sparse for any fixed primitive recursive function g, with only
a constant exponent overhead in the computations. A set X is exp-sparse if it
is (z — 4%)-sparse, in other words, every z,y € X such that z < y, then 4% < y.

Although sparsity can be translated into some largeness assumption, it is
convenient to separate the largeness and sparsity hypothesis in the ordinal com-
putation of largeness, as sparsity has a better behavior with respect to compo-
sition of RT-like statements and avoids overheads redundancy.

2.2 a-largeness

Ketonen and Solovay [20] defined a notion of largeness called a-largeness for
every a < € to extend the Paris-Harrington theorem. It was then used to prove
V¥9-conservation theorems for combinatorial theorems over RCA, [41 [36] 23].
A slight variant of this notion of largeness based on the Hardy hierarchy of
fast-growing functions [I5] was extensively studied [38] 25 4] 26, [3] [10].

Ketonen and Solovay’s a-largeness was originally defined for every a < €.
However, the parameterized variants presented in this article are only defined
for a of the form ™ -k with n > 0 and & > 1. To uniformize the presentation,
we shall therefore also restrict the definition of Ketonen and Solvay’s notion
of largeness to ordinals of this form. The definition below is different, but
equivalent to the original one [20].

Definition 2.5. A set F' Csin N s
o Olarge if F#0
o (™ D.arge if F\ minF is ( ™ - min F)-large
o . [k-large if there are k ™-large subsets of F
Fp<Fi << Fpq
where A < B means that for alla € A and b € B, a < b.

Let J be the V3a-set of all n € N such that ™-largeness is a notion of
largeness, that is, such that every infinite set contains an "™-large subset. RCAq
proves that J is an additive cut, but nothing more, in the sense that there is
a model M = (M, S) of RCAg in which J is of the form sup(a-n : n € w)
for some non-standard element @ € M \ w. Throughout this article, we shall
always assume that min F' > 3 to avoid some pathological cases. Ketonen and
Solovay [20, Lemma 6.3] computed a first upper bound on RT%— -largeness.

Theorem 2.6 (Ketonen and Solovay [20]). Let k > 2. If F C¢in N is  FH4.
large, then it is RT%— -large.

Kolodziejezyk and Yokoyama [23] gave an alternative proof, which empha-
sizes the separation between largeness and sparsity.

IKolodziejczyk and Yokoyama [23, Theorem 5.1] actually proved that if F is k 4 1-large,
(z — 20%” )-sparse and min F' > k, then it is RT%— -large. If a set is ¥ - 2-large with k > 2,
then it contains an * + 1-large subset F' such that min F' > k.



Theorem 2.7 (Kolodziejezyk and Yokoyama [23]). Let k > 2. If F Cgin N is
k. 2-large and (z — 22° )-sparse, then it is RTZ- -large.

This bound is tight, in the sense that Kotlarski et al. [26, Theorem 5.4]
proved that if a set is RTZ— "-large, then it is ’mfl—larg Patey and Yokoyama
[36] proved that for every k € N, there is some n € N such that RCA proves that
every "-large set is RT%— k_Jarge, and used this fact to deduce that RCAg+ RT%
is VX9-conservative over RCAg. Kolodziejczyk and Yokoyama [23] made some
explicit bound computation for RT% and other RTj-like statements.

Theorem 2.8 (Kotodziejczyk and Yokoyama [23]). Let n > 2. If F Cgin N is
1440+ arge and exp-sparse, then it is RT%— "_large.

Kolodziejczyk and Yokoyama [23, Lemma 2.1] showed that if X is "*4-
large then it contains an ™-large exp-sparse subset. In the same way that
Ramsey’s theorem for pairs is traditionally proven inductively using the infinite
pigeonhole principle, Kotodziejezyk and Yokoyama [23] based their computation
of Theorem on the following lemma:

Lemma 2.9 (Kotodziejezyk and Yokoyama [23]). If F Csin N ois  "Fl-large
and exp-sparse, then it is RT!- "-large.

Kolodziejezyk, Wong and Yokoyama [22] used the polynomial nature of the
bound for RT%— "-largeness to prove that RCAy+ RT% is polynomially simulated
by RCAy with respect to VX9-sentences. In an incoming paper, Le Houérou and
Patey [30] give a tight upper bound to RTi— "-largeness, up to an additive
constant: In what follows, let Ry (d) be the least number R such that for every
coloring f : [R]?> — k, there is an f-homogeneous set of size d.

Theorem 2.10 (Le Houérou and Patey [30]). Let n,k > 1. If X Cyin N is
kn o 4-large and (z — 2% 2*+2)) _sparse with kn < min X, then it is RTi— n-
large.

Based on the known upper bounds of the Ramsey numbers, the authors
deduced that if X Csi, Nois k"”—large and min X > 17, then it is RTz— -
large.

2.3 «-largeness(f)

Le Houérou, Levy Patey and Yokoyama [28] generalized the notion of a-largeness
to a parameterized version, in order to prove conservation theorems for VX3-
sentences. They used this framework to prove that RCAy+ RT% is V¥9-conserva-
tive over RCAg + BX9, and Le Houérou and Levy Patey [29] proved a similar
conservation result for the Ordered Variable Word theorem. In what follows,
fix a AY-formula (x,y, 2), and let T = VaIyVz0(x, vy, 2).

2Kotlarski et al. [26] used a slightly different notion of largeness, say a-largeness’, and
proved that every RT%— " larget set is 57~ l-large!. Both notions translate as follows: for
n > 1, every "-large set is "-larget and every "-largel set is "~ !-large.



Definition 2.11. Two finite sets E < F' are 0-apart if
Ve <maxFE Jy <min F Vz < max F 0(x,y, z)

Note that f-apartness is a transitive relation. Moreover, if X < Y are
f-apart and Xg C X and Yy C Y, then Xy,Yy are f-apart. The following
inductive definition is very similar to that of Definition [2.5] except that the sets
Fy, ..., Fr_1 are required to be pairwise f-apart.

Definition 2.12. A set F Csip N s
o Olarge(d) if F# 0
o (™ Darge(d) if F\ min F is ( "™ - min F)-large(f)
o ".k-large(0) if there are k pairwise 0-apart ™-large() subsets of F'

Fo<F < - < Fiq

Let Jy be the VX5 set of all n € N such that ™-largeness(d) is a notion
of largeness. As in the previous largeness situation, Le Houérou et al. [28]
showed that RCAq + BEg + T proves that Jy is an additive cut, and constructed
(unpublished) a model M = (M, S) of RCAg + BXS + T in which Jp is again
of the form sup(a-n : n € w) for some a € M \ w. Following the work of
Kolodziejezyk and Yokoyama [23], the authors obtained an explicit bound for
RT2- "-largeness(f), except that it is exponential.

Theorem 2.13 (Le Houérou, Levy Patey and Yokoyama [28]). If F C¢ip N is
6%+ 10rge(8), then it is RT2- ™-large(6).

Thanks to the similarity of the notions of largeness and largeness(), most
of the constructions of [23] work mutatis mutandis, but the bound for RT*- "-
largeness(6) is 2n rather than n + 1.

Lemma 2.14 (Le Houérou, Levy Patey and Yokoyama [28]). If F Csin N is
27 _large(0) and exp-sparse, then it is RT'- "-large().

Furthermore, the authors showed that this bound is tight, in the sense that
for every n € N, there is a set F' and a formula 6 depending on F' such that F
is 2"~ 1large(Ar) but not RT3- ™-large(6r).

2.4 a-largeness*(0)

We now define a variant of a-largeness(f), namely, a-largeness*(6), for which
one can prove a polynomial bound for RT%— ™_largeness* (), opening the door
to a polynomial simulation of RCAg + RT3 over RCA, 4 BX9 for VX3-sentences.
As mentioned before, most of the combinatorics of [23] apply to largeness(6),
except the bound for the pigeonhole principle. The goal is therefore to define
a variant of largeness(f) for which the bound for RT'- "-largeness*(6) is in



n—+ O(1). The issue in adapting the proof of [23, Lemma 2.2] to largeness(6) is
that f-apartness is not preserved by considering union of some pairwise f-apart
sets. On the other hand, defining " - k-largeness(6) as k many "-large(6)
subsets of F' such that for every s <k —1, FpU---UF,; and Fsy1 U---UFj_1
are f-apart, does not seem to yield a notion of largeness provably in BX9. We
therefore adopt a hybrid approach, which allows to preserve #-apartness under
a fixed amount of union operations.

Definition 2.15. Let £ C [N]<N be a notion of largeness.

(a) Given k € N, we write L-k for the collection of all finite sets F' containing
k pairwise 08-apart L-large subsets Xog < -+ < Xgp_1 C F.

(b) Given o € N<N_ we write L - o for the collection of finite sets defined
inductively as L-e=L and L-(k-7)= (L k) -T.

