The weakness of Ramsey’s theorem under omniscient reductions

Ludovic PATEY

UC Berkeley

July 03, 2017
Many **theorems** can be seen as **problems**.

König’s lemma
Every infinite, finitely branching tree admits an infinite path.
Some theorems are more effective than others.

Intermediate value theorem
For every continuous function f over an interval $[a, b]$ such that $f(a) \cdot f(b) < 0$, there is a real $x \in [a, b]$ such that $f(x) = 0$.

König’s lemma
Every infinite, finitely branching tree admits an infinite path.
COMPUTABLE REDUCTION

A problem P is computably reducible to a problem Q if for every P-instance X, there is a Q-instance $\hat{X} \leq_T X$ such that for every solution Y to \hat{X}, $Y \oplus X$ computes a solution to X.

$$P \leq_c Q$$
COMPUTABLE REDUCTION

“Q is at least as hard as P”
Ramsey’s Theorem

\([X]^n\) is the set of unordered \(n\)-tuples of elements of \(X\)

A \(k\)-coloring of \([X]^n\) is a map \(f : [X]^n \to k\)

A set \(H \subseteq X\) is homogeneous for \(f\) if \(|f([H]^n)| = 1\).

\(\text{RT}_k^n\) Every \(k\)-coloring of \([\mathbb{N}]^n\) admits an infinite homogeneous set.
PIGEONHOLE PRINCIPLE

\[\mathbf{RT}_k^1 \]

Every \(k \)-partition of \(\mathbb{N} \) admits an infinite part.
Ramsey’s theorem for pairs

RT^2_k Every k-coloring of the infinite clique admits an infinite monochromatic subclique.
AN EXAMPLE

A function $f : \mathbb{N} \rightarrow \mathbb{N}$ is hyperimmune if it is not dominated by any computable function.

A problem P preserves m among n hyperimmunities if for every n-tuple of hyperimmune functions f_0, \ldots, f_{n-1} and every computable P-instance X, there is a solution Y to X such that at least m among the f’s are Y-hyperimmune.
An example

\[\text{RT}_k^n \not\leq_c \text{RT}_\ell^n \]

whenever \(k > \ell \geq 2 \) and \(n \geq 2 \).

(P.)

\(\text{RT}_\ell^2 \) preserves 2 among \(k \) hyperimmunities but \(\text{RT}_k^2 \) does not.
\[\text{RT}_k^1 \cong_c \text{RT}^1_\ell \]

whenever \(k, \ell \geq 1 \).
\[\text{RT}^1_k =_c \text{RT}^1_\ell \]

whenever \(k, \ell \geq 1 \).
\[\text{Refining} \leq_c \]

Weihrauch reduction
Consider the uniformity of reductions

Strong computable reduction
Removes access to the instance

\[\text{RT}_k^1 =_c \text{RT}_\ell^1 \]

whenever \(k, \ell \geq 1 \).
A problem P is **strongly computably reducible** to Q if for every P-instance X, there is a Q-instance $\hat{X} \leq_T X$ such that every solution to \hat{X} computes a solution to X.

$$P \leq_{sc} Q$$
“Q is at least as hard as P”
A function \(f : \mathbb{N} \rightarrow \mathbb{N} \) is hyperimmune if it is not dominated by any computable function.

A problem \(P \) strongly preserves \(m \) among \(n \) hyperimmunities if for every \(n \)-tuple of hyperimmune functions \(f_0, \ldots, f_{n-1} \) and every \(P \)-instance \(X \), there is a solution \(Y \) to \(X \) such that at least \(m \) among the \(f \)'s are \(Y \)-hyperimmune.
$\text{RT}_k^1 \not\leq_{\text{sc}} \text{RT}_\ell^1$

whenever $k > \ell \geq 2$.

(Dzhafarov)

RT_ℓ^1 strongly preserves 2 among k hyperimmunities but RT_k^1 does not.
\(\text{RT}_k^1 \not\leq^{sc} \text{RT}_\ell^1 \)

whenever \(k > \ell \geq 2 \).

(Dzhafarov)

The \(\text{RT}_k^1 \)-instance witnessing it defeats all \(\text{RT}_\ell^1 \)-instances.

(Hirschfeldt, Jockusch, P.)
\(\text{RT}^1_k \not\lesssim_{sc} \text{SRT}^2_\ell \)

whenever \(k > \ell \geq 2 \).

(Dzhafarov, P., Solomon, Westrick)

\(\text{SRT}^2_k \) : Restriction of \(\text{RT}^2_k \) to stable colorings.
\[\mathsf{RT}_k^1 \not\leq_{\text{sc}} \mathsf{SRT}_\ell^2 \]

whenever \(k > \ell \geq 2 \).