One can think of £ - (k, 4 tmes k) as a k-regular tree of depth d whose leaves
are pairwise disjoint L-large sets, with some #-apartness property at every node
of the tree. This intuition is formalized in Lemma [3.1]

Definition 2.16. Given n, LY is defined inductively as follows. L§ is the
collection of all non-empty sets. Having defined LY, LfLH 18 the collection of all
X such that

X\ {min X} € LY - (min X, 1 fimes min X)

We say that X is "-large*(0) if X € L% and ™ - o-large* () if X € LY - 0.

Note that if one replaces LY - (min X, +1 times min X) by L? - min X in the
definition above, then one recovers the notion of largeness(#). Thus, any -
large* (0) set is  "-large(#), and a fortiori ™-large. A reversal is studied in Sec-
tion We shall prove in Sectionthat the bound for RT'- "-largeness*(6)
is n + 2, which is sufficient for our purposes. The following theorem is one of

the main results of this article:

Theorem 2.17. 2Ther’e is a primitive recursive function g : N — N such that if
F Cein Nois 1207412046 Jarge*(0) and g-sparse, then it is RTa- "-large*(6).

Using the translations between largeness(f) and largeness*(¢) studied in Sec-
tion this bounds translates into a polynomial bound for RT3-largeness(6).

3 Combinatorics of largeness*(f)

In this section, we develop the framework of a-largeness*(6). It admits many
similarities with the development of Le Houérou, Levy Patey and Yokoyama [28],
with better upper bounds. However, the proofs and notation a significantly more
complicated due to the structural differences of the two notions of largeness.
We start with a technical lemma which formalizes the intuition that L -
(k, @ times ) admits a tree structure, with some f-apartness conditions at each
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Figure 1: Upper bounds of P- "-largeness for various notions of largeness and
various RT-like statements, under the assumptions of g-sparsity for some prim-
itive recursive function g and of sufficiently large minimum.

node. More precisely, every set in £ - (k, 4 tmes k) can be represented as a k-
regular tree of depth d whose leaves are pairwise disjoint L-large sets, with some
f-apartness property at every node of the tree.

Lemma 3.1. Let L be a notion of largeness. A set X is in L - (k, @ tmes k) 4ff
there is a map g : k=% — LN [X]<N such that

(a) for every o € k<%, g(0) = U1, 9(o - i)

(b) for every ¢ < d and o,7 € k* with 0 <jep 7, then g(o) < g(7) and g(o)
and g(7) are O-apart

Proof. By induction on d.

For d =0, let X bein £ (k,0times k) = £ and let g : k=% — [X]<N defined
by g(e) = X, g vacuously satisfy (a) and (b). Reciprocally, given a function
g k=% — [X]<N satisfying (a) and (b), g(€) belongs to £ N [X]<N, hence X is
in £L=L-(k,O0times k)

Assume the property to be true for some d € N.
Let X be in £ - (k,d+1 times k) there exists pairwise f-apart subsets Xg <
- < X1 C X such that X; € £ (k,?tmes k) for every i < k. By the
inductive hypothesis applied to every X;, there exists maps g; : k<% — £N[X;]<N
satisfying (a) and () for every i < k. Let g : k(@) — £ [X]<N defined by
g(e)=g(0)U---Ug(k—1) and g(i - 0) = g;(c) for every o € k=% and i < k. Tt
is clear that g satisfies (a) and (b).

Reciprocally, consider such a function g : k=1 — £N[X]<N satisfying (a)
and (b). Fori < k, themap g; : k=% — £N[g(i)]<N defined by g;(c) = g(i-0) also
satisfy (a) and (b), thus, by the inductive hypothesis, the sets g(0),...,g(k—1)
are in £ - (k,4tmes k) and by (b), they satisfy ¢g(0) < --- < g(k — 1) and are
pairwise f-apart. Therefore, the set g(0)U---Ug(k —1) isin £ - (k,d+1 times )
and, as g(0)U---Ug(k—1) C X, X is also in L - (k,d+1 times 1), O



3.1 Construction and deconstruction

We now prove the standard construction and deconstruction propositions for
this new notion of largeness. They intuitively state sufficient conditions for a
large union of ’-large sets to be “tP-large, and conversely, the amount of
largeness necessary to obtain an “-large collection of ’-large sets.

There are multiple possible interpretations of “large collection” of sets. In
the weakest sense, {max X; : ¢ < k} is large, and in the strongest sense, any
set H € [[;.,[min X;, max X;] is large. We shall prove the construction propo-
sition (Proposition with the weakest hypothesis, and the deconstruction
proposition (Proposition with the strongest conclusion. Note that in the
case of the notion of largeness of Ketonen and Solovay, both interpretations are
equivalent, by regularity: indeed, if F = {xg < -+ < z_1} is a-large, and
F ={yo < --+ < yg—1} is such that y; < x; for every i < k, then F' is also
a-large.

Proposition 3.2 (Construction, I%9). Leta,b € N. Let Xo < X1 < -+ < Xg_1
be pairwise O-apart “-large* (0) sets such that {max X, : s < k} is L[31+2b.

large*(0). Then U, X, is  “P-large*(6).

Proof. By induction on b. The case b = 0 is trivial.
Assume the property to be true for some b € N. And let Xg < X1 <
.-+ < Xj_1 be pairwise f-apart %-large*(6) sets such that {max X, : s < k} is
L3J+2(+1) Jarge*(#). Unfolding twice the definition, {max X, :1 < s < k} is

31426 ( L§)+2b+2+]5 | +2b+1 times

max X, ,max Xy)-large® (6)

Notice that [&] +20+2+ [§] +2b+1>a+b.
Let Z beany L3142 Jarge* (6) set corresponding to a leaf of the tree induced
by Lemma By induction hypothesis, the set W = {X, : max X, € Z} is

otb_large*(f). Then (J,_j, X, is T -large*(6). O

In the following proposition, we abuse the product notation, and see H as a
subset of N intersecting every interval [min X;, max X;] exactly once rather than
a tuple in the product [min Xg, max Xo] X - - - X [min Xj_1, max Xj_1]. Note that
in the following deconstruction lemma, the bound of largeness* () is similar to
Ketonen and Solovay’s largeness, namely, "™ .2 while for largeness(f), one
required "2™ .2 (see [29, Lemma 2.5)).

Proposition 3.3 (Deconstruction, I%9). For every n,m and for every "T™.2-

large*(0) set X, there are some k € N and some "-large*(6) pairwise 0-apart

subsets Xo < -+ < Xp_1 of X such that every H € [];_; [min X;, max X;] is
™ _large*(0).

Proof. The proof is similar [29] Lemma 2.5], but adapted for this new notion of
largeness.

If n = 0, then, for X = {zg,...,25_1} an ( ™ - 2)-large*(f) set, we can
pick X; = {x;} for every i < k. Every X; is O-large*() and every H €
IT; < [min X;, max X;] is equal to X and is therefore ™-large*(9).
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Thus, we can assume that n > 0, and prove the result by induction on m.

Case m = 0. The result is clear, as every non-empty set with an element
greater than 3 is O-large* ()

Case m > 0. Let X =YyUY; for Yy <Yy two "F™-large*(#) and f-apart
sets. Yy is Tl (max Yy, mtnrtimes max Yy)-large* (0), and, as n > 0, it is
therefore  "*t™~1. (max Yy, ™1 tmes max ¥y)-large* (0). Let (Z5) e (max vo)m+1
be the "t~ Llarge*(f) subsets of Y7 corresponding to the leaves of the tree
induced by Lemma We will only use the sets Z..; for 7 € (maxYy)™ and
i< 2.

For 7 € (max Yp)™, we can apply the inductive hypothesis on the set Z,.q U
Zr.1 and obtain some sequence X§ < --- < X[ | of f-apart, "-large(0)
subsets of Z;.0 U Z,.; such that every H™ € I, [mianT,maijT] is m-L
large*(6).

Consider the family comprised of Yy and all the X7 for 7 € (max Yp)™ and
j < k;. Let k be the cardinality of the family and write W; for its i-th element.

Every W; is "-large*(0) and they are pairwise #-apart. Indeed, Yy is 6-
apart from the other W; as they are subsets of Y7 and Y; is #-apart from Y3
by assumption. For 7,7 € (maxYy)™, j < k, and j' < k., X] and XjT,/ are
f-apart, indeed, if 7 = 7/, this is true by the inductive hypothesis, and if 7 # 7/,
we can assume without any loss of generality that 7 <;e, 7, and by Lemma
Ui <max v, Zr-i 1s f-apart from Ui <max v, Zr.i, hence so are X and X]T// as they
are subsets of these unions.

Finally, every H € II; <, [min W;, max W;] is ™-large*(6). Indeed, max Wy =
max Yy, thus min H < maxYy and every HY € Tlp<;<)[min W;, max W] is

™1 (max Yo, ™ Hmes, max Vg )-large* (0) as every H™ € TIj <, [min X7, max X7 |
is ™~ llarge*(#) and is a subset of | J Z,.; for 7 € (max Yp)™. O

i<max Yy

Corollary 3.4. For every n,m,s and for every "™ -(2,ky,..., ks)-large* ()
set X, there are some k € N and some "-large*(0) pairwise 0-apart subsets
Xo < -+ < X1 of X such that every H € [],_,[min X;, max X;] is ™ -
(k1 ..., ks)-large*(0).