(Dzhafarov, P., Solomon, Westrick)

The \(\mathsf{RT}_k^1 \)-instance witnessing it defeats all \(\mathsf{SRT}_\ell^2 \)-instances.
WKL : Restriction of König’s lemma to binary trees.

\[\text{WKL} \leq_c \text{RT}_k^n \]
whenever \(k \geq 2 \) and \(n \geq 3 \).

(Jockusch)

\[\text{WKL} \nleq_c \text{RT}_k^2 \]
whenever \(k \geq 1 \).

(Liu)
WKL : Restriction of König’s lemma to binary trees.

\[\text{WKL} \leq_c \text{RT}^n_k \]
whenever \(k \geq 2 \) and \(n \geq 3 \).

\[\text{WKL} \not\leq_c \text{RT}^2_k \]
whenever \(k \geq 1 \).

(Jockusich)
(Liu)
Definition

- A function f is a **modulus** of a set A if every function dominating f computes A.

- A set A is **computably encodable** if for every set $X \in [\omega]^\omega$, there is a set $Y \in [X]^\omega$ computing A.

A is computably encodable $\iff A$ admits a modulus $\iff A$ is hyperarithmetic

(Solovay, Groszek and Slaman)
WKL \not\leq_{sc} RT^n_k

whenever \(n, k \geq 1 \).

(Hirschfeldt, Jockusch)

The WKL-instance witnessing it defeats all \(RT^n_k \)-instances.
WWKL : Restriction of WKL to trees of positive measure.

\[\text{WWKL} \leq_c \text{RT}_k^n \]

whenever \(k \geq 2 \) and \(n \geq 3 \).

(Jockusch)

\[\text{WWKL} \not\leq_c \text{RT}_k^2 \]

whenever \(k \geq 1 \).

(Liu)
Definition

- A function f is a Π^0_1 modulus of a set $C \subseteq \omega^\omega$ if C has a non-empty g-computably bounded $\Pi^0_{1,g}$ subset for every $g \geq f$.

- A set $C \subseteq \omega^\omega$ is Π^0_1 encodable if for every set $X \in [\omega]^\omega$, there is a set $Y \in [X]^\omega$ such that C admits a non-empty Y-computably bounded $\Pi^0_{1,Y}$ subset.

C is Π^0_1 encodable $\iff C$ admits a Π^0_1 modulus $\iff C$ has a non-empty Σ^1_1 subset

(Monin, P.)
\[\text{WWKL} \not\leq_{sc} \text{RT}^n_k \]

whenever \(n, k \geq 1 \).

(Monin, P.)

The WWKL-instance witnessing it defeats all \(\text{RT}^n_k \)-instances.
STRONG OMNISCIENT COMPUTABLE REDUCTION

\[P \leq_{soc} Q \]

A problem P is strongly omnisciently computably reducible to Q if for every P-instance \(X \), there is an arbitrary Q-instance \(\hat{X} \) such that every solution to \(\hat{X} \) computes a solution to \(X \).
"Q is at least as hard as P"
The big question

$P \leq_w Q$

$P \leq_{sw} Q$

$P \leq_{sc} Q$

$P \leq_c Q \Rightarrow P \leq_{\omega} Q$.
Whenever $k > \ell \geq 1$

- $\text{RT}_k^1 \not\leq_{soc} \text{RT}_\ell^1$
 (Hirschfeldt, Jockusch, P.)

- $\text{RT}_k^1 \not\leq_{soc} \text{SRT}_\ell^2$
 (Dzhafarov, P., Solomon, Westrick)

- $\text{WKL} \not\leq_{soc} \text{RT}_k^n$
 (Hirschfeldt, Jockusch)

- $\text{WWKL} \not\leq_{soc} \text{RT}_k^n$
 (Monin, P.)
OMNISCIENT COMPUTABLE REDUCTIONS

- ACA $\not\leq_{oc} RT^1_k$ (Dzhafarov)
- WWKL $\not\leq_{oc} RT^1_k$ (Liu.)
- WWKL $\not\leq_{oc} FS$ (P.)
- $RT^2_2 \not\leq_{oc} FS$ (P.)
Differences with \leq_{sc}

$\text{SRT}_3^2 \not\leq_{sc} \text{RT}_2^2$ \hspace{1cm} $\text{SRT}_{<\infty}^2 \leq_{soc} \text{RT}_2^2$

(P.)

(Monin, P.)