Proof. Immediate by Proposition and Lemma Indeed, any "t™ .
(2, k1, ..., ks)-large*(0) set is ( "T™-2) - (ky,..., ks)-large*(6). O

3.2 Relation to largeness(f)

As mentioned in Section[2.4] any "-large*(6) set is "-large(f). We now prove a
partial reversal, which will be useful in Section[3.9]to translate existing theorems
over largeness(6) to theorems over largeness*(#). However, the non-optimality of
the translation makes it necessary to reprove a significant part of the framework
to obtain better bounds.

By Lemma one can see any " - (min X, % tmes min X)-large(f) as a
min X-regular tree of depth k whose leaves are pairwise disjoint "-large(6)
sets, with f-apartness conditions. Similarly, by the definition of largeness(),
any "t*_large(f) set can be seen as a tree of "-large(f) sets, with a level of
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branching of the parent nodes depending on the children. This “dependently
branching” tree is much more branching than min X. The following lemma
reflects this explanation:

Lemma 3.5. Fizrn >0 and k > 0. If X is "*-large(d), then X \ {min X'}
is ™ (min X,k #mes min X)-large(6).

Proof. By induction on k. Case k = 1. Then X \ {min X} is ™ - min X-
large(f) by definition. Suppose k > 1. Then X \ {min X} is "%~ . min X-
large(d). Let Xo < -+ < Xminx—1 € X \ {min X} be pairwise #-apart

n+k=1]arge() sets. By induction hypothesis, for every i < min X, letting
YV, = X; \ {min X;}, ¥; is ™ - (min X;,*~1 ¥imes min X;)-large(), hence is

™. (min X, k=1 times min X)-large(). Moreover, the Y;’s are pairwise f-apart,
so X \ {min X} is ™ (min X, * times min X)-large(6). O

We are now ready to prove a partial reversal to the fact that every "-

large*(0) set is  "-large(6).

Proposition 3.6. If X is gt -large(0), then it is  ™-large*(0).

Proof. By induction on n. Case n = 0. If X is C-large(f), then X # ) so
X is Olarge*(). Casen > 0. If X is %—largew), then it is 2+
large(#). By Lemma X\{min X} is S -(min X, ™ times min X)-large(0).
By induction hypothesis, X \ {min X} is ™71 (min X, times min X)-large* (0),
hence X is "-large*(). O

3.3 Cut

Recall that a cut is an initial segment of N closed under successor. A cut [ is
additive if for everyn € I, n+n € 1.

Let Jg (resp. Jj) be the set of all n € N such that every infinite set contains
a finite subset that is "-large(6) (resp. ™-large*()). The authors showed in
[28] that Jp is an additive cut, provably in RCAg + BX9 + 7. In this section, we
study the cut Jj, and show that it satisfies the same closure properties as Jg over
RCA + BX9 + T, that is, it is an additive cut, and no more closure properties
are provable, in that there is a model M = (M, S) = RCAq+BX9 +T and some
a € M \ w such that J5(M) =sup(a-n:n € w).

Lemma 3.7 (RCAq+BX§+T). Let £ be a largeness notion. For every infinite
set X, there is an infinite sequence Ey < E1 < ... of pairwise 0-apart L-large
subsets of X.

Proof. Consider the greedy algorithm enumerating such a sequence. Once Fy <
-+« < Fji_1 have been listed, search for some E, > FEj_; that is f-apart from
Ey, ..., Er_1 and L-large. If for some k € N, Ey, ..., E_; have been outputted
by this procedure, since 7" and BXY hold, there exists a bound by such that
every subset of [bg, +00) is f-apart from Ey U --- U Ej_;. Since X N [bg, +00)
is an infinite set and L is a largeness notion, there exists some L-large subset
Ei, C XNJbg,+00), hence the greedy algorithm will eventually list some E. O
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Proposition 3.8 (RCAy + BXS + 7). J; is an additive cut.

Proof. Any "*llarge*(f) set contains many "-large*(f) subsets, so by AJ-
induction which holds over RCAy, Jj is an initial segment of N.

By [28], RCAq+BX3+T proves that Jg is a cut, sow C Jg. By Proposition 3.6}
every %—large(ﬁ) set is  "-large*(6). It follows that w C J}.

We now prove that if n € Jj, then n+[% ] € Jj. Suppose that n € Jj. Let X
be an infinite set. By Lemma there is a countable collection Fy < Fq < ...
of pairwise f-apart "-large*(#) subsets of X. The set Y = {max F; : s € N}
is infinite, so there is an "-large*(#) subset Z C X. By Proposition with
a=nandb=[2], U, , Esisan "Fli)large*(0) subset of X, so n+|2] € Jj.

Next, we prove that if n € Jj, then n +n € Jj. Let n € J;. If n € w, we are
done, so suppose not. By the previous claim, n + 5[ %] € J;. Note that since
n € w (and in particular n > 16), 5| %] > n, so since Jj is an initial segment of
N, n+4+n e Jj.

Since Jj is an initial segment of N closed under addition and containing w,
it is also closed under successor, so Jj is an additive cut. O

The remainder of this section is mostly focused on proving that Jj satisfies
no better closure property than additivity over RCAg +BX9 + 7. A cut I C M
is said to be semi-regular if for every M-finite set E C M such that |E| € I,
E N1 is bounded in I. The following proposition shows that semi-regular cuts
are exactly those coding a model of WKLg:

Proposition 3.9 (See Scott [39] and Kirby and Paris [2I, Proposition 1]).
Let I C M be a cut and let Cod(M/I) = {SNI: S is M-finite}. Then I is
semi-regular if and only if (I,Cod(M/I)) = WKLy.

In what follows, let PA™ denote the axioms of a discrete ordered commutative
semiring (see [16] Definition 4.1] for instance).

Proposition 3.10. Let M = PA™+BX3+T be a countable non-standard model.
There exists some a € M \ w and a proper semi-reqular cut I <. M such that,
letting M = (I,Cod(M/I)), M |= WKLg + BXS + T and J;(M) = sup{a - k :
k€ w}.

Proof. By Proposition for every n € w, PA™ + BYs 4+ T proves that there
exists some exp-sparse "-large*(6) set. Therefore, by overflow, there exists
some a € M \w and an exp-sparse % *-large*(6) subset of M. Let F_; be such
a set.

Fix (Sp)new an enumeration of all the M-finite sets that are not ¢+1-
large*(0), fix (F;)icw an enumeration containing all the M-finite sets infinitely
many times, and fix (¢;)new an enumeration of all the non-standard elements
of M. The cut I will be defined as sup{min(F,)|n € w} for F-1 D Fy D F ...
a decreasing sequence of M-finite set satisfying for all ¢ € w:

(1) F;is ®*clarge*(#) for some non-standard c.

(2) Fy; is not a'ci—large* (9) and min Fy; > min Fy;_q for all i € w
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(3) [min Fyiyq, max F4i+1] ns; =0
(4) If ‘El‘ < min F4i+1 then [mll’l F4i+2; max F47;+2] NE; = 0
(5) {min Fy; 42} is f-apart from Fy; 3.

Assume F), has already been defined for some n € w U {—1}.
If n+1 = 4m for some m: Let Fy,, C F, be such that Fy,, is “°-large*(6)
for some non-standard ¢ but not ““-large*(), and min F;, < min Fy,,.
If n+1 = 4m + 1 for some m: Let ¢ non-standard be such that F;, is
@ large*(h). F, being @ (c=2+(e+1) . 2 Jarge* (), by Proposition there
exists a family Xo < --- < X1 of (=2 large*(6) subsets of X such that
every H € II;<;[min X;, max X;] is “*!-large*(f). There exists some i < k
such that [min X;, max X;] N S,, = 0, otherwise there would be some H €
IT; < [min X;, max X;] such that H C S,,, contradicting the fact that S,, is not
atl large*(0), so let Fy,41 = X;.
If n+1=4m+ 2 for some m: if min Fy,,+1 < |Ep|, then keep Fyppio =
Fypy1. If min Fyyiq > |Epy|, then, let ¢ non-standard be such that Fy,,qq is
@< large*(9) and let Xo < -++ < Xmin Fy,y,—1 be ¢ llarge*(6) subsets of
Fymm41. By the finite pigeonhole principle, there exists a j < min Fjy,,41 such
that E; N [min X;, max X;] = (), in this case, take Fy,,12 = X; for such a j.
If n+1 = 4m + 3 for some m: Let ¢ non-standard be such that F;, is
@c_large*(#). Thus, there exists some -apart and *(¢~V-large*(f) subsets
Xo < X of F,,. Take Fyp43 = X1, Fymts is 0-apart from Xy, hence #-apart
from [0, max Xy], and therefore §-apart from {min Fy;o}.

We first claim that (I,Cod(M/I)) = WKLy + BX9 + T. The constraint
min Fy; > min Fy; 1 of (2) ensures that I is a cut and that every F; N1 is
cofinal in I. By (4), the cut will be semi-regular, which, using [2I, Theo-
rem 7] implies that (I, Cod(M/I)) = WKLy. By Paris—Kirby [35] or Adamow-
icz—Clote-Wilkie [8], since M = I%9, then Cod(M/I) = BXY. The constraint
(5) ensures that (I, Cod(M/I)) = T. Indeed, for every x € I, there exists some
i € N such that < min Fy;1o. Since {min Fy; o} is f-apart from Fy; 3, there
exists some y < min Fy; ;3 such that 6(x, y, z) holds for every z < max Fy; 3. By
construction of I, we have y € I and max Fy;13 > I, thus (I,Cod(M/I)) = T.

We now claim that Jj(M) = sup{a -k : k € w}. By definition of I, Fy; NI
is an element of Cod(M/I) that is cofinal in I and which is not *-large*(6)
by (2). For every d > sup{a -k : k € w}, there exists a non-standard ¢ such that
a-c < d (by overflow). Then for ¢ € w such that ¢ = ¢;, the set Fy; NI does not
contain any 9-large* () I-finite subset. Therefore, J5(M) C sup{a-k : k € w}.

For the reverse inclusion, it is sufficient to show that a € Jj;(M) (as J3(M)
is closed by summation by Proposition |3.8). Take any U € Cod(M/I) cofinal
in I, there exists some M-finite set U’ such that U = U’ NI. U’ is o+l
large*(6), otherwise U’ would be one of the S;, and U would not be cofinal in I
(as [min Fy;11, max Fy;11]NS; = 0 by (3)). Let V be the smallest initial segment
of U’ forming an %large*(6) set, then V is not %*l-large*(#) and therefore
V = 5; for some j € w, hence VNI is not cofinal in I. U and V are both initial
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segments of U’, and U is not included in V as U is cofinal in I unlike V, so
V is included in U and therefore in I. So, every infinite set in (I, Cod(M/I))
contains an  “-large*(#) I-finite subset, hence a € Jj(M). O

Let 19 be the intersection of all X9 cuts, or equivalently of all I3 cuts.
Kolodziejezyk and Yokoyama (personal communication) proved over RCAq that
19 C J, and that for every model M = (M, S) |z RCAq+BX9+-I%9, every A € S
such that 1X9(A) fails, and = € J(M)\ 19(M), there exists an M-unbounded set
Y C M such that M = (Y @ A) <7 A’ and Y contains no ®-large subset. It
follows that every countable model of RCAg + BXJ + —I39 can be -extended
into a model of RCAg + BX9 + —IX9+419 = J”. Since RCAg + 129 F 19 = N, then
RCA( + BX9+41 = J” is [}-conservative over RCAg + BXY.

Since every "-large*(0) set is ™-large(#), which is itself ™-large, then
RCAq - Jj C Jg C J. We now prove that if one further assumes BES + T, then
19 C J;. Interestingly, the argument requires to first prove that 19 C J,.

Lemma 3.11. RCAg +BX) + T 15 C Jo.

Proof. Suppose that a € Jg. Let X be an infinite set with no  *-large(6) subset.
Let I C N be the IT3(X) set of all n € N such that for every k € N, X N (k, 00)
contains an "-large(f) subset. In particular, a & I.

We prove that [ is a cut. First, I is an initial segment of N as every -
large(6) set contains "-large(6) subsets for every m < n. Moreover, 0 € I since
for every k € N, X N (k,00) is non-empty, hence contains an “-large(f) set.
Suppose n € I. Let k € N and z € X N (k,00). Since X N (x, 00) is infinite, by
the same argument as Lemma [3.7] there is an infinite sequence Ey < Ej < ...

of pairwise §-apart "-large(f) subsets of X N (x,00). Then {z}UlJ,_, E; is an
n+1large() subset of X N (k,o0). It follows that n + 1 € I.
Since I is a II9(X) cut, then 19 C I, so a & 19. O

Lemma 3.12. Let £ C [N]<N be a collection of sets and Ey < By < -+ < Ej_4
be a sequence of L-large, pairwise 0-apart sets such that {max E; : i < k} is
"1 large(9) for somen. Then for everyx < Ey, EyU---UEg_1 € L-(x,™ times

,T).

Proof. By induction on n. The case n = 0 is immediate.
Assume the property to holds for some n € N and let Fyg < B < -+ < Ef_1
be a sequence of L-large, f-apart sets such that F := {maxFE; : i < k} is
"+l Jarge(f) for some n and let © < Ey. Let Fy, ..., Fuax 5,—1 be f-apart and
™-large(6) subsets of F. By our inductive hypothesis, for every i < max Fy,
the set Z; := UmaXEjeFL' E;isin L - (z,” times ) Furthermore, the Z; are
pairwise f-apart, so By U« U Fg_q € L (z, "1 Hmes ), O

Lemma 3.13. RCA, +BX +T 13 C J;.

Proof. Suppose that a ¢ J;. If a & Jg, then by Lemma a & 19. From now
on, assume that a € Jg. The proof is very similar to Lemma [3.11] but with a
twist.
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Let X be an infinite set with no  “-large* () subset. Let I C N be the IT13(X)
set of all n € N such that for every k € N, X N (k, 00) contains an "-large*(6)
subset. As in Lemma [3.11] 7 is an initial segment of N containing 0 but not a.

Let us prove that I is closed under successor, hence is a cut. Suppose n € I.
Let k € Nand z € XN(k,00). Since X N(z,00) is infinite, by the same argument
as Lemma there is an infinite sequence Ey < F7 < ... of pairwise f-apart

™-large* (0) subsets of X N (z,00).

Let y; = max E; and consider the set Y = {y1,¥ya2,...}. Since a € Jyp and
a > n, then n € Jg, hence n + 2 € Jy. Thus, as the set Y is infinite, there
exists some subset F' C Y that is "*2-large(d). Let E = {yo} U Uy.er Ei- By
Lemma Uy,er Ei is in LY - (yo,™+1 times 90) hence E is an  "T!-large*(6)
subset of X N (k, 00). It follows that n+ 1 € I.

Since I is a I19(X) cut, then 1§ C I, so a & 13. O

It follows from the above discussion that RCAq+BX3+T+“§ = J} = Jg = J”
is I1}-conservative over RCAg + BX9 + 7.

3.4 Sparsity

In Ketonen and Solovay’s notion of largeness, a set X is "Tl-large iff X \
{min X} is ™ - min X-large. From a purely logical viewpoint, one could have
fixed a provably total, increasing function g and defined a set X to be "tl-g-
large if X \ {min X} is ™ - g(min X)-large. The resulting notion of largeness
would enjoy all the necessary properties to prove conservation theorems, and
it is often very convenient to assume that an "t!-large set X contains much
more than min X many pairwise disjoint ™-large subsets.

Thanks to sparsity, one can switch from one definition to the other with only
a multiplicative cost. For simplicity, consider for example an - 2-large and g-
sparse set X. Then there exist two pairwise disjoint -large sets Xy < X7 C X.
In particular, g(max Xy) < min X;. By definition of -largeness, X \ {min X }
is min X;-large, hence g(max Xy)-large. It follows that {max X }UX;\{min X; }
(hence X) is -g-large. Over the remainder of this article, we shall use multiple
times the same idea to artificially increase the number of branches of the induced
tree in the definition of an "*!l-large*(#) block. Since we work within RCA,
the provably total computable functions are the primitive recursive ones.

Theorem 3.14 (Ketonen and Solovay [20]). 1X9 proves that for every primitive
recursive function g : N — N, there is some n € N such that for every ™-large
set F', max F' > g(min F').

In particular, y > 2z whenever (x,y] is -large and y > x2% whenever
(x,y] is 2-large. Recall that a set X is "-sparse if for every x,y € X with
x < y, then the interval (z,y] is "-large. Note that one could have worked
with  "-sparsity*() instead of ™-sparsity, but the later notion is sufficient
and better understood, so in the remainder of this article, we shall consider
only ™-sparsity.
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Corollary 3.15 (IXY). For every k,n € N, every "**.2-large*(0) set contains
an *-sparse "-large*(0) subset.

Proof. Let X be "t .2large*(). By Proposition there are some ¢ € N
and some *-large*(#) pairwise f-apart subsets Xy < --- < X,_; of X such
that every H € [[;_,[min X;, max X;] is "-large*(f). In particular, the set
Y = {max X; : i < £} is ™-large*(#). Let a,b € Y with a < b. Let i be
such that max X; = b. Then a < min X;, and X; is *-large*(6), so (a,b] is

k_large* () hence *-large. It follows that Y is *-sparse. O

Corollary 3.16 (I1X9). For every primitive recursive function g : N — N, there
is some k € N such that for every n € N, every "**-large*(0) set contains a
g-sparse "-large*(0) subset.