Proof sketch: $g(x, y) = 1$ iff $f(x, y) = \lim_s f(y, s)$
Diagram under \leq_{soc}

KL \iff WKL

RT \downarrow WWKL

\vdots \downarrow

\vdots

\downarrow

RT$_3^2$ \iff RT$_2^2$

SRT$_2^2$ \iff SRT$_3^2$ \iff SRT$_2^2$

RT$_1^1$ \iff RT$_3^1$ \iff RT$_2^1$
QUESTIONS

Is \(RT \leq_{soc} RT^2_2 \) ?

Is \(RT^n_{k+1} \leq_{soc} RT^n_k \)?
No for \(n = 1 \).

Is \(RT^{n+1}_k \leq_{soc} RT^n_k \)?
No for \(n = 1 \).
Revisiting the big question
REVERSE MATHEMATICS

Foundational program that seeks to determine the optimal axioms of ordinary mathematics.
REVERSE MATHEMATICS

Foundational program that seeks to determine the optimal axioms of ordinary mathematics.

\[\text{RCA}_0 \vdash A \iff T \]

in a very weak theory \(\text{RCA}_0 \) capturing computable mathematics
Mathematics are computationally very structured.

Almost every theorem is empirically equivalent to one among five big subsystems.

\[
\begin{align*}
\Pi^1_1 \text{CA} \\
\downarrow \\
\text{ATR} \\
\downarrow \\
\text{ACA} \\
\downarrow \\
\text{WKL} \\
\downarrow \\
\text{RCA}_0
\end{align*}
\]
Mathematics are computationally very structured

Almost every theorem is empirically equivalent to one among five big subsystems.

Except for Ramsey’s theory...
COHESIVE SETS

An infinite set C is **cohesive** for a sequence of sets R_0, R_1, \ldots if for every i, $C \subseteq^* R_i$ or $C \subseteq^* \overline{R_i}$.

An infinite set C is **p-cohesive** if it is cohesive for the primitive recursive sets.

COH
Every sequence of sets has a cohesive set.
\[\text{RT}_2^2 \leftrightarrow \text{COH} \, + \, \text{SRT}_2^2 \]

Fix an instance \(f : [\mathbb{N}]^2 \rightarrow 2 \) of RT\(^2_2\).

Define \(R_x = \{ y : f(x, y) = 1 \} \).

Let \(C \) be cohesive for \(R_0, R_1, \ldots \).

\(f : [C]^2 \rightarrow 2 \) is an instance of SRT\(^2_2\).
THE BIG QUESTION

Does $\text{RCA}_0 \vdash \text{SRT}^2_2 \rightarrow \text{COH}$?
THE BIG QUESTION

Does $\text{RCA}_0 \vdash \text{SRT}_2^2 \rightarrow \text{COH}$?

Theorem (Chang, Slaman, Yang)

Nope.
Revisiting the big question

Hirschfeldt: “We want a computability-theoretic answer”

An L_2-structure $\mathcal{M} = \langle M, S, 0, 1, +, \cdot \rangle$ is an ω-structure if M is the set of standard numbers, equipped with the standard operations.

Does $\text{RCA}_0 \vdash \text{SRT}^2_2 \rightarrow \text{COH}$ on ω-structures?
REVISITING THE BIG QUESTION

Dzhafarov: “One step is already complicated”

Is $\text{COH} \leq_c \text{SRT}_2^2$?
Revisiting the Big Question

P: “This is about the combinatorics of singletons”

Is $\text{COH} \leq_{oc} \text{RT}^1_2$?

Is there a set X, such that every infinite set $H \subseteq X$ or $H \subseteq \overline{X}$ computes a p-cohesive set?
A set X is high if $X' \geq_T \emptyset''$.

Is there a set X, such that every infinite set $H \subseteq X$ or $H \subseteq \overline{X}$ is high?

If yes, then $\text{COH} \leq_{oc} \text{RT}_2^1$.

If no, well, this is still interesting per se.
A set S is **P-jump-encodable** if there is an instance of P such that the jump of every solution computes S.

Are the RT^1_2-jump-encodable sets precisely the \emptyset'-computable ones?
REFERENCES

Damir D. Dzhafarov and Carl G. Jockusch.
Ramsey's theorem and cone avoidance.

Damir D. Dzhafarov, Ludovic Patey, D. Reed Solomon, and Linda Brown Westrick.
Ramsey's theorem for singletons and strong computable reducibility.
Submitted., 2016.

Denis R Hirschfeldt and Carl G Jockusch Jr.
On notions of computability theoretic reduction between Π^1_2 principles.
To appear.

Lu Liu.
RT2_2 does not imply WKL$_0$.

Benoit Monin and Ludovic Patey.
Π^0_1 encodability and omniscient reductions.