Proof. Immediate by Corollary and Theorem [3.14] O

3.5 Pigeonhole principle

We now turn to the proof of a central proposition which justifies the design

of this new notion of largeness*(#). Proposition gives an upper bound to

the pigeonhole principle in its most general form, from which we deduce the
"2 Jarge*(A) upper bound to RT'- "-largeness*(#) in Corollary

Proposition 3.17. Let X be a finite set, n, s, ki,...,ks € N and a < min X.
If X is "L (a,aky,...,aks)-large*(0) and exp-sparse, and f : X — a is a
coloring, then there is an f-homogeneous ™ - (ki,...,ks)-large*(0) subset.

Proof. By induction over n, and for a fixed n, by induction over s.
Case 1: n =0 and s = 0. Any singleton element is *-large*(6), so {min X}
is f-homogeneous and °-large*(f).
Case 2: n > 0and s =0. Let Xg < --- < X,_1 € X be pairwise #-apart
n+1]arge*(0) subsets of X. Suppose Xj is not f-homogeneous, otherwise we
are done. Let ¢t < a be maximal such that f(J._, X;) 2 f(X;). Note that ¢t > 1
exists since otherwise,

<t

2<[f(Xo) < [f(XoUuXy)| < < [f(XoU- - UXq1)

and therefore |f(X)| > a + 1, contradicting the assumption that f: X — a.

Since X; is "*llarge*(#), then X; \ {min X;} is ™ - (min X,,n+1 times
,min X;)-large*(#). By exp-sparsity, 4m8*Xt-1 < min X; so (max X;_1)? <
min Xy, thus @ X max X;_; < min X;. Then, by induction hypothesis, there is
some "1 (max X; 1, fmes max X; )-large* () f-homogeneous subset Y C
X, for some color i < a. By choice of ¢, there is some c € Uj<th such
that f(¢) = i. Note that ¢ < maxX;_1, so {c} UY is "-large*(0), and f-
homogeneous for color i.

Case 3: n > 0 and s > 0. There exists aks pairwise f-apart
(a,aky, ..., aks_1)-large*(0) sets Xog < -+ < Xgk,—1. By induction hypothesis,
for each j < aks, thereis an ™ - (ki,...,ks—1)-large*(#) f-homogeneous subset

n+1 |

17



Y; C X for some color i; < a. There is some 7 < a such that ¢; = ¢ for at least a
many j’s. Then Uij _; Y; is f-homogeneous for color ¢ and "™ (k1,...,ks—1,ks)-
large* (0). O

Corollary 3.18. Let X be a finite set, n € N and a < min X. If X is "*!.qa-
large*(0) and exp-sparse, and f : X — a is a coloring, then there is an f-
homogeneous "™-large*(0) subset.

Proof. Immediate by Proposition [3:17 with s = 0. O

Corollary 3.19. Let X be a finite set and n € N. If X is " 2-large*(0) and
exp-sparse, and f : X — min X is a coloring, then there is an f-homogeneous
"-large*(0) subset.

Proof. If X is "*2large*(6), then X \ {min X} is "*!.min X-large*(6), so
apply Corollary O

3.6 Partition theorem for regular trees

The purpose of this section is to prove a Ramsey-type theorem for colorings of
pairs of leaves of a regular tree (Proposition [3.26]), which will be used in the
inductive step of the computations of EM-largeness*(#) and RT3-largeness*(6).
For this, we will use a finite version of Milliken’s tree theorem with primitive
recursive bounds [34, [11].

Milliken’s tree theorem is formulated in terms of strong subforests, which
is a notion of subforest perserving some structural properties of the original
forest. More precisely, nodes at the same level of a strong subforest have to
come from the same level in the original forest, and the branching degree must
be preserved. In this section, we shall exclusively work with strong suforests of
(2<N,...,2<N) and define the notion of strong subforest only in this specialized
case.

Definition 3.20. A finite sequence T = (Tp, ..., Ty_1) of finite subsets of 2<N
is a strong d-forest if there is some £ € N, a level function h : {0,..., ¢} = N
and a finite sequence of functions (fo,..., fs_1) with fi : 2<% — T; such that
for every i < d

(1) for every o € 2=¢, | f;(0)| = h(|o]);
(2) for every o € 2<* and i < 2, fi(c-1) = fi(o) -i.

We call £ the height of T, and write Leaves(T}) = {f;(0) : o € 2¢} for the set
of leaves of T;.

Remark 3.21. Note that contrary to computability theory in which a tree is
classically required to be closed under prefix, the notion of tree in Milliken’s tree
theorem has to be understood as the structure (S, =) for a subset S C <N,
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Given a strong d-forest T = (T, ..., Ty_1), we write Stry(T') for the set of all
strong d-forests S = (So,--.,S4-1) of depth £ such that for every i < d, S; C T;.
The following theorem is the restriction of Dodos et al. [T, Theorem 3.28] to
strong forests. We write £" for the nth level of the Grzegorczyk hierarchy [13]
of primitive recursive functions.

Theorem 3.22 (Finite Milliken’s tree theorem (see [11])). For every integer d >
1 and every triple £,k,r of positive integers with £ > k, there exists a positive
integer N with the following property. Iff = (To,...,Ta—1) is a strong d-forest
of depth N, then for every coloring f : Stry(T) — r, there exists S € Str(T)
such that the set Strk(g) is f-monochromatic. The least positive integer with
this property will be denoted by Mil(d, ¢, k,r) and is primitive recursive in its
parameters, belonging to the class £7.

In our use of Milliken’s tree theorem, we shall restrict ourselves to strong
d-subforests whose leaves have the same length as the parent strong d-forest.
Civen a strong d-forest T = (Tp,...,Ty_1), we write Str’ (T) for the set of

all strong d-forests § = (So,-.-,54-1) of depth n such that for every i < d,
Leaves(S;) C Leaves(T;).

Corollary 3.23. Let d,{,k,r € N and let M = Mil(d, ¢, k,r). Iff = (Ty, .- .,
Ti—1) is a strong d-forest of depth M, then for every coloring f : Strk(’f) -

there exists some S € Stry(T) such that Strt,(S) is f-monochromatic.

Proof. Fix such family T and coloring f.

For o € T; for some i < d, let 6 € Leaves(T;) be the extension of o in T;
by its leftmost path. Similarly, for R € Str(T}), define R € Str'(T}) to be the
tree obtained by extending all the Aleaves of R by their leftmost path in 7;. For
R=(Ry,...,Rq_1) € Str(T), let R := (Ry,...,R4_1) € Str'(T).

Let f : Stri(T) — r be defined by f(R) := f(R). By Theorem there
exists S € Stry(T) such that Stry(S) is monochromatic for f. By definition of

f , S is monochromatic for f. Indeed, every element of Strfc(g) is of the form R

A -

for some R € Stri(S) and f(R) = f(R) by definition of f. O

Lemma 3.24. Let d,l,r € N, there exists a primitive recursive bound B =
Bgo(d, 4, r), such that: if T = (To, ..., Ta—1) is a strong d-forest of depth B,
then for every coloring g : Leaves(Ty) U --- U Leaves(Ty_1) — r, there exists
some S = (S0, ...,Sq_1) € Str\(T) such that for every i < d and every o,0’ €
Leaves(S;), g(o) = g(o’).

Proof. Let Bgma(d,¢,7) = Mil(d,¢,1,7%). Fix such vector T and coloring f.
Consider the coloring h : Strt (T') — r¢ defined by:

h:(oo,...,04-1) = (9(00),...,9(0a-1))
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Then, by Lemma there exists some S = (Sp,...,S4_1) € Strl(T) such
that Str}(S) is h-monochromatic. Hence, g is constant on every Leaves(S;) for
i<d. O

Lemma 3.25. Let d,f € N, there exists a primitive recursive bound B =
Ba=m(d, {), such that: if T = (To,...,Ta—1) is a strong d-forest of depth B,
then for every coloring f : [Leaves(Tp) U --- U Leaves(Ty_1)]?> — 2, there ex-
ists some S = (Soy...,S8q-1) € Stré(f) such that for every i,j < d and every
o,0" € Leaves(S;) and 7,7" € Leaves(S;), f(o,7) = f(o',7').

d(d—1)

Proof. Let Bgom(d, ¢) = Mil(d, Mil(d, ¢, 1,2 ),2,2%). Fix such vector T' and
coloring f. First, notice that for a tree T, the sets Strt (T) and Strh(T) are in
one-to-one correspondence with Leaves(T') and [Leaves(T'))?, respectively. Thus,
Str! (T') can be seen as the set {(00,...,04-1) : 0; € Leaves(T;)} and Strh(T)
can be seen as the set {((c9,70),.-.,(0d=1,Ta—=1)) : 04, 7i € Leaves(T;),0; < 7;}.

Consider the two colorings: hg : Stry(T) — 2% and hy : Strt (T) — 2w,
defined by

hQ : ((0’0, TQ), ey (Ud—lde—l)) — (f(a'o, 7’0)7 ey f(O'd_l, Td—l))

h1 : ((70, ey O'dfl) — (f((fo, 0'1), f(O'o, 0'2), RN f(Ud,Q,Udfl))

Then, by Lemma there exists some S = (Sp,...,S4_1) € Str\(T) such
that Str} (5) is hi-monochromatic, and such that Strh(S) is ho-monochromatic.
Those two constraints gives us the desired result: the value of f(z,y) for = €

Leaves(S;) and y € Leaves(S;) only depends on the pair (4, j). O
We are now ready to prove our Ramsey-type theorem for regular trees.

Proposition 3.26. Let n,x € N. There exists a primitive recursive bound
B = Bgog(n, ) such that, for (T, =) = (BS?"~1 <), and for every coloring
f : [Leaves(T)]? — 2, there exists a subtree S C T such that (S, <) = (2=", <),
Leaves(S) C Leaves(T) and Leaves(S) is f-homogeneous.

Proof. Consider the sequence of integers My, ..., Ma,_o defined inductively as
follows:

M; = Em(2M0+"-+M¢_17Em(QMo+~-+Mi—17x)’ 22n—1—z’) fO’I"i < —2
Moy_9 = Bm(2M°+“'+M2"—3,:E)

Note that, in the case i = 0, the sum My + --- + M;_1 is equal to 0, hence
My = Bxog(1, Bgog(1, x), 22" 1). Then, let Bgog = 227-2 and let T be isomor-
phic to Bé;ﬁ_l. Since M; < Ms,,_5 for every i < 2n—2, we can then trim 7" and
consider a subtree T" of T such that the nodes of T at level i < 2n — 2 are 2M:
branching. We can then view T” as a 2-branching tree of depth My+- - -+ Ma,, _»
by replacing every 2Mi-branching by M; consecutive 2-branching.

Let Py = {e}, that is, the singleton root of 7" and let dy = 1 = card Py. For
1 <k <2n-—1, let P, be the nodes of T" at level My + - -+ + My_1 and let
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dj, = 2Mo+ 4 Mt = card Py, For 0 < k < 2n — 2, let TF = (T§,..., Tk _))
be the family of subtrees of 7" beneath the elements of Py that corresponds
to the levels between Mg + -+ + My_1 and My + - -+ + M, of T’. Notice that
Pyy1 = Leaves(T§)U- - -ULeaves(T}j _,) for every k < 2n—2, and that Py, 1 =
Leaves(T").

We can then define two families of colorings f* : [P]? — 2 and ¢* : P, —
22n=1-k a5 well as a family of forest S¥ = (S§,...,85 1) € Strl (T*), for
k < 2n — 2 inductively as follows:

We have Ms,,—o = Bgom(dan—2,), hence, by Lemma there exists

some S22 — (58"72,...,53;:22_1) € Strl (T2"2) such that the value of f

on [Leaves(S2""2)U- - - ULeaves(SﬁZ;iil)]Q only depends on the indexes of the
S2"2 where the leaves belong.

For 0,7 € Py, _a, let 2" 2(0,7) = f(o/,7') for any ¢’ = o and any 7/ = 7 in
Leaves(S5"2?)U- - ~ULeaves(S§Z;22_1). For o € Py, o, let g?"72(a) = f(o’,0")
for any o', 0" = o in Leaves(S3" 2)U--- U Leawes(Sggnf2 ). Note that both

a1
f27=2 and ¢2"2 are well-defined by choice of S27~2,

Suppose that f**! : [Pyy1]? — 2 and gFt! @ Ppyy — 227717F are defined
for some 1 < k < 2n — 2. Since My = Bgog(di, Baom(di, x), 2277 1F), we
can apply successively Lemma and Lemma d obtain some S* =
(Sh,...,8% _|) € Str,(T*) such that g"*+! is constant on each Leaves(SF) and
such that the value of f*+! on [Leaves(S§)U---U Leaves(S'fjk_l)]2 only depends
on the indexes of the S¥ where the leaves belong.

For 0,7 € Py, let f*(o,7) = f**1(o’,7') for any o/ = o and any 7/ >
7 in Leaves(S§) U --- U Leaves(S§ ;) C Pry1. For 0 € P, let g"(0) =
(f*1(0’,0"), 9" (0")) for any o', 0" > o in Leaves(S§)U- - -ULeaves(Sh _,) C
Pyy1. Here again, this is well-defined by choice of Sk,

Finally, consider the subtree S’ C T” equal to S on levels 0 to M, then
equal to the S} beneath the leaves of S on levels My to My + M; and so on.

Claim: for every k < 2n—2, every p € P.NS" with g*(p) = (ck, ..., Con_2),
and every pair o,7 € Leaves(S’) with o, 7 »= p and with lowest common ancestor
at level in the interval [Mo + -+ + M;_1, Mo + - - - + M;), we have f(o,7) = ¢;.
Proceed by induction on k, if k = 2n — 2, then let p € P, _o N S’ and write
g*"2(p) = can_2. By comstruction, ¢?>"~2%(p) = f(0,7) = can_2 for every
0,7 = p in Leaves(S’). Let k < 2n — 2 and assume the property to be true for
k+1,let p€ PN S and write g¥(p) = (ck,...,can_2). Let 0,7 € Leaves(S’)
with 0,7 > p and with lowest common ancestor at level in the interval [My +
coot Mg, Mo+ - -+ M;) for some i < 2n—2, since o, T = p, we have necessarily
i > k. If i > k, then let p’ € Priq NS’ be the common prefix of o and p in
Py.1, by definition of g*, ¢**(p') = (cr41,...,Con_2) and by the induction

hypothesis, f(c,p) = ¢;. If i =k, then let op41,...,00,—2 and Tx11,. .., Ton—2
be the prefixes of o and 7 belonging to P41, ..., Psy—o respectively, then ¢, =
fk+1(0k+1,7k+1) = fk+2(0'k+277'k+2) == f2n72(0—2n7277—2n72) = f(o,7).

This completes the proof of the claim.
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Thus, P, is a singleton (the root of T'), and the value taken by ¢° on its
element is a (2n — 1)-tuple (co,...,can_2) € 2271 such that, for o,7 two
leaves of S’ with lowest common ancestor at a level in the interval [Mgy + - - - +
Mi—l,MO + e+ Mi)7 f(O',T) = C;.

S’ is a binary tree of depth = x (2n — 1), and by grouping z successive
2-branching into one, S’ can be seen as a 2%-branching subtree of T of depth
2n — 1. As 2* > x, we can trim S’ and consider it to be xz-branching. By the
finite pigeonhole principle, there exists some ¢ < 2 such that ¢; = ¢ for n values
of i < 2n — 1, hence, by only keeping the nodes of S’ at those levels (and the
final level so that Leaves(S) C Leaves(T')), there exists some subtree S C 5,
isomorphic to (z=", <), such that f is constant on the leaves of S. O

3.7 Grouping principle

Patey and Yokoyama [36] defined a notion of “grouping” as follows: given a
coloring f : [N]?> — k, and two notions of largeness Lo, L1, a collection of
sets Fy < --- < Fs_1 is an (Lo, L£1)-grouping for f if (1) each F; is Ly-large,
(2) {max F; : i < s} is L;-large, and (3) for every ¢ < j < s and xg,21 €
F; and yo,y1 € Fj, f(zo,y0) = f(z1,y1). In other words, the behavior of f
over different F’s depends only on the indices. This notion was very useful to
give an inductive construction of EM- ™-largeness. Explicit bounds were later
computed by Kolodziejezyk and Yokoyama [23].

The notion of grouping does not directly translate to largeness*(6) because
of the induced tree structure at every level, but the following lemma can be
considered as its counterpart, and plays a similar role in the construction of an
EM- ™-large*(6) set.

Lemma 3.27. Let X Cpin N be T2 (d,™ Bimes d)-large* (0) and exp-sparse
for some d € N such that 2¢" < min X and let f : [X]> — 2 be a coloring.

Then, there exists an  "-(d,™ ¥imes d)-large* (0) subset Y of X, such that, for
(Yy)ocan the decomposition of Y into ™-large*(0) blocs, there exists a coloring
g : [d")? — 2 such that f(x,y) = g(o,7) for every x € Yy and y € Y, for some
o, T € d" with o # T.

Proof. Let (X,)scan be a decomposition of X into "*2-large*(6) blocs. Con-
sider the sequence (fy)seqn of colorings and the sequence (Y, )ycqn of sets de-
fined inductively as follows:

Let 0 € d™ and assume that Y, have been defined for every 7 >;., ¢, and con-
sider the two colorings fY : X, — 2% <reae 1 X7| and fl: X, — 2iredmir>iceol]
defined respectively by

fg(‘r) = (f(va))y€U7_<leXT and f;(x) = (f(xa y))ye{minYT:‘r>LmU}
for every x € X,. Finally, let

fo: X, — 227<lug [ X7 |+ {T€d™ 7> 100}
g - o
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be defined by f,(z) = (f(x), f:(x)). As minX > 2% and as the X, are
disjoint, we get that > oNXr | FHT T €d" AT >0 0} < |[0,min X) U
U-<,..o Xrl, hence

T<lex

9 r <y Xl H{TEd > 1000} e §
—_ o

by exp-sparsity of X. Then, by Corollary there exists some ™-large* () and
fo-homogeneous subset Y, C X,. By definition of (Y, )sedn, for o <je, 7 and
z,x' €Y, and y, ¢y € Yy, f(z,y) = fx,minY;) = f(2/,minY;) = f(«/,y'). O

3.8 Erdés-Moser theorem

Thanks to the partition theorem on trees (Proposition and the grouping-
like Lemma [3.27] we can now prove a central theorem in this article, namely, a
polynomial bound for EM- ¥-largeness*(#). In Section it will be combined
with the existing known polynomial bound for ADS- *-largeness*(#) and obtain
a bound for RT3- *-largeness*(f).

Theorem 3.28. There is a primitive recursive function ggzg: N — N such that
if X CNis S%_large*(0) and ggzg-sparse, then it is EM- *-large* (0).

Proof. Let ggzg be the map n — Bgzg(n,n). We proceed by induction on k.
The case k = 0 is immediate.

Assume the property to be true for some k € N. Let X be an 60+
large*(6) set and f : [X]?> — 2 be a coloring. There exist two **5-large*()
subsets Xy < X; of X. Let 29 = maxX,. By Corollary there exists
some OF+3_large*(0) subset Y; C X such that f(zo,y) = f(xo,y’) for every
Y,y € V1.

Note that xo > 6k since xo = max X which is **+5_large*(0). By ggogr
sparsity of X, Bgom(xo, k) < ggzg(zo) < minY;. Thus Y7 is

0842 - (Bezm(wo, k), 0% mes, Berom(wo, k))-large™ (6)

and by Lemma there exists an % . (Bgag(xo, k), 0k times | Beom(20, k))-
large* () subset Z of Y1 such that, for (Y,)seBggg(zo,kysr its decomposition
into  %-large*(0) blocks, the value of f(x,y) for + € Y, and y € Y, only
depends on the indexes o, 7 when o # 7.

By Lemma we can view Z; as a Bgog(zo, k)-branching tree T of depth
6k with leaves labelled with the Y. The coloring f induces a coloring f on the
pairs of leaves of that tree, and, by Proposition [3.26] as 6k > 2k there exists a
subtree S C T such that (S, <) = (z&k, <), Leaves(S) C Leaves(T'), and such
that Leaves(S) is homogeneous for f.

We can then apply the inductive hypothesis on each Y, for o € Leaves(S5)
and obtains F-large* () subsets Z, C Y, that are f-transitive. Let H =
{20} UU, creaves(s) Zo+ by construction H is ** k

-large*(0) as every Z, is "-
large*(f) and as S is a subtree of T
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We claim that the set Z is f-transitive. Indeed, pick by contradiction some
x <y <z€ Zsuchthat f(z,y) = f(y,z) and f(x,y) # f(z, z). We cannot have
x = xg, as f(xo,y) = f(xo, 2) for every y,z € Y;. We cannot have z,y,z € Z,
for some o € Leaves(S) by our application of the inductive hypothesis. We
cannot have z,y € Z,, and z € Z,, for some o9 <jep 01 € Leaves(S) by
our application of Lemma and similarly we cannot have x € Z,, and
Y,z € Zs, for some o9 < o1 € Leaves(S). Finally, we cannot have z € Z,,,
y € Z,, and z € Z,, for some 0y <jex 01 <jex 02 € Leaves(S), as by our

application Lemma we have f(z,y) = f(00701), fly,z) = f(01702) and
f(z,2) = f(oo,02) and by Proposition [3.26, f is homogeneous on Leaves(S).
Hence, every case is impossible and Z is f-transitive. This completes our claim

and the proof of Theorem [3.28 O

3.9 Ramsey’s theorem for pairs

Le Houérou, Levy Patey and Yokoyama [28, Proposition 5.4] proved that every

4nt4 Jarge(6) set is ADS- "-large(f), using the theorem of Ketonen and Solo-
vay [20]. By replacing its use with Theorem this yields the following bound
for ADS:

Proposition 3.29 (Le Houérou, Levy Patey and Yokoyama [28] revisited, 1X9).
Letn > 1. If F Cgin Nois 47 - 2-large(d) and (z +— 2xz2)—sparse, then it 1is
ADS- "-large(0).

Thanks to the translation between largeness(f) and largeness* (), one ob-
tains a polynomial bound for ADS in terms of largeness*(9):

Corollary 3.30. Letn > 1. If F Cs;, Nois 2”2+2"-2—large*(9) and (x 237‘"”2)—
sparse, then it is ADS- ™-large*(0).

Proof. Since F is antpe) - 2-large*(0), it is also antpe) - 2-large(6), so by
Proposition it is ADS- n(n;l)—largc(ﬁ). By Propositionﬁ7 F is ADS- -

large*(0). O

We are now ready to give a polynomial bound to RT%— "-largeness*(6).

Theorem 3.31. There is a primitive recursive function ggay :ZN — N such that
for every n € N and for every finite set X C N, if X is 127 F12046_[grge*(0)
and ggzmrsparse, then X is RTa- "-large*(6).

Proof. Let ggam : N — N be defined by gran(z) = max(2z”, ggog(z)). Fix
a coloring f : [X]? — 2. X being 6(2"2+2”+1)—1arge*(0) and gggmrsparse, by
Theorem there exists some f-transitive and 2”2+2”+1-1arge*(9) subset
Y C X. By Corollary there exists some f-homogeneous and "-large*(6)
subset Z CY. Thus, X is RT3- "-large*(6). O

Corollary 3.32. There exists a polynomial P € Z[X], such that, for every
neN, if X CNisan P -large*(0) finite set, then X is RT3- ™-large*(6).
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Proof. By Corollary let kg € N be such that, for every n € N, every
ntko_large*(0) set contains a ggggrsparse "-large* () subset.
Let P(X) = 12X? 4+ 12X + 6 + ko and fix some n € N. Let X C N be
P(n)_Jarge*(0), by definition of kg, there exists some 127" 12746 Jarge%(6)
and ggmrrsparse subset Y of X. By Theorem Y is RT3- ™-large*(6), thus
X is also RT3- "-large*(6). O

Note that instead of translating the linear bound for ADS- "-largeness(6)
(Proposition 3.29) into a polynomial bound for ADS-largeness* (¢) (Corollary[3.30),
and combine it with the linear bound for EM- "-largeness*(0) (Theorem
to obtain a polynomial bound for RT3-largeness*(8) (Theorem , one could
rather have translated the bound for EM into the other notion of largeness, and
obtained a polynomial bound for RT%—largeness(H). This shows that the previ-
ous notion of largeness(d) still admits enjoyable properties in terms of closure
under combinatorial theorems, but the largeness(6) proofs do not seem to follow
naturally the combinatorial proofs of the statements.

4 Polynomial simulation of RCA; + RT3

In this section, we use the general framework of forcing interpretation as for-
mulated in [22) Section 1] to prove Main Theorem [I.1] The general idea of a
forcing interpretation extends that of an interpretation of a theory 7" from an-
other theory T'. Indeed, while an interpretation formalizes the construction of a
model 7" inside a model of T, a forcing interpretation formalizes the definition
of a generic model of 7" from a model of T' through forcing.

As mentioned in [22], contrary to most forcing translations which build a
model -extending the ground model, the main forcing interpretation of this
series of translations formalizes the construction of a generic proper cut I <. M
and considers the model (M, Cod(I/M)).

Due to the heavy formalism of forcing interpretation, we shall sacrifice self-
containment for the sake of concision. We therefore expect the reader to be
familiar with the constructions of |22 Section 2], and we are mostly going to
emphasize the differences in the adaptation.

Our first change will concern the theory I given by [22] Definition 2.7], which
we replace by a theory I', requiring the corresponding cut to be also closed
under multiplication (the bound obtained in Corollary being given by a
polynomial in n of degree 2 as opposed to the bound 144n + O(1) obtained
[23]), and taking into account the fact that our notion of largeness now depends
on a parameter 6.

Definition 4.1. Let I' be the theory consisting of the following axioms:
(11) : T is a nonempty proper cut in the first-order universe,

(I'2) : T is closed under addition and multiplication,
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(I'3) : for every AY formula 0(y, z,t) and every a € N, if Vy3zVt0(y, z,t) holds,
then there exists some ®-large*(0) set s with mins > a for some > 1 .

Figure [2| summarizes the different intermediate theories we will consider
between RCAg 4+ BX9 and RT2 + WKLy, and the polynomial simulation between
them. It is adapted from [22, Figure 1], with BX9 added to every theory, and
with a VX9 polynomial simulation between RCAg + BX9 + I’ and WKL, + RT3
instead of a VX9 polynomial simulations.

WKL, + RT3
Tvzg

RCAo + B9 + T

-
RCAo + BX9 + (I1)
v L

=~ ™

RCA, + %9 RCA, + B + -39

S

RCA, + BX9

[

B,

Figure 2: Polynomial simulations between the various theories in Section [4]

All of these polynomial simulations except the one between RCAg +BYX9 + 1
and WKLq + RT% are obtained by a traditional interpretation, which can be seen
as a degenerate forcing interpretation. In most cases, the interpretation will be
a straightforward adaptation of the one in [22].

The following result corresponds to [22] Lemma 2.8]. Solovay’s technique of
shortening cuts used here to obtain a cut stable by addition and multiplication
(see e.g. [I4, Theorem IIL.3.5]) cannot be used to construct cuts stable by
exponentiation, which is the reason why the exponential bound of [28] was not
sufficient to obtain a polynomial simulation.

Lemma 4.2. RCAg + BXS + (I1) polynomially simulates RCAq + BX3 + 1" with
respect to Lo sentences.

Proof. We show that there exists an interpretation of RCAg+BX9+1" in RCAg+
BX9 + (I1) that is the identity interpretation with respect to all symbols of L.
Let J be the intersection of all the J} for every AJ formula 6(y, z,t) such
that Vy3zVid(y, z,t) holds.
By Proposition RCA( + BX9 proves that J forms a cut. Notice that for
0(y, z,t) a AY formula and a € N, the formula “there exists an “-large*()
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set s with mins > a” is X9. Since 129 holds, the proper cut I N J is not %9-
definable, hence, if Vy3zVtl(y, z,t) holds, then, for every a € N there must
exists some *-large*(#) set s > a for some xz > INJ. Thus, INJ is, provably
in RCAg + BX§ + (I1), a proper definable cut satisfying (I1) and (I'3).

By applying Solovay’s technique of shortening cuts, we consider the cuts K =
{aeln):VzelnJ (a+zeln))}and K' ={a € K:Vz € K (a-z € K)} that
are respectively closed under addition and multiplication. Thus, RCAy + (I1)
proves the axioms of RCAg + I’ with K’ substituted for I. O

The following result corresponds to [22, Lemma 2.9].
Lemma 4.3. RCAq + BXY + (I1) is polynomially simulated by:
(a) RCAg + 139 with respect to VX3 sentences,

(b) RCAq + BXY + —IX with respect to Lo sentences.

Proof. The proof of [22] Lemma 2.9.(a)] already gives the stronger result with
RCA( + BX9 + (I1) instead of RCAq + (I1). Indeed, by [2, Theorem 5.1], 13,
proves the uniform II4 reflection principle for B¥X5 and not just 13.

The proof of (b) is the same as that of [22] Lemma 2.9.(b)]. O

We now turn to the main polynomial simulation, that is, the proof that
RCAq + BXY + I’ polynomially simulates WKLy + BX9. As explained, this in-
volves the definition of a forcing interpretation, which formalizes the construc-
tion of (I, Cod(M/I) for a generic proper cut I. We start with the definition of
the forcing interpretation, which consists of defining a set of conditions Cond,
partially ordered by a relation <, together with two predicates, namely s I v |
for s € Cond and v € N, and s IF a(v,...,v—1) for every s € Cond and every
simple atomic formula a(vg, ..., ve—1).

As our notion of largeness depends on a parameter 6, so will the forcing
conditions. A condition will therefore be a pair (s, 8), such that if (s,8") < (¢, 0),
then # = 6. Tt follows that in any filter F, the second component of each
condition shares the same parameter 6. Thus, the resulting forcing notion will
satisfy the same properties as the one defined in [22] Definition 2.11].

Definition 4.4.

(i) A forcing condition is a couple (s,6) such that 0 is (the code of) a A
formula and s is a finite “-large*(0) set for some x > 1. We let Cond be
the set of all forcing conditions.

(ii) Given two forcing conditions (so,6p) and (s1,01), let (so,00) < (s1,601) if
90 = 91 and So Q S1.

(i1i) Let (s,0)IFv ] if (sN[1,v],0) is not a condition. And (s,0) I+V | always
holds. Given a simple atomic formula ¢(v), let (s,0) I- ¢ if (s IF 0 })Ad(D),
where U contains all the parameters of ¢.
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The relations Cond, <, I shares the same properties as their equivalent
from [22] Definition 2.11] and direct counterparts of [22, Lemma 2.12, 2.13
and 2.14] can be proven in the same manner. The following counterpart of [22]
Lemma 2.15] exploits in an essential way the polynomial bound obtained in

Corollary

Lemma 4.5. The relations Cond, <, IF of Definition[{.4) determine a polynomial
forcing interpretation of WKLo + RT% in RCAg + BXY +T'.

Proof. Since by the counterpart of [22] Lemma 2.12], Cond, <, I determine a
forcing interpretation of pure logic from Lo in RCAg + BXY + I, it remains to
show that any condition (s, ) forces each of the axioms of WKLy + RT3. The
proof is similar to that of [22] Lemma 2.15].

For RT3, we use Corollary instead of [22, Theorem 2.6].

For the other axioms, the only combinatorial property of largeness the proof
exploits is [22 Proposition 2.4(ii)] in the case of w™-k-largeness, which also holds
for w™ - k-largeness*(0): if X is w™ - k-large* (@), there are k many w™-large*(6)
subsets X < -+ < X371 € X \ {min X}. O

The main difference between our proof and that of [22] lies in the follow-
ing lemma. It corresponds to [22, Lemma 2.16] but is formulated for V%$-
reflection rather than VX3-reflection. In their argument, in order to obtain a
condition s forcing a given II9 formula Vy3z60(y, z) holding in some model of
RCAq + I, Kolodziejezyk et al. consider an infinite set {kq, k1, ...} such that
Yy < k;dz < ki10(y, z) for every i and then take s to be an w®-large sub-
set of that set for some z > 1. However, for a IIJ formula Vy32Vtd(y, z,t)
holding in a model of RCAy + BXY, one cannot prove the existence of an in-
finite set {ko, k1,...} satisfying Yy < k;3z < k;11Vt0(y, z,t). Instead, we will
choose some w®-large*(f) set s for some x > I, and prove that (s,) forces
Vy32Vth(y, 2, t).

Lemma 4.6. The forcing interpretation of WKLy + RT% in RCAg + BX9 + 1T
given by Cond, <, IF of Deﬁnition is polynomially VX3-reflecting.

Proof. We proceed by contrapositive. Let ¢ := IXVy32Vt0(X, y, z,t) be a I3
sentence and assume that RCAg + BXY + 1’  ¢. Let b € N be bigger than all
the first-order constants appearing in ¢. By (I'3), there exists a set A and some

*-large*(0(A)) set s with s > b for some = > I. We claim that (s,0(A)) I+
Vy3zVtd(A,y, z,t), which would imply that (s,0(A)) If VXIyVzIt—-0(X,y, 2, t)
yielding the VX3-reflection.

Take (s',0(A)) <€ (s,0(A)) and ¢ such that (s',0(A)) IF ¢ |. Since (s' N
[1,4],0(A)) is not a condition, s’ \ [1,¢] must be w® -large*(#) for some =’ > L.
Let s9 < s1 be two ' ~Llarge*((A)) and 0(A)-apart subsets of 5"\ [1,£]. We
claim that (s1,6(A)) IF 32Vt0(A, L, 2, t).

As sp and s; are 0(A)-apart, there exists some ¢/ < mins; such that V& <
max s1,0(A, ¢, ¢ t) holds. As ¢ < mins; we have that sy IF ¢ | since (s; N
[1,0',0(A)) = (0,6(A)) is not a condition. Hence it is sufficient to show that
(s1,0(A)) IFVto(A, L, ¢ t).
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Let ¢” be such that (s1,0) IF £ |. Necessarily we have £’/ < max s; otherwise
51 N[1,£"] = 0 and cannot be *"-large*(f) for some z” > I. Thus, as sy and
s1 are O(A)-apart, 0(A, ¢, ¢, ¢") holds. From the assumption that s > b, we
have that (s7,0(A)) IF v | for every first-order parameter v in the formula
O(A,0,0,0"), hence (s,0(A)) IF 6(A,£,0,0") and (s1,0(A)) |- VtO(A, L, 0, 1).
Therefore, (s1,0(A)) IF 32Vt0(A, L, z,t) and (s,0(A)) IF Vy32Vi0(A,y, z,t). O

We can now combine the previous lemmas and obtain the desired polynomial
simulation.

Lemma 4.7. RCAy + 1’ polynomially simulates WKLy + RT% with respects to
V¥9-sentences.

Proof. Follows directly from Lemma[d.5] Lemma[4.6land [22, Theorem 1.17]. O

Putting altogether the successive polynomial simulations, we obtain our
main theorem:

Main Theorem RCAq + BXY polynomially simulates WKLo + RT% with

respect to VE% sentences.

Proof. By Lemma [4.7] and Lemma [£.2] there is a polynomial-time procedure
which, given a proof 7 of a VX3 sentence ¢ in WKLq + RT%, outputs a proof 7’
of 1 in RCAy+BX§+ (I1). By Lemma a further polynomial-time procedure
outputs a proof 7" of 1 in RCAg+1%9 and a proof 7" of 1 in RCAg+BX)+-1%9.
Combine 7, 7', and a case distinction to obtain a proof of 1) in RCAg+BX9. O
